
STaR-plus: building robust and efficient language
model reasoners
Stanford CS224N Custom Project

Kunal Sinha (Author)
Department of Symbolic Systems

Stanford University
ksinha2@stanford.edu

Jesse Mu (Mentor)
Department of Computer Science

Stanford University
muj@stanford.edu

Abstract

Generating step-by-step "chain of thought" rationales has been shown to improve
the performance of Large Language Models (LLMs) on commonsense reasoning
tasks. As such, recent algorithms such as the Self-Taught Reasoner (STaR) have
been proposed to encourage high-quality rationale generation from a limited num-
ber of examples. However, it is unclear whether LLMs display two abilities that
allow humans to reason effectively: first, the ability to apply insights from simpler
problems to solve more challenging out-of-distribution problems, and second, the
ability to learn heuristics that speed up the reasoning process. We demonstrate that
LLMs can do both. Specifically, we first show that the existing STaR algorithm
allows for effective out-of-distribution generalization. Second, we present STaR-
plus, a variant of the original algorithm that achieves comparable accuracy despite
employing shorter rationales on average.

1 Introduction

Large Language Models (LLMs) have recently seen dramatic improvements in performance on
question-answering tasks as a result of Chain-of-Thought prompting. This technique involves
prompting models to explicitly generate intermediate reasoning steps before generating the final
answer. Nye et al. (2021) find that the use of such "scratchpads" yields strong performance on
arithmetic problems, and Shwartz et al. (2020) find that the approach also succeeds on natural
language problems that require commonsense reasoning.

Unfortunately, directly finetuning the model to produce such rationales is often infeasible due to
logistical constraints. Designing a training dataset of question-answer pairs with annotated rationales
is expensive and time-consuming, given that human volunteers must supply these rationales manually.
Generating rationales automatically based on templates is not feasible in domains where multiple valid
rationales can lead to the same answer (e.g in most natural language domains). Furthermore, models
that attempt to avoid the need for finetuning by employing few-shot learning typically underperform
their finetuned counterparts (Nye et al., 2021).

In response to these challenges, Zelikman et al. (2022) introduce the Self-Taught Reasoner (STaR)
algorithm. Given a small number of example question-answer pairs with annotated rationales, STaR
bootstraps the ability to perform high quality rationale generations. Specifically, the algorithm
few-shot prompts the model to produce rationales, filters out generations that yield incorrect final
answers, and uses the remaining generations as a new training set to finetune on. This process repeats
for a fixed number of iterations.

This simple iterative algorithm was shown to drastically improve performance on a variety of tasks
such as arithmetic, math word problems, and commonsense question-answering. For example, in
the CommonSenseQA dataset (Talmor et al., 2018), a model trained according to STaR achieved
higher accuracy than models relying on few-shot prompting (+35.9%) or direct finetuning (+12.5%).

Stanford CS224N Natural Language Processing with Deep Learning

Furthermore, the STaR model achieved an accuracy within 0.5% of a finetuned model that was 30
times larger.

In this paper, we seek to investigate and further improve two dimensions of STaR’s reasoning
capabilities: the robustness of the model’s performance on out-of-distribution data, and the efficiency
of the reasoning employed by the model. We accordingly split our work into two tasks.

The first task examines the model in a setting where primarily easy problems are seen during training
time, but the model must answer more difficult ones during test time. This task carries significance for
a few reasons. First, this setting more accurately resembles a real world setting where the distribution
of problems is skewed. In most domains, a dataset of problems will likely include a very few number
of difficult problems, because these are more time-consuming to generate and can be found less
frequently in a corpus. Second, in most applications of language models, the model may encounter
high variance in the difficulty of questions asked by users; model performance should be robust to
this variance.

The second task introduces STaR-Plus, a variant of the STaR algorithm that aims to promote shorter
rationales on average, without sacrificing accuracy. This efficiency in reasoning is similarly valuable
in most user-facing applications of language modeling. Indeed, rationale generation can serve as a
bottleneck that increases the time elapsed between question and answer, which may negate the gains
in accuracy from a user experience perspective; shrinking this bottleneck therefore strengthens the
appeal of STaR. Additionally, encouraging shorter rationales may teach the model to learn shortcuts
or heuristics that can help solve complex problems without reasoning from first principles (which
could quickly become unwieldly). Notably, this behavior would mimic that of human reasoners
(Karlan, 2021).

2 Related Work

In-context learning Few-shot prompting in language models involves providing examples of
high-quality problem-solution pairs before a presenting a new problem. This simple technique has
allowed LLMs to achieve high performance on a variety of specific tasks (e.g cloze tasks, translation,
commonsense reasoning) that matches that of previous state-of-the-art models. Crucially, LLMs can
learn to solve new tasks without any explicit finetuning or gradient updates (Brown et al., 2020).
Previous work has sought to explain this in-context learning ability by suggesting LLMs implicitly
perform Bayesian Inference (Xie et al., 2020). Other authors elucidate the phenomenon at a lower
level of abstractions, discussing the role of "induction" attention heads that learn simple algorithms
for pattern recognition in tokens (Olsson et al., 2020).

Rationales Rajani et al. (2019) first introduce the prospect of language models generating inter-
mediate rationales to improve performance on commonsense reasoning tasks. They manually craft
the Common-Sense-Explanations dataset (CoS-E) and find that an LLM finetuned on this dataset
achieves performance 10% above state-of-the-art models. Nye et al. (2021) extend upon this work
by demonstrating that transformers can be trained to produce "scratchpads" that contain the results
to intermediate computations when solving math problems. Some authors have sought to provide
specific theoretical explanations for the benefits of rationale generation. For example, Zhou et al.
(2020) describe natural language rationales as latent variables modeling the underlying reasoning
processes of the LLM. Furthermore, Wies et al. (2023) formally show that certain problems that are
unlearnable by an LLM can be decomposed into a polynomial number of learnable subproblems, each
of which depends on O(1) previous subproblems. Asking language models to produce rationales
therefore encourages this breakdown and thereby improves answer accuracy.

3 Approach

3.1 STaR algorithm

As explained earlier, STaR iteratively leverages a small number of labeled rationales to bootstrap
effective rationale generation. Intuitively, this process involves repeatedly finetuning the language
model on its own generated rationales that are "high quality." Zelikman et al. (2022) define a high-

2

quality rationale as one that leads to the correct answer, and find that this simple heuristic is sufficient
to achieve good performance. We describe the algorithm below in greater detail.

As input, the algorithm takes in pretrained LLM M and a dataset of question-answer pairs D =
{xi, yi}|Di=1 where xi is a question and yi is its associated answer. Additionally, we supply a much
smaller dataset with labeled rationales P = {xi, ri, yi}|Pi=1, where ri is a rationale. We then take the
following steps:

1. For each question xi ∈ D: have the model M generate predictions for rationales r̂i and the
final answer ŷi. Do so by performing few shot prompting with the examples in P . We can
call the list of outputs O.

2. Create a new list O′ by filtering out any prediction {xi, r̂i, ŷi} ∈ O where ŷi ̸= yi, meaning
the model generated an incorrect answer.

3. Finetune M on this filtered list O′ until convergence
4. Repeat steps 1-3 for some fixed number of N iterations.

Observe that the algorithm contains inner loop (steps 1-3) that finetunes the model M over multiple
epochs, and an outer loop (step 4) that repeats the process N times.

This algorithm’s inner loop can be modeled as a reinforcement learning problem: for each question
xi ∈ D, we sample rationales r̂i and answers ŷi from our model M , which represents sampling
a particular trajectory from our current policy. Filtering out predictions with incorrect answers
represents maximizing the indicator reward function 1[ŷi = yi]. Therefore, STaR maximizes the
following objective function, where the gradient is derived through the standard log-deriviative trick:

J(M,X, Y) =
∑
i

Er̂i,ŷi∼pM (·|xi)(1[ŷi = yi]) (1)

∇J(M,X, Y) =
∑
i

Er̂i,ŷi∼pM (·|xi)(1[ŷi = yi] · logPM (ŷi, r̂i|xi)) (2)

For the first task of testing out-of-distribution performance, we keep the underlying STaR algorithm
and its objective function unchanged; this ensures that we isolate the effects of manipulating the data
distribution.

3.2 STaR-Plus

Observe that the existing STaR algorithm does not penalize the model for excessively long rationale
generations. As such, for the second task of encouraging efficient reasoning, we introduce STaR-Plus,
a variant of the original with an altered objective function.

In the original objective function J , the use of the indicator reward 1[ŷi = yi] ensures that train-
ing examples with correct answers exert equal influence on the gradient and those with incorrect
answers exert none. However, the STaR-Plus objective J ′ applies a length penalty to the reward
function. Examples with correct answers now exert an influence that is inversely proportional to
their length, promoting brevity in rationale generation. We control the strength of the penalty with a
hyperparameter α.

J ′(M,X, Y) =
∑
i

Er̂i,ŷi∼pM (·|xi)(−α|r̂i| · 1[ŷi = yi]) (3)

∇J ′(M,X, Y) =
∑
i

Er̂i,ŷi∼pM (·|xi)(−α|r̂i| · 1[ŷi = yi] · logPM (ŷi, r̂i|xi)) (4)

Increasing the value of α produces a stronger penalty for large rationales. However, an excessively
high value could yield large gradient updates that increase the risk of the loss curve overshooting the
optimum. As such, we conduct hyperparameter tuning as described in section 4.3.

As a further caveat, note that the distribution of generated rationale lengths often has a high variance.
The length penalty can therefore produce high variance in the magnitude of each gradient step,
yielding instability during training and also potentially lowering the chances of convergence. To

3

avoid this risk, we apply z-score normalization to the length distribution. This normalization also
has additional benefits: centering the distribution at 0 ensures that the normalized |r̂i| in equation
4 will be positive for examples with above-average-length rationales and negative for those with
below-average-length. As such, we effectively minimize the objective on the former and maximize
the objective on the latter during training. Z-score normalization therefore assists in encouraging
brevity.

4 Experiments

4.1 Data

We use the String Editing dataset developed by Andreas et al. (2019). This dataset consists of a
series of communication games involving two agents: a speaker and a listener. The speaker provides
multiple examples of text undergoing modification according to an implicit rule. For example,
given the rule "replace vowels with mx", a speaker might provide editor → mxdmxtmxr and
being → bmxmxng. The speaker then offers a new string of text, e.g lobbied. The listener must
infer the modification rule from the previous examples and apply that rule to produce a new output.
(In this case, the correct output is lmxbbmxmxd).

We preprocess the data to adhere to the format required by the STaR algorithm. For each problem,
we define xi as the input-to-output mappings provided by the speaker as well as the new input, and yi
as the new output. We define the rationale r̂i as an explanation of the modification rule in natural
language. We provide an example below.

x_i:
e d i t o r → m x d m x t m x r
t o n e s → t m x n m x s
e x c e p t i o n → m x x c m x p t m x m x n
b e i n g → b m x m x n g
l o b b i e d → ?
r_i: replace vowels with m x
y_i: l m x b b m x m x d

Because our first task involves testing out-of-distribution generalization, we perform further prepro-
cessing to stratify the data by difficulty. For a given problem, the length of the groundtruth rationale
ri serves as a suitable proxy for difficulty. Accordingly, we sort the array of problems with respect
to groundtruth rationale length and split the array into K = 10 buckets of uniform size. Because
the average length increases in each consecutive bucket, we can treat each bucket as representing a
"difficulty ranking." The last few buckets contain the most difficult problems.

The dataset contains 4,000 total examples, with each natural language rationale supplied manually
by human volunteers. (The authors allocate 3,000 to the training set and the remaining 1,000 to the
validation and test sets). The relatively small size of this dataset presents a promising opportunity
to showcase the strengths of STaR; the bootstrapping framework is designed to boost accuracy
substantially from a small number of high-quality annotated examples. Furthermore, unlike other
datasets such as CommonSenseQA (Talmor et al., 2018), the String Editing dataset does not require
prior world knowledge to answer the questions correctly. As such, experiments with this dataset
can examine the reasoning capabilities of an LLM in isolation, specifically the capacity for pattern
recognition.

In the following experiments, we split the dataset into four groups: pretrain, self-play, validation, and
test. The pretrain dataset refers to D described in section 3.1, whereas the selfplay dataset refers to
P . We set the size of the selfplay dataset to be significantly lower than that of the pretrain, to more
accurately simulate a real-world setting.

4.2 Evaluation method

For both tasks, we use the following metrics:

• Test accuracy: the percent of answers predicted by the model ŷi that have an exact string
match with the groundtruth answer yi.

4

• Average edit distance: the average of the edit distances between each pair (ŷi, yi) of predicted
answers and groundtruth answers in the dataset. We define edit distance as the Levenshtein
distance, i.e the number of single-character insertions, deletions, or substitutions needed to
transform ŷi to yi.

• Validity: the percent of model outputs that follow the expected format

• Rationale accuracy: the percent of rationales generated by the model r̂i that match the
groundtruth rationale ri.

The test accuracy serves as the primary metric to assess model performance. However, because test
accuracy relies on an exact string match between ŷi and yi to classify a prediction as accurate, the
metric will fail to capture subtler improvements in generation quality where the prediction simply
moves closer to the groundtruth. The average edit distance metric exists to capture this type of
improvement by imposing a softer standard for accuracy.

The validity metric exists primarily as a sanity check. We expect validity to plateau at approximately
100%; a low validity would suggest that the model did not understand the task provided, and would
signal the need for more examples in few-shot prompt.

Rationale accuracy provides information on the quality of the reasoning employed by the model.
However, given that the same underlying string editing rule can be expressed in multiple unique ways
in natural language, even a model with high test accuracy could perform badly on this metric. This
metric thus exists primarily to examine how closely the model’s reasoning will mimic that of the
human volunteers who supplied the annotations in the dataset.

For the second task, we introduce two new metrics.

• Average predicted rationale length: the average length of r̂i across all examples i ∈ D.

• Average groundtruth rationale length: the average length of ri across all examples i ∈ D.

A decrease in the first average suggests an improvement in the efficiency of the reasoning employed
by the language model. The second average represents the gold standard of efficiency that human
reasoners are capable of, and therefore represents an upper bound for the first average. (An increase
beyond this upper bound would suggest that the language model has discovered heuristics that human
reasoners do not readily employ).

In addition to the averages, we also plot the length distributions for the predicted and groundtruth
rationales. These graphs simply provide more information in how the averages are affected by skew
or potential outliers.

4.3 Experimental details

For our language model, we use the smallest version of GPT-2 with 124 million parameters (Radford
et al., 2019). Our experiments have two sets of relevant hyperparameters: those pertaining to the inner
and outer loop of STaR respectively (as defined in section 3.1). In the inner loop, we finetune GPT-2
for 25 epochs with an early stopping patience of 4 epochs, applying Adam Optimization for gradient
updates. We use a fixed learning rate of 0.0001 and a batch size of 4. In the outer loop, we set the
number of iterations to 5. For the other hyperparameters, we follow the configuration described in
Zelikman et al. (2022).

The first few experiments establish a baseline. We first train the model directly on 3,000 examples
without initiating the the STaR algorithm. These results represent an idealized scenario where we
have access to a large question-answer dataset with annotated rationales and therefore do not need to
apply STaR’s bootstrapping approach. The test accuracy in this experiment signifies an upper bound
for the following experiments.

Next, we run an experiment where we assign 2,000 examples to the pretrain dataset and the other
1,000 to the selfplay dataset. This experiment represents a more realistic scenario where we have
access to fewer examples with annotated rationales. The goal is to test whether STaR can push
accuracy towards the idealized upper bound despite the paucity of high-quality data.

After verifying that STaR boosts performance in the baseline setting, we begin our first task: investi-
gating whether the algorithm allows for out-of-distribution generalization on more difficult problems.

5

We run an experiment where the contents of difficulty buckets 1-6 are assigned to the pretrain set and
the contents of 7-10 are assigned to the selfplay. (We form these buckets as described in section 4.1).
This experiment represents the scenario where we have access to a large number of easy problems
but a smaller number of difficult ones.

Next, we perform our second task: encouraging brevity in rationale generation. We revert to the
earlier baseline setting with 2,000 pretrain examples and 1,000 selfplay examples drawn from the
same distribution. However, we employ the STaR-Plus algorithm with a length penalty of α = .01.
We select the value of α through a hyperparameter search across multiples of 10−i for i from 1 to 4.

4.4 Results

4.4.1 Baseline

When training the model directly on 3,000 examples, we obtain the following measurements. Recall
that this experiment represents an idealized setting and therefore provides a set of upper bounds for
each metric in future experiments.

• Test accuracy: 43.23%

• Average edit distance: 2.1

• Validity: 94.9%

• Rationale accuracy: 50%

We now plot the metrics for the second baseline experiment, where we take 2,000 examples as
pretrain data and the other 1,000 and selfplay data. Because we now apply the STaR algorithm, we
graph these metrics across all 5 iterations of the outer loop.

These two metrics correspond to test accuracy and average edit distance respectively. (For the sake of
space, we move all graphs for validity and rationale accuracy to appendix A. These metrics provide
useful additional information but do not directly capture answer accuracy, the primary meeasure of
interest).

Observe that although the test accuracy begins at 38%, the accuracy rises consistently across each
iteration of the outer loop until touching the gold standard of 43%. Although the increase is modest,
the result demonstrates the ability of the STaR algorithm to achieve comparable accuracy to the gold
standard of the finetuned model, despite having a fraction of the rationale-annotated examples. We
similarly find that the average edit distance drops from 2.95 to 2.54, demonstrating that the model
predictions gradually grow closer to the groundtruth. However, they still lag slightly behind the
gold standard of 2.1, suggesting the need for further adjustments to the training process (e.g more
hyperparameter tuning).

Finally, we obtain an average predicted rationale length of 125.34 compared to an average groundtruth
rationale length of 124.45. We discuss these results further in section 4.4.3.

6

4.4.2 Task 1: Robustness

Recall that in the out-of-distribution tests, we supply the first 6 buckets as pretrain data and the latter
4 as selfplay data. The relevant metrics are shown below

After the first iteration of the outer loop, we observe a steep drop in test accuracy from 38% to
33.4%. However, accuracy does partially recover in subsequent iterations, rising to 35.7%. The
accuracy overall stays below the 38%− 43% range observed in the baseline. The relatively weaker
performance is expected given the fact that we expose the model to data in test time that was unseen
during pretraining. However, the drop in accuracy initially seems to suggest that STaR does not
succeed in out-of-distribution generalization.

However, the average edit distance metric yields a different interpretation. While rising slightly from
2.62 to 2.83 after the first iteration, the distance eventually drops to 2.242, moving closer towards the
gold standard of 2.1. These results suggest that STaR actually does improve performance in gradual
manner. We discuss hypotheses for why the two metrics contradict one another in section 5.

4.4.3 Task 2: Efficiency

We begin presenting the same two accuracy metrics for the experiment with STaR-Plus. Recall that
we reset to baseline settings while optimizing for the modified objective function.

Observe that the test accuracy starts at a low value of 32% but eventually rises to 40.4%, only slightly
lower than the gold standard of 43.2%. However, the average edit distance remains mostly flat
around 3, which is higher than in the baseline. These results suggest that STaR-Plus does suffer from
some drops in accuracy, which is expected given the decision to prioritize succinct over descriptive
rationales; however, the drop is not drastic.

We also graph the distribution of groundtruth rationale lengths compared to the generated rationale
lengths.

7

The average groundtruth rationale length is the same as in the baseline: 124.45. However, the average
predicted rationale length is now 123.8 (compared to 125.34). These results suggest that the length
penalty does encourage shorter rationales, but only very modestly. More hyperparameter tuning with
α is likely required; we discuss the significance of these results further in section 5.

5 Analysis

The results described above raise a few questions that merit further discussion. First, in the baseline
experiment, the gold standard for accuracy seems fairly low at 43.23%. However, note that we define
an output as accurate only if every character in the string matches the groundtruth. The chance
performance of such a system shrinks exponentially as the length of the groundtruth string increases,
quickly approaching 0%. As such, accuracy close to 50% suggests the model does learn the required
behavior to a reasonable degree. Further considerations include the fact that we use the smallest
version of GPT-2 for these experiments and use a dataset with only 3,000 examples. These choices
partially reflect logistical constraints of the project; future work should train larger models on more
extensive datasets.

For Task 1, we observe in section 4.4.2 that the test accuracy and the edit distance metrics yield
conflicting interpretations; the former suggests a drop in accuracy while the latter suggests a gradual
improvement. We hypothesize that test accuracy is less resistant to noise. Specifically, given the
paucity of training data, the chances of the model sampling the correct output are similar to those of
sampling a very close yet incorrect output (e.g with an edit distance of 1). Therefore the test accuracy
provides a less reliable gauge of model performance overall. In particular, the metric masks any
more gradual improvements that fall below the threshold of perfect accuracy. We can observe this
phenomenon by examining a set of generated rationales randomly selected from this experiment.

In the table, x and pred represent the full groundtruth example and the full prediction respectively.
The two adjacent columns, y_pred and y_correct, explicitly contrast the predicted final output to
the groundtruth. Among these examples, the model has an approximately equal chance of guessing

8

correctly or incorrect. However, many of the incorrect examples have very low edit distance (consider
obstayclesX versus obstaclesX).

Regarding Task 2, we find that although the STaR-Plus does encourage gains in efficiency, these gains
are fairly modest, reducing the rationale by only a few tokens on average. One possible explanation
for this finding is that the baseline STaR algorithm already exhibited an average predicted rationale
length that was close to the groundtruth (fewer than 2 tokens apart). If the groundtruth rationales
provided by human reasoners represent an upper bound on efficiency, then STaR-Plus cannot provide
much further improvement. The high degree of efficiency in the baseline could suggest that the basic
STaR algorithm is sufficient to encourage brevity in rationales despite the lack of an explicit length
penalty. In contrast, the baseline could have achieved such results simply due to insufficient variance
in the dataset’s groundtruth rationale lengths; the lack of exposure to long rationales during training
could have prevented the risk of the model learning to generate long sequences.

On a related note, future work must also investigate whether the groundtruth rationales provided
by human reasoners even represent the gold standard in the first place. A model could theoretically
learn to produce significantly shorter rationales by leveraging heuristics that humans tend not to.
Answering this question requires performing further hyperparameter tuning across values of α. We
graph the effects of our current choice of α = 0.01 on the objective function J ′ below.

Here we display a histogram of the values of the term inside the derivative of our objective function
∇J ′, namely (−α|r̂i| · 1[ŷi = yi] · logPM (ŷi, r̂i|xi)), as decribed in equation 4. As expected, we
have a cluster of points at 0. These represent examples where the model generated an incorrect final
answer prediction ŷi. However, for the examples where the model generated a correct predictions,
the values spread from roughly 0.9 to 1.75. Larger values represent examples with shorter rationales
that had a stronger effect on the gradient. It is possible, however, that the magnitude of these values
must increase beyond 1.75 to obtain a stronger length penalty effect. Ensuring that we can do this
without creating instability during training, as discussed in section 3.2, is an open issue that requires
further investigation.

6 Conclusion

We find that STaR is able to effectively bootstrap the ability for high-quality rationale generation
from a small subset of the original dataset, achieving similar results to a model directly finetuned
on the entire dataset. Critically, the algorithm displays the ability to generalize reasonably well to
difficult out-of-distribution problems. The introduction of the novel STaR-Plus approach allows for
modest gains in efficiency with regards to reasoning, but suffers some drops in accuracy compared to
the original STaR. Future work should seek to expand upon STaR-Plus, experimenting with alternate
objective functions that more effectively balance rationale brevity with answer accuracy.

References
Jacob Andreas, Dan Klein, and Sergey Levin. 2019. Learning with latent language. In Neural and

Evolutionary Computing.

9

Tom Brown, Benjamin Mann, and et al. Ryder, Nick. 2020. Language models are few-shot learners.
In Advances in neural information processing systems.

Brett Karlan. 2021. Reasoning with heuristics. In Ratio.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, and David Luan. 2021. Show your work:
Scratchpads for intermediate computation with language models. In Neural and Evolutionary
Computing.

Catherine Olsson, Nelson Elhage, and Neel et al. Nanda. 2020. In-context learning and induction
heads. In Transformer Circuits Thread.

Alec Radford, Jeffrey Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. 2019. Language models
are unsupervised multitask learners. In OpenAI blog.

Nazneen Fatema Rajani, Bryan McCann, Caiming Xiong, and Richard Socher. 2019. Explain your-
self! leveraging language models for commonsense reasoning. In Association of Computational
Linguistics (ACL).

Vered Shwartz, Peter West, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2020. Unsuper-
vised commonsense question answering with self-talk. In Empirical Methods in Natural Language
Processing (EMNLP).

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. 2018. Commonsenseqa: A
question answering challenge targeting commonsense knowledge. In North American Chapter for
the Association of Computational Linguistics (NAACL).

Noam Wies, Yoav Levine, and Amnon Shashua. 2023. Sub-task decomposition enables learning in
sequence to sequence tasks.

Michael Sang Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. 2020. An explanation of
in-context learning as implicit bayesian inference. In International Conference on Learning
Representations (ICLR).

Eric Zelikman, Jesse Mu, and Noah Goodman. 2022. Star: Self-taught reasoner, bootstrapping
reasoning with reasoning. In Conference on Neural Information Processing Systems (NeurIPS).

Wangchunshu Zhou, Jinyi Hu, Hanlin Zhang, and Xiaodan et al Liang. 2020. Towards interpretable
natural language understanding with explanations as latent variables. In Advances in Neural
Information Processing Systems, volume 33, pages 6803–6814. Curran Associates, Inc.

A Appendix

A.1 Baseline (additional graphs)

10

http://arxiv.org/abs/2204.02892
http://arxiv.org/abs/2204.02892
https://proceedings.neurips.cc/paper/2020/file/4be2c8f27b8a420492f2d44463933eb6-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4be2c8f27b8a420492f2d44463933eb6-Paper.pdf

A.2 Task 1 (additional graphs)

A.3 Task 2 (additional graphs)

11

	Introduction
	Related Work
	Approach
	STaR algorithm
	STaR-Plus

	Experiments
	Data
	Evaluation method
	Experimental details
	Results
	Baseline
	Task 1: Robustness
	Task 2: Efficiency

	Analysis
	Conclusion
	Appendix
	Baseline (additional graphs)
	Task 1 (additional graphs)
	Task 2 (additional graphs)

