
BERT Goes to College: Exploring additional
pretraining and multitask fine-tuning strategies with

minBERT
Stanford CS224N Default Project

Michelle Fu, Peyton Lee, Eric Zhang
Department of Computer Science

Stanford University
{mifu67, peytonl7, zhyzhang} @stanford.edu

Abstract

Though the depth of the BERT model is key to its computational power, BERT’s
breadth of knowledge is not to be underestimated. Specifically, its ability to adapt
to multiple downstream tasks calls for a thorough and expanded investigation into
the possibilities of multitask fine-tuning, in which multiple tasks are optimized
simultaneously after pretraining. Our objectives in this project were to implement
the minBERT model and experiment with multitask fine-tuning paradigms to im-
prove performance across three downstream tasks: sentiment analysis, paraphrase
detection, and semantic textual similarity. In our research we compare a number of
different strategies, including sequential training, basic multitask training, and two
algorithms of our own design (weighted and stochastic). Additionally, we highlight
techniques and training methods that seem crucial to accomplishing the provided
tasks, including contrastive learning and additional pretraining. Ultimately, we find
that multitask fine-tuning (including stochastic and weighted methods) provides a
small improvement on other downstream fine-tuning methodologies and more bal-
anced performance across tasks, though other facets of our implementation—like
training on additional datasets and freezing weights—are promising areas for the
perfection of multitask fine-tuning.

1 Introduction

BERT—or Bidirectional Encoder Representations from Transformers (Devlin et al., 2018)—needs
no introduction. Since its conception in 2018, the BERT model’s approach to contextual word
embeddings has run the gamut of computer science research, finding foundational uses in everything
from computer vision (Khan et al., 2022) to predicting protein structure (Jumper et al., 2021). It may
still be considered state-of-the-art, and the generalizability of its architecture makes it an exciting
playground for researchers of all experiences.

Our task is to optimize the minBERT model1for multiple simultaneous downstream tasks, i.e. using
a single model to accomplish different NLP objectives with the same weights. In theory, such a
model could provide proof of humanistic intelligence within the system if it could synthesize nuanced
information about language and apply it across many domains. If assigned dozens of tasks, such a
model would also constitute huge memory savings.

Our three provided tasks are sentiment classification, paraphrase detection, and semantic textual
similarity. Sentiment classification involves detecting the overall tone (positive or negative) in a
statement. Paraphrase detection involves determining if two statements have equivalent semantic
meaning. Semantic textual similarity involves ranking the level of semantic equivalence between two
statements.

Stanford CS224N Natural Language Processing with Deep Learning

The most straightforward solution we encountered in deciding what to implement was multitask fine-
tuning, in which we simultaneously fine-tune on multiple tasks to improve cumulative performance.
The most general method (Bi et al., 2022), which we call additive multitask fine-tuning, simply
adds each task’s loss into a cumulative loss, which is then optimized with gradient descent. This
method often fails because tasks have conflicting gradients or because fine-tuning destroys knowledge
gained from pretraining. (These two problems, in general, constitute the main difficulties in multitask
fine-tuning.) In this paper, we propose and test two new methods for multitask fine-tuning: stochastic
multitask fine-tuning and weighted multitask fine-tuning. Both methods seek to solve the issue of
conflicting gradients by forcing progress, and both are described in detail in section 3.6.

To accomplish all these tasks at a high level, we decide to implement a number of extensions to the
minBERT model that we believe are essential to high performance. The first is additional pretraining,
in which we further optimize the base model by performing masked language model training on the
domain-specific datasets. This calibrates the model to the distributions of the target data. The second
is contrastive learning, which involves pushing sentence embeddings that are semantically similar
close together and pushing apart sentence embeddings that are semantically different. Finally, we
consider additional datasets for pretraining and fine-tuning, as access to more data should, in theory,
improve the model’s underlying knowledge (about language modeling) and its explicit knowledge
(about the tasks at hand). Dataset information is detailed in section 4.1.

2 Related Work

The bases for multitask fine-tuning with BERT models, as best we could determine, are Stickland
and Murray (2019) and Bi et al. (2022). Stickland and Murray use additional layers inserted on top of
and into the BERT architecture, each corresponding to a task. These layers are then trained (one task
at a time) in a scheme that initially prioritizes tasks with more training data, then evens out among
tasks toward the end of training. Bi et al. build on this training scheme by capitalizing on the fact that
all their tasks share the same data: at every training step, they compute a loss for each task and sum
them to create a cumulative loss for optimization.

Many studies use a sampling strategy, fitting to applications like biomedical text mining
(Peng et al., 2020) and summarization (Lamsiyah et al., 2023). Other studies share the additive loss
strategy used by Bi et al., fitting to applications like product ranking (Wu et al., 2022) and translation
quality estimation Kim et al. (2019). Our work necessitates squaring these two approaches; in other
words, we must be able to combine losses even if the tasks have different training datasets.

Bi et al. also implement a form of Gradient Surgery, developed by Yu et al. (2020). This
model-agnostic method seeks to resolve the problem of conflicting gradients by performing a clever
projection between the gradients of opposing tasks. Its success inspired us to find alternative so-
lutions to this issue that require less computation, hence stochastic and weighted multitask fine-tuning.

A final study worth mentioning is Goodwin et al. (2020), which examines numerous sam-
pling methods (what they call "mixing") that seek to simultaneously adjust for variant dataset sizes,
the difficulty of tasks, and the distribution of task improvement. Though we cannot apply these
methods to our study, which is not sample-based, they present a promising approach that addresses
many of the critical failures associated with multitask fine-tuning.

3 Approach

3.1 minBERT and Adam

As specified, we implement the minBERT model using multi-headed self attention, position-wise
feed-forward networks, and add/norm in each of the stacked transformer layers. We also implement

1The minBERT model is adapted from the "minbert" assignment developed at Carnegie Mellon University’s
CS11-711 Advanced NLP, created by Shuyan Zhou, Zhengbao Jiang, Ritam Dutt, Brendon Boldt, Aditya
Veerubhotla, and Graham Neubig.

2

the Adam optimizer for training. For the remainder of the study, we use the provided pretrained
BERT embeddings and weights as a starting point.

3.2 Additional pretraining

We do additional pretraining on domain-specific datasets, conducting unsupervised masked language
modeling as in Devlin et al. (2018) and Sun et al. (2019). To create a dataset, we concatenate all
tokenized input sentences, then split the concatenated tokens into chunks of length 128. Then, we
randomly mask 15% of the tokens. As we are performing masked language modeling (MLM), the
labels to this data are the (unmasked) tokens themselves.

To train on an MLM dataset, we add a single linear layer to the BERT model. This layer takes in the
embeddings from the final hidden state of the BERT model and projects the embeddings to the size
of the vocabulary. We return the linear layer’s output as the logits.

3.3 Fine-tuning on additional datasets

Other than pretraining on additional datasets, we also did additional fine-tuning on the SNLI (Bowman
et al., 2015) and MultiNLI datasets (Williams et al., 2018), which are collections of sentence pairs
annotated with textual entailment information. We believe that fine-tuning on these datasets will help
the model learn better sentence representations, and should be especially helpful for the semantic
similarity and paraphrase detection tasks, which are closely related to textual entailment.

To train on these datasets, we add a single linear layer on top of BERT. This layer takes in a con-
catenation of the two [CLS] token embeddings h1, h2 from BERT and their element-wise difference
|h1 − h2|. The input to this layer is:

hi = [h1 h2 |h1 − h2|] (1)

We use cross entropy loss to evaluate the output logits.

3.4 Contrastive learning

To learn better embeddings when fine-tuning on SNLI and MultiNLI, we also experiment with using
a contrastive learning framework, which aims to push sentences that are semantically similar closer
together in representational space and make sentences that are semantically different far apart. We
follow Gao et al. (2021)’s approach for supervised contrastive learning. In the NLI dataset, every
premise sentence is given an entailment sentence and a contradiction sentence. For a batch of premise
sentence embeddings h1, . . . , hN , we have corresponding entailment embeddings h+

1 , . . . , h
+
N and

contradiction embeddings h+
1 −, . . . , h−

N . Then for each sentence embedding hi, we minimize the
following loss function

− log
exp(sim(hi, h

+
i)/τ)∑N

j=1

(
exp(sim(hi, h

+
j)/τ) + exp(sim(hi, h

−
j)/τ)

)
where N is the batch size, τ is a temperature parameter and sim is the cosine similarity between
embeddings. We set τ = 0.5 following Gao et al. (2021).

3.5 Fine-tuning and predicting on given downstream tasks

Here, we describe the model’s training and prediction scheme for each of the downstream tasks using
the provided SST, Quora and STS datasets.

Sentiment analysis Our model uses a linear layer and a dropout layer on top of the BERT model.
These layers transform an output sentence embedding from BERT and return a vector of 5 logits (one
for each possible label). In training, we use cross-entropy loss to evaluate the logits.

3

Paraphrase detection Our model uses a single linear layer on top of the BERT model. This layer
takes the same structure as the SNLI layer (equation (1)), taking in a concatenation of the two output
sentence embeddings from BERT and the absolute value of their element-wise difference. In training,
we use cross entropy loss to evaluate the logits.

Semantic textual similarity Our model simply computes cosine similarity between the two output
sentence embeddings from BERT, then scales the result between [0, 5]. In training, we use mean
squared error loss to evaluate the logits.

3.6 Multitask fine-tuning2

Our goal is to compute a loss for every task at every training step. To do so, we implement a modified
version of round-robin sampling as described by Stickland and Murray (2019). We set the number of
training steps to be N , the number of batches in the largest dataset, then duplicate and concatenate all
other datasets to themselves until their lengths are greater than or equal to N . At each step, we take
a batch from each of the modified datasets and compute that task’s respective loss. The weighting
strategy for these losses is the subject of our research, and our three methods are described below.

Additive multitask fine-tuning This is the most basic method and that implemented by Bi et al.
(2022). Generally, for n tasks we compute a final loss:

LFinal =

n∑
i=1

Li (2)

and optimize according to this loss.
Gt = ∇θLFinal(θ) (3)

Weighted multitask fine-tuning First, let ℓt = [ℓt,1, ℓt,2, . . . , ℓt,n] ∈ Rn be the vector of loss
improvements across tasks at timestep t. The ith element of ℓt is given by

ℓt,i = − (Lt,i(θ)− Lt−1,i(θ)) (4)

Note that Lt,i(θ) denotes the loss for task i at the current update step and Lt−1,i(θ) denotes the loss
for task i at the previous update step. We define a weight vector wt ∈ Rn which takes the softmax
over ℓt, as such:

wt = softmax(ℓt) (5)

We propose two possible usages of this weight vector. The first involves direct weighting of each
task’s gradient, which we call weighted multitask fine-tuning. Specifically, for n tasks we compute
the gradient of the loss Gt as:

Gt =

n∑
i=1

wt,i ∗ ∇θLt,i(θ) (6)

Stochastic multitask fine-tuning The second is stochastic multitask fine-tuning. This involves
sampling from wt at each step and choosing the gradient of that task’s loss function as the direction
to step in, ignoring all other tasks. We sample task i from the distribution given by wt, and compute
the gradient simply as

Gt = ∇θLt,i(θ) (7)

2As a baseline, we test these multitask fine-tuning methods against sequential fine-tuning, in which we train
on each dataset one at a time.

4

4 Experiments

4.1 Data

4.1.1 Pretraining

The Yelp3dataset consists of 700k Yelp reviews labeled with their star ratings (1 to 5). We pare
the size of the dataset down to 27,500 reviews, and use this as an in-domain dataset for sentiment
analysis.

The SICK4dataset consists of 10k sentence pairs labeled with relatedness (semi-continuously between
0-5) and entailment relations between the two sentences (possible labels contradiction, entailment,
and neutral). We use this as an in-domain dataset for semantic textual similarity.

The PAWS5dataset consists of 108,463 human-labeled and 656k noisily labeled sentence pairs labeled
with 0 (not paraphrases) or 1 (paraphrases). We use the human-labeled portion as an in-domain
dataset for paraphrase detection.

Because we are doing masked language modeling in this task, we only use the text from these
datasets.

4.1.2 Fine-tuning

The SNLI6dataset consists of 570k sentence pairs annotated with textual entailment information, with
the labels contradiction, entailment, and neutral. We use this as an in-domain dataset for semantic
textual similarity and paraphrase detection.

The MultiNLI7dataset consists of 430k sentence pairs with the same structure as SNLI but covers a
wider range of genres of spoken and written text.

The SST8, dataset consists of 215,154 phrases extracted from movie reviews with their semantic
polarity labeled from 0-4, with 0 indicating negative and 4 indicating positive. We pare down to 8,544
examples for training.

The Quora9dataset consists of 400k sentence pairs with binary labels indicating if they are paraphrases
of each other. We pare down to 141,506 examples for training.

The SemEval STS Benchmark10dataset consists of 8,628 sentence pairs with their similarity labeled
semi-continuously between 0-5, with 0 indicating complete dissimilarity and 5 indicating identical
statements. We pare down to 6,041 examples for training.

4.2 Evaluation method

We evaluate the sentiment classification and paraphrase detection tasks on accuracy, given the
labels are categorical. We evaluate the semantic textual similarity task using Pearson correlation.
To determine the best model, we average the three scores from each task to produce an overall
performance score. This score is a crude measure of the model’s robustness across all tasks, though
it does not account for the distribution of performance across the tasks.

4.3 Experimental details

We use the provided pretrained BERT embeddings and weights as a starting point. First, we determine
the ideal additional pretraining setup by pretraining with all four datasets (4.1.1) individually. We also
test each of the fine-tuning paradigms individually without pretraining. Next, we test combinations
(ensembles) of fine-tuning paradigms and the ideal pretraining setup. Finally, drawing from what
we’ve learned through our comprehensive testings, we experimented with a few more additional
training setups in order to achieve the best overall performance score, which are discussed more in
detail in section 5. We empirically find the following hyperparameters suitable for model training.

• Learning rate: 10−5

• Batch size: 64 for contrastive learning, 8 for all other training

5

More details can be found in Table 8 in the appendix.

4.4 Results

Tables 1-6 show our testing results across model configurations; tables 1-5 contain dev set results and
table 6 contains test set results. Table 1 contains baselines by task, computed by fine-tuning individu-
ally on the SST, Quora, and STS datasets. Table 2 contains additional pretraining results. Table 3
contains baselines for SNLI/MNLI fine-tuning. Table 4 contains results from multitask fine-tuning
only. Table 5 contains results from full models trained on a combination of our main approaches,
including pretraining, SNLI/MNLI fine-tuning, and multitask fine-tuning. Table 6 contains results
of the additional training setups ran with the explicit aim of getting the best performance score.
These experiments are ran with weights after pretraining and fine-tuning on SNLI and MNLI with
contrastive learning. Table 7 contains our final test set results.

For each of the three tasks, we are able to exceed baseline performance (training on just that task) in
at least one ensemble model. However, no single training scheme stands out as significantly better in
all tasks.

We can observe that fine-tuning on SNLI and MNLI is able to improve the accuracies of the semantic
similarity task compared to just training on STS. Using contrastive learning is also able to give a
significant performance improvement on the similarity task.

Neither of stochastic or weighted multitask fine-tuning seems to improve significantly on additive
multitask fine-tuning. Weighted multitask produces a significantly better score than the other two
when training alone, but performs only middling in the ensemble tests. Stochastic multitask has
the best performance when pretraining is applied, but the worst in all other tests. In fact, none of
the multitask strategies improve significantly on sequential training, in which we fine-tune on one
task at a time in succession: this result suggests that, at least in our model configuration, multitask
fine-tuning provides minimal improvement over other fine-tuning strategies.

Finally, we were able to observe better results in our additional experiments by making some changes
to our fine-tuning paradigm. We discuss these changes in more detail in the next section.

5 Analysis

We may trace the generally unimpressive performance of multitask fine-tuning to several issues. The
first is because the three downstream tasks have separate objectives and conflicting gradients, thus
gradient updates often improves the performance on one task but worsens another. Gradient Surgery
(Yu et al., 2020) may be able to mitigate this to some extent. The second issue may be variance
in training data size. We notice that the Quora training set is much larger than the STS and SST
training sets. Thus in our training we loop over the smaller STS and SST datasets many times, and
continue the training until the Quora dataset is exhausted. We find that the performance of each task
is somewhat correlated with the size of training set, so it may be possible that multitask fine-tuning is
systematically favor progress on the largest dataset, which has continuously new data, at the expense
of the other tasks. Our stochastic and weighted multitask fine-tuning results may also suffer due to
issues with loss improvement. The loss functions for the different tasks may be scaled differently.
Since we compute the loss improvement as the absolute difference in loss between time steps, it
is possible that the weights are affected by the different scaling and do not accurately reflect the
improvement of each task. In future work, it would be helpful to standardize the losses for each task
based on the specific loss functions used.

It is important to note that although multitask fine-tuning does not offer a significant improvement
in overall performance over sequential fine-tuning, it does offer more balanced performance across
different downstream tasks. We can observe that sequential training gives higher performance on
similarity but worse performance on sentiment, likely because the last dataset it trained on was
the similarity one. In contrast, multitask fine-tuning offers more even accuracies across the board.
Optimizing multiple objectives necessitates tradeoffs on individual performance, and achieving this
optimal balance between objectives is where we believe multitask fine-tuning is most valuable.

We also found that fine-tuning with SNLI and MNLI greatly improved performance in paraphrase
detection and semantic textual similarity over the baseline. This result is almost certainly due

6

Table 1: Dev set accuracies of baseline models

Model Sent. Dev Acc Para. Dev Acc Sim. Dev Corr Overall
With no pretraining or fine-tuning 0.144 0.380 0.019 0.181

Fine-tuning on SST dataset 0.508 0.421 0.223 0.384
Fine-tuning on Quora dataset 0.163 0.836 0.409 0.469
Fine-tuning on STS dataset 0.180 0.400 0.450 0.343

Table 2: Dev set accuracies of pretrained models

Pretraining Dataset Sent. Dev Acc Para. Dev Acc Sim. Dev Corr Overall
IMDb 0.186 0.608 0.086 0.293
Yelp 0.152 0.597 0.126 0.292
SICK 0.156 0.614 0.034 0.268
PAWS 0.150 0.624 0.121 0.298

Table 3: Dev set accuracies after fine-tuning on SNLI and MNLI

Model Sent. Dev Acc Para. Dev Acc Sim. Dev Corr Overall
Linear fine-tuning on SNLI/MNLI 0.283 0.657 0.668 0.536

Contrastive fine-tuning on SNLI/MNLI 0.168 0.476 0.816 0.487

Table 4: Dev set accuracies after multitask fine-tuning

Fine-tuning scheme Sent. Dev Acc Para. Dev Acc Sim. Dev Corr Overall
Sequential: SST, Quora, then STS 0.375 0.812 0.571 0.586

Additive multitask 0.483 0.802 0.493 0.593
Stochastic multitask 0.502 0.803 0.428 0.578
Weighted multitask 0.501 0.854 0.509 0.621

Table 5: Dev set accuracies from combination of methods

Model Sent. Dev Acc Para. Dev Acc Sim. Dev Corr Overall
SNLI/MNLI linear + Additive multitask 0.503 0.860 0.572 0.645

SNLI/MNLI linear + Stochastic multitask 0.493 0.810 0.594 0.632
SNLI/MNLI linear + Weighted multitask 0.496 0.830 0.599 0.642

SNLI/MNLI contrastive + Additive multitask 0.502 0.851 0.595 0.649
SNLI/MNLI contrastive + Stochastic multitask 0.498 0.807 0.597 0.634
SNLI/MNLI contrastive + Weighted multitask 0.492 0.837 0.581 0.637

Pretraining + SNLI/MNLI contrastive + Additive multitask 0.489 0.798 0.443 0.577
Pretraining + SNLI/MNLI contrastive + Stochastic multitask 0.500 0.796 0.624 0.640
Pretraining + SNLI/MNLI contrastive + Weighted multitask 0.517 0.826 0.530 0.624

Table 6: Dev set accuracies from additional experiments (after SNLI/MNLI contrastive)

Model Sent. Dev Acc Para. Dev Acc Sim. Dev Corr Overall
Frozen Quora/STS 0.453 0.746 0.816 0.672

Replace STS with SNLI in multitask fine-tuning 0.506 0.759 0.798 0.688
Multitask fine-tuning Quora/SNLI + frozen STS 0.460 0.830 0.789 0.693

Table 7: Test set accuracies

Model Sent. Test Acc Para. Test Acc Sim. Test Corr Overall
Multitask fine-tuning Quora/SNLI + frozen STS 0.443 0.829 0.776 0.683

7

to simple quantity of training data; the more there is, the better the model becomes. The use of
contrastive learning is able to improve the performance in the similarity task even further, likely
because the contrastive learning framework is able to generate a better representational space for
sentence embeddings based on the sentence’s semantic meaning.

Additional pretraining seems to have little to no benefit on the overall performance of the model.
We posit this result is related to the problem of catastrophic forgetting, in which training beyond
the initial pretraining destroys some of the model’s fundamental knowledge, reducing performance.
As we train the model for our downstream tasks, the weights learned during pretraining may have
been overwritten. Indeed, many of the models in Table 5 that combines multiple methods suffer
from the same problem: additional pretraining negatively affects the initial weights, SNLI/MNLI
fine-tuning negatively affects additional pretraining, and multitask fine-tuning negatively affects
SNLI/MNLI fine-tuning. We observe this behavior during training by evaluating the performance
metrics at intervals; for all tasks, performance tends not to proceed continuously upward, but to
fluctuate between training segments. One proposed solution comes from Sun et al. (2019), who
implement a layer-wise decreasing learning rate to combat catastrophic forgetting.

Drawing on these results, we devised several additional experiments with the aim of getting even
better performance. These experiments were motivated by the observation that contrastive learning
is able to achieve a remarkably high score on semantic similarity and performs moderately well on
paraphrase detection, but these gains are lost during the multitask fine-tuning step when we train
on all datasets at once. We wanted to find ways to retain the performance gain from contrastive
learning and combat catastrophic forgetting, thus we experimented with the following changes. First,
after training on SNLI and MNLI, we freeze the weights of base BERT when fine-tuning the Quora
and STS datasets, so that only the final linear layers of the respective tasks can be modified during
training. This makes it so that the previously learned sentence embeddings stay the same, thus the
performance on similarity is retained even while training on other tasks. Next, we tried replacing
STS with SNLI during the multitask training step, and using contrastive loss instead of mean squared
error. We did this because after training on SNLI and MNLI, we observed that training on STS seems
redundant and does not offer performance gains. Instead, we would like to fine-tune the model with
the superior contrastive learning framework rather than the standard MSE loss during the multitask
fine-tuning process. Finally, we also tried to do multitask fine-tuning on just the Quora and SNLI
datasets (ignoring SST sentiment dataset), then freezing the weights and training on SST after. This
combination of multitask fine-tuning and freezing weights gave us our overall best result, so this is
the final model we submitted to the test set leaderboard. We believe the reason that this model turned
out to be the most effective may be because the objectives of the paraphrase detection and semantic
similarity tasks are closely related, and thus these two tasks benefit the most from having gradients
updated at the same time, while the sentiment task is trained later with frozen weights to prevent its
gradient from conflicting with the paraphrase and similarity tasks.

6 Conclusion

We implement additional pretraining, fine-tuning on additional data, contrastive learning, and multi-
task fine-tuning (including two methods original to our research) to optimize the minBERT model
for multiple downstream tasks. We see that all our methods offer significant improvements over the
baseline model. We found that contrastive learning is especially effective for the semantic textual
similarity task, and multitask fine-tuning is valuable for getting balanced accuracies across separate
tasks. However, we notice that our models suffer from the catastrophic forgetting problem, and there
is no single model that performs the best across all tasks. Our best model, which combines our main
strategies along with slight changes to solve the catastrophic forgetting problem, achieves an average
accuracy of 0.693/0.683 on the dev/test sets, respectively.

Using a single BERT model to accomplish multiple downstream tasks is a relatively unexplored
challenge in NLP and there is much more to be done. For future work, we could explore more
multitask fine-tuning strategies, such as standardizing the losses in our weighted multitask learning
method or using gradient surgery. We could also explore ways to mitigate catastrophic forgetting,
such as using decreasing layer-wise learning rate or freezing weights of certain layers. The fact that
we are able to substantially improve performance of our main approaches by freezing weights when
training on separate tasks suggests that there is strong potential for even better performance if we
could handle this problem well.

8

References

Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. 2022. Mtrec: Multi-task
learning over BERT for news recommendation. In Findings of the Association for Computational
Linguistics: ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 2663–2669. Association for
Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large
annotated corpus for learning natural language inference. CoRR, abs/1508.05326.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple contrastive learning of
sentence embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 6894–6910, Online and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Travis R. Goodwin, Max E. Savery, and Dina Demner-Fushman. 2020. Towards zero shot conditional
summarization with adaptive multi-task fine-tuning. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, Online Event, 16-20 November 2020, volume EMNLP 2020 of
Findings of ACL, pages 3215–3226. Association for Computational Linguistics.

John M. Jumper, Richard O. Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russell Bates, Augustin Žídek, Anna Potapenko, Alex
Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino
Romera-Paredes, Stanislav Nikolov, R. D. Jain, Jonas Adler, Trevor Back, Stig Petersen, David
Reiman, Ellen Clancy, Michal Zielinski, Johannes Söding, Michalina Pacholska, Tamas Bergham-
mer, Sebastian Bodenstein, David L. Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu,
Pushmeet Kohli, and Demis Hassabis. 2021. Highly accurate protein structure prediction with
alphafold. Nature.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and
Mubarak Shah. 2022. Transformers in vision: A survey. ACM Comput. Surv., 54(10s).

Hyun Kim, Joon-Ho Lim, Hyun-Ki Kim, and Seung-Hoon Na. 2019. QE BERT: Bilingual BERT
using multi-task learning for neural quality estimation. In Proceedings of the Fourth Conference
on Machine Translation (Volume 3: Shared Task Papers, Day 2), pages 85–89, Florence, Italy.
Association for Computational Linguistics.

Salima Lamsiyah, Abdelkader El Mahdaouy, Saïd El Alaoui Ouatik, and Bernard Espinasse. 2023.
Unsupervised extractive multi-document summarization method based on transfer learning from
BERT multi-task fine-tuning. J. Inf. Sci., 49(1):164–182.

Yifan Peng, Qingyu Chen, and Zhiyong Lu. 2020. An empirical study of multi-task learning on
BERT for biomedical text mining. CoRR, abs/2005.02799.

Asa Cooper Stickland and Iain Murray. 2019. BERT and pals: Projected attention layers for efficient
adaptation in multi-task learning. CoRR, abs/1902.02671.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to fine-tune bert for text classi-
fication? In Chinese Computational Linguistics, pages 194–206, Cham. Springer International
Publishing.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 1112–1122. Association for Computational Linguistics.

Xuyang Wu, Alessandro Magnani, Suthee Chaidaroon, Ajit Puthenputhussery, Ciya Liao, and Yi Fang.
2022. A multi-task learning framework for product ranking with bert. In Proceedings of the ACM
Web Conference 2022, WWW ’22, page 493–501, New York, NY, USA. Association for Computing
Machinery.

9

https://doi.org/10.18653/v1/2022.findings-acl.209
https://doi.org/10.18653/v1/2022.findings-acl.209
http://arxiv.org/abs/1508.05326
http://arxiv.org/abs/1508.05326
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2020.findings-emnlp.289
https://doi.org/10.18653/v1/2020.findings-emnlp.289
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1145/3505244
https://doi.org/10.18653/v1/W19-5407
https://doi.org/10.18653/v1/W19-5407
https://doi.org/10.1177/0165551521990616
https://doi.org/10.1177/0165551521990616
http://arxiv.org/abs/2005.02799
http://arxiv.org/abs/2005.02799
http://arxiv.org/abs/1902.02671
http://arxiv.org/abs/1902.02671
https://arxiv.org/pdf/1905.05583.pdf
https://arxiv.org/pdf/1905.05583.pdf
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://doi.org/10.1145/3485447.3511977

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning. CoRR, abs/2001.06782.

3https://huggingface.co/datasets/yelp_review_full
4https://huggingface.co/datasets/sick
5https://huggingface.co/datasets/paws
6Bowman et al. (2015) https://nlp.stanford.edu/projects/snli/
7Williams et al. (2018) https://cims.nyu.edu/~sbowman/multinli/
8Data from Stanford Sentiment Treebankparsed with Stanford Parser
9https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

10https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark

10

http://arxiv.org/abs/2001.06782
https://huggingface.co/datasets/yelp_review_full
https://huggingface.co/datasets/sick
https://huggingface.co/datasets/paws
https://nlp.stanford.edu/projects/snli/
https://cims.nyu.edu/~sbowman/multinli/
https://nlp.stanford.edu/sentiment/treebank.html
https://nlp.stanford.edu/software/lex-parser.shtml
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark

7 Appendix

Table 8: Experiment details

Training Task Epochs Time per epoch
IMDb pretraining 2 17.5min
Yelp pretraining 3 9.5min
SICK pretraining 10 0.75min
PAWS pretraining 1 10min
SNLI fine-tuning 1 60min
MNLI fine-tuning 1 60min
Additive multitask 2 42min

Stochastic multitask 1 30min
Weighted multitask 1 44min

11

	Introduction
	Related Work
	Approach
	minBERT and Adam
	Additional pretraining
	Fine-tuning on additional datasets
	Contrastive learning
	Fine-tuning and predicting on given downstream tasks
	

	Experiments
	Data
	Pretraining
	Fine-tuning

	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Appendix

