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Abstract

Current generative language models are designed to take a text prompt as input,
and output the highest probability continuation. However, when applying this idea
to the design space of lyric generation, there is an obvious shortcoming — lyrics
are often created with music’s auditory features in mind, such as tempo, tonality,
melody, rhythm, etc. Which is to say, a model able to interpret both text prompts
and snippets of music may be able to produce much better music. Therefore, our
project seeks to combine both text and music data in a multimodal transformer-
based model in order to generate lyrics more effectively than a purely text-based
model, utilizing multiple transformer architectures, including MusicBERT and
GPT-2.

1 Introduction

For any cohesive song, lyrical content is always inseparable from the musical content. Lyrics must
fit the melody, rhythm, harmonies, etc. for the song to sound good, and songwriters typically try
to match lyrics with the music as best as possible. However, currently-existing methods of natural
lyric generation typically generate from purely text inputs [1] [2]. The few that use information other
than text tend to use broad categories such as positive and negative sentiment or music style that
don’t provide detailed enough information about the desired lyrics [3] [4] . We propose creating a
multimodal, transformer-based model that generates lyrics based on a text prompt and MIDI file.
More specifically, we create a model that uses MusicBERT to encode data from the MIDI into
embeddings, projects these embeddings into the text embeddings space, and feed the projected music
and text embeddings together into a finetuned GPT2 to generate text. Overall, the approach we use in
this project is a novel use of transformer based models that brings in multimodal inputs to augment
the types of generated outputs.

Stanford CS224N Natural Language Processing with Deep Learning



2 Related Work

Much of previous work has focused on creating a natural lyric generator based on only text inputs.
Gill et al. created an LSTM model that produces lyrics for specific genres, and claim that the model
works well in pop and rap [2]. Chuang et al. made a GAN for Chinese rap lyrics titled RapGAN that
outperformed other lyric generators on human evaluation. Some have also tried transformers and
achieved strong results [1]. Overall however, much of the literature on lyric generation uses older
models (e.g. LSTMs) that typically don’t perform as well as transformers. Thus, our first insight is
that we would like to incorporate transformers in our own model, and thus contribute to the literature
on transformers in lyric generation.

Some lyrics generators have tried to incorporate information outside of text. Bao et al. created a
model that takes into account positive or negative sentiment of the song [3]. However, positive and
negative are very broad terms, and only provide limited information about how the lyrics should be
constructed. Chang et al. created a transformer-based model that generates lyrics in accordance to
specific genres such as "pop" and "rock" [4]. While this perhaps is more specific than sentiment,
such genre labels are also quite broad. For example, punk rock and psychedelic rock are extremely
different lyrically, yet they would both be categorized under "rock". Therefore, our second insight is
that we want to provide a non-text context that is more nuanced and detailed than what people have
tried before.

There has been existing work in using transformer-based models to understand music in the same way
as language. MusicBERT, which we explain in the next section, is a RoBERTa-based model trained
on a dataset of over 1 million MIDI songs for several downstream tasks such as genre classification
and melody prediction [5].

3 Approach

We propose MLG (MIDI-conditioned Lyric Generation), a multimodal, transformer-based model
that generates lyrics based on combined MIDI and text data. The architecture is based on GPT-2, a
decoder-based language model provided by OpenAI [6], but with several key changes. Specifically,
we use the Huggingface transformers GPT-2 model1 with 124M parameters, which we modify to
accept embeddings corresponding to MIDI data (see Figure 1).

MIDI files — symbolic representations of music, akin to sheet music — have several advantages
over raw audio files. Most importantly, MIDI files are much more compact, which means building
and processing the dataset is more efficient, and MIDI data is discretized rather than continuous.
In order to convert the MIDI data into a form that GPT-2 can recognize, we perform the following
preprocessing:

• A MIDI file is converted into tokens using the Octuple tokenizer.

• The first n = 512 tokens are fed into the MusicBert model, a large pre-trained model for
symbolic music understanding [5].

• The outputted hidden states (of size hMusicBERT = 768) are saved as a Pytorch tensor of
shape n× hMusicBERT.

The goal is to use MusicBERT, which has been pre-trained on MIDI data, to extract some high-level
meaning from the MIDIs, instead of learning the MIDI embeddings from scratch. Our motivation

1https://huggingface.co/gpt2
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Figure 1: Proposed model architecture

for this step is that learning embeddings from scratch would require resources that we didn’t have;
in addition, our dataset is too constrained to produce embeddings as expressive and powerful as
MusicBERT.

Before inputting into GPT-2, we incorporate a linear layer with weight matrix and bias W and b, of
dimensionality hMusicBERT × hGPT-2 and hGPT-2 respectively, where hMusicBERT = 768 is the hidden
size for MusicBERT and hGPT-2 = 768 is the hidden size for GPT-2. This layer essentially learns how
to best project vectors from the MusicBERT embedding space to the GPT-2 embedding space.

The projected embeddings are concatenated with the text embeddings (obtained by adding token
embeddings and position embeddings), and the entire sequence of embeddings is fed into GPT-2.
Note that since GPT-2 accepts token IDs as input by default, we had to modify the forward()
function to accept input embeddings instead.

Besides the embedding layer, the rest of the GPT-2 architecture (i.e. stacked decoders) is unchanged,
and the final hidden states are passed through an LM head to obtain the logits.

Note that even though the output consists of music and text data, the model output, i.e. the generated
lyrics, is strictly text. For training, the loss is computed only between the predicted lyrics and
reference lyrics. Thus the model learns to generate lyrics conditioned on the background music.
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To evaluate performance, we compare our models to a GPT-2 model finetuned on lyrics without MIDI
data. By comparing this ablation with the multimodal model, the intention is to establish if providing
MIDI data truly helps to generate better lyrics.

4 Experiments

For the MIDI data, we use the current largest open-source collection of MIDI files, the Lakh MIDI
Dataset compiled by Raffel [7]. It consists of 176,000 MIDI files scraped from online sources.
Although the Lakh MIDI Dataset is large in size, most of the metadata and formatting is disorganized
and unstandardized. Moreover, a large percentage of the songs with lyrics are in languages other than
English, such as German, Vietnamese, and Portugeuse. After filtering the dataset for MIDI files with
lyrics in the metadata and further selecting English songs, only around 3,000 files remained. Thus, it
was necessary to augment the dataset by finding the lyrics associated with the Lakh MIDI Dataset
songs. To aid in this effort, we used the Lakh MIDI Dataset Clean[8], which aligns a 45,000 MIDI
file subset of the original Lakh MIDI Dataset with the artists and song titles of the songs.

With the Lakh MIDI Dataset Clean’s reliable labels for the artist names and song titles of the MIDI
files, we created a Python script to retrieve the corresponding lyrics using the Genius API [9] and the
lyricsgenius library [10]. The final dataset we used contains approximately 13,600 songs, which we
split into train, validation, and test sets with an 80-10-10 split.

In terms of evaluation methods, we will be relying on qualitative evaluation of the generated lyrics
for our model. This is because traditional quantitative metrics for natural language generation, such
as BLEU or perplexity, are distinct from lyrics quality. For example, BLEU uses bag-of-words to
measure the similarity between two sentences. The model may output lyrics that are as good as
the original lyrics but are significantly different; BLEU would be unable to capture this. Thus, we
will primarily be qualitatively evaluating MLG on the following two criterion: first, how coherent
are the lyrics? Are they grammatically correct, do they respect song structure, and are they spelled
correctly? Second, are the lyrics suitably original? While we expect some repetition due to the
inherent repetitiveness of most song lyrics, we hope that MLG will be capable of creating some
original lyrics.

For our results, we noticed that the lyrics outputted were practically always repetitive, usually
repeating verse after verse. For example, we observed the following output after inputting "Stop" by
Spice Girls:
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Comparison

Input:
Spice_Girls Stop Lyrics
Verse 1: Ginger, Sporty, Baby & Posh

You just walk in, I make you smile
It’s cool but you don’t even know me
You take an inch, I run a mile
Can’t win you’re always right behind me
And we know that you could go and find some
other
Take or leave it or just don’t even bother
Ca

Model Output:
using me to lose my mind

[Verse 2: Ginger, Sporty, Baby & Posh]
You just walk in, I make you smile
It’s cool but you don’t even know me
You take an inch, I run a mile
Can’t win you’re always right behind me
And we know that you could go and find some
other
Take or leave it or just don’t even bother
Causing me to lose my mind

[Verse 3: Ginger, Sporty, Baby & Posh] You just
walk in, I make you smile It’s cool but you don’t
even know me You take an inch, I run a mile
Can’t win you’re always right behind me And we
know that you could go and find some other Take
or leave it or just don’t even bother Causing me
to lose my mind

As we can see from above, the model tends to repeat the same verse multiple times; this occurred
despite us adjusting the model’s temperature several times. Obviously then, the model is generally
grammatically correct, as it usually repeats verses. More significantly however, the model does
appear to understand what the structure of lyrics are. For example, it labels one stanza "Verse 2", and
then the next stanza "Verse 3". Other examples also have numerically correct verses. Thus, this may
not simply be an issue of an NLP model repeating itself numerous times; otherwise, it would not
understand what number should be written for each verse.

Obviously, the model does not do as well on originality as we initially hoped. The model’s output
is more repetitive than we would’ve liked. However, we do believe that the model is capable of
generating some coherent lyrics. For example, it generates "Causing me to lose my mind" on its own,
despite that not being in the input.

5 Analysis

Overall, the model did not perform as well as we hoped. We attribute this to two primary limitations.
First, data quality was lacking. We had to scrape for the data on our own, and we were not able to
come up with many training examples. Moreover, the lyrics come from Genius, and are thus largely
mainstream pop and other repetitive genres. Because of how repetitive pop lyrics are, it is rather
unsurprising that a model trained on pop lyrics would also be repetitive. We would have found a
more varied dataset if one existed.

Additionally, another issue is that GPT-2 can only take in at most 1024 tokens. This means that
first, when we were training, the length of the training examples we could use were constrained.
Additionally, the number of MIDI tokens we could incorporate were also limited to 512, since we
split the space for MIDI and GPT-2 equally. However, a full song has many more than 512 tokens; the
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small amount of tokens GPT-2 can take in prevented us from obtaining more complete representations
of songs to feed into the model.

6 Conclusion

In conclusion, we were able to create a new, unique architecture that takes in both music embeddings
and text to generate lyrics. However, due to constraints from the quality and quantity of our data, and
the limited size of tokens that GPT-2 can take in, our model ended up much more repetitive than we
hoped for. We hope that in the future, others will be able to make improvements on the basis of the
original architecture that we created.

We would like to acknowledge John Thickstun (Postdoctoral scholar, Stanford University Department
of Computer Science) for his consultation in building the MIDI preprocessing step and designing of
model architecture.
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