
GAN-BERT for Automated Essay Scoring
Stanford CS224N Custom Project

Griffin Holt
Department of Electrical Engineering

Stanford University
gholt@stanford.edu

Theodore Kanell
Department of Computer Science

Stanford University
tkanell@stanford.edu

Abstract

Every year, millions of individuals take English language proficiency exams, such
as TOEFL and IELTS, for professional and academic development. These exams
are typically graded by human evaluators; automating the evaluation process can
improve both efficiency and fairness of the examinations. Our approach to the
Automated Essay Scoring (AES) task is to implement three variations of the GAN-
BERT architecture: a feed-forward neural network generator; a BERT transformer
generator; and a generator composed of a fine-tined GPT2 language model in
tandem with a BERT transformer. We use a single pre-trained RoBERTa model,
fine-tuned to our task and dataset, for a baseline comparison. All three GAN-BERT
architectures outperformed the baseline model on the test set. The GAN-BERT
models are also able to better differentiate between Low and Medium score essays,
and Medium and High score essays. The GPT2-BERT generator demonstrated the
most evidence of taking advantage of the competitive nature of the GAN structure
to improve both generator and discriminator.

Key Information: Our TA Mentor is Abhinav Garg.

1 Introduction

Essay scoring for standardized examinations can be an arduous and subjective process, often involving
multiple graders whose respective scores are averaged to produce a single final essay examination
score. Grading exam essays can also place a difficult burden on educators, exacerbated especially
by rapid increase of online education. The global English language learning market, in particular,
is expected to reach $69.62 billion by 2029 with a CAGR of 9.5% until that year (Research and
Markets, 2022); for comparison, the smartphone market expects a CAGR of only 7.3% during that
same time (Fortune Business Insights, 2022). Applying recent improvements in NLP to the task of
essay scoring can give English learners a rapid, consistent metric for their essays, especially for tests
like the IELTS or TOEFL, while relieving a burden of overworked and underpaid educators.

Formally, the Automated Essay Scoring (AES) task is defined as follows: given an essay with m
words X = {xi}mi=1, we want to output a single score y that reflects the measure of the essay. For
the ETS Corpus of Non-Native Written English dataset (Blanchard, Daniel et al., 2014) utilized in
this paper, the score range is constrained to only |S| = 3 categories (Low, Medium, and High) and
we therefore frame our specific problem as a classification task.

Previous attempts to create an effective and accurate AES system followed two basic designs: deep
neural network models using either LSTM or CNN architectures using factors such as word length,
spelling errors, or bag of words to featurize essays in a time consuming procedure (Rodriguez et al.,
2019); and transformer-based models, such as BERT (Wang et al., 2022; Dong et al., 2017).

In this paper, we extend the GAN-BERT architecture–a unique adaptation of the Generative Adver-
sarial Network (GAN) (Goodfellow et al., 2020) that incorporates a BERT transformer and was first
introduced by Croce et al. (2020) for various NLP tasks–to the Automated Essay Scoring task. We
anticipate that the GAN-BERT architecture will help our model be more robust in scoring across a
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variety of different prompts. We therefore do not create separate models for each prompt, but we
instead utilize a general model for all prompts in our data set.

2 Related Work
2.1 AES Research

Deep Neural Networks using LSTM or CNN architectures have produced excellent models for AES
and are able to automatically learn many intricate features of essays, and therefore require less
pre-computation to generate and design features for the essays (Taghipour and Ng, 2016). However,
best results are obtained by incorporating work intensive handcrafted features (Uto et al., 2020).

Pre-trained language models such as BERT are able to reach state of the art results, with three
papers out performing other deep learning models. All three papers employed additional training
optimization. Cao et al. (2020) utilized domain adversarial training, Yang et al. (2020) combined
regression and ranking for training, and Wang et al. (2022) employed three different levels of
granularity to encapsulate the essay for the model.

2.2 GAN-BERT

Very few researchers have applied GAN networks to NLP tasks and none have applied it to the
AES task. Croce et al. (2017) employed a kernel-based GAN which combined expressive kernels
and deep neural networks to model structured information and learn non-linear decision functions.
Croce et al. (2017) was able to achieve state-of-the-art results in Question Classification, Community
Question-Answering, and Argument Boundary detection. Croce et al. (2020) demonstrated that
applying a semi-supervised GAN on a NLP task can enable the model to achieve high results with far
fewer labeled data points on Sentiment Classification.

3 Approach
We proceed to describe our approach to this task for our novel models–several variations on the
GAN-BERT architecture first proposed by Croce et al. (2020)–as well as our approach for the baseline
model–a single pre-trained RoBERTa (Liu et al., 2019) model fine-tuned to our classification task.

3.1 GAN-BERT Architecture

The GAN-BERT architecture is an adaptation of the Generative Adversarial Network structure
(Goodfellow et al., 2020) that incorporates a BERT transformer and is thus more optimized for NLP
tasks. In the Generative Adversarial Network architecture for a classification task, a discriminator
is trained over (K + 1) classes: its goal is for real examples to be classified into one of the target
categories {1, . . . ,K} and for fake or generated examples to be classified as class K+1. A generator
is then trained to generate fake examples that deceive the discriminator.

We will now describe the GAN-BERT architecture (see Figures 1) more formally, illustrating how
it combines the traditional GAN architecture and loss functions with a BERT model to address
NLP tasks. Let G denote the generator network and D denote the discriminator network. Let
Xk = {xi}mi=1 represent a real essay from our dataset (see Section 4.1 for details regarding the

Figure 1: The GAN-BERT architecture, as described by Croce et al. (2020), but changed to fit our use
case: the size-constrained essays are passed into the BERT transformer module, and the discriminator
D outputs the essay score ŷ ∈ {Fake,Low,Medium,High}, where ŷ = Fake signifies D identified
the input as generated the generator G.
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content and distribution of the essays). Each essay Xk is labeled with a human-evaluated score
yk ∈ {Low,Medium,High} = S.

An essay Xk is first tokenized using WordPiece (Devlin et al., 2018) with a maximum length of L
tokens. The token sequence is truncated if its length exceeds L and padded if its length is less than L.
The tokenized sequence T = [t1, t2, . . . , tL] is then passed into a pre-trained BERT module which
we also fine-tuned in advance on the AES task. As suggested by Devlin et al. (2018), we utilize the
CLS hidden state hCLS as our single vector output vB ∈ R768 from the BERT module.

The BERT output vB is then passed into the discriminator network D. For our specific implementation
of the GAN-BERT architecture, the discriminator D (see Figure 2d) is a feed-forward neural network
composed of (in order) a dropout layer with dropout probability p; a hidden linear layer with an
output dimension of 768; a LeakyRELU activation function; an additional dropout layer with dropout
probability p; an output linear layer with an output dimension of |S|+ 1 = 4; and a softmax layer,
which outputs the final probabilities for each of the |S|+1 classes: {Fake,Low,Medium,High}. The
final output of the discriminator D is the predicted class ŷk, the class having maximum probability
from the softmax layer.

Separately, “noisy input" is passed into the generator G. For the AES task, we experiment with
three different generator structures, each of which are described in detail in Section 3.1.2. The exact
definition of “noisy input" depends on the structure of the generator itself. Regardless of its internal
structure, the generator G produces an output vG ∈ R768: a “fake" sample that, ideally, mimics the
output vB of the BERT module when fed a real essay X . This generator output vG is then passed
into the discriminator D and assigned a class probability score and final prediction ŷk̃.

3.1.1 Loss Functions

Let y denote the true class label for a real essay X . Let v be a generic input to the discriminator
D (i.e., v may come from a real essay X processed by BERT or from the generator G). Let pG be
the distribution of inputs v generated from the generator G. Let pB be the distribution of inputs v
produced by the BERT module processing a real essay. Let pD(ŷ = y|v, y = 0) be the probability
that an input v associated with the fake class is classified by the discriminator D as fake. Let
pD(ŷ = y|v, y ∈ {1, 2, 3}) be the probability that an input v associated with one of the real essay
scores is classified with the correct essay score.

The discriminator loss function ℓD is designed to motivate the discriminator to both differentiate be-
tween real inputs vB and fake inputs vG and assign a correct essay score ŷk ∈ {Low,Medium,High}
to real inputs vB . The discriminator loss function ℓD is given as ℓD = ℓDScore + ℓDRF , where

ℓDScore = −Ev,y∼pB
[log pD(ŷ = y|v, y ∈ {1, 2, 3})] (1)

measures the discriminator’s error in score classification for a real essay X; and

ℓDRF = −Ev,y∼pB
[log (1− pD(ŷ = y|v, y = 0))]− Ev,y∼pG

[log pD(ŷ = y|v, y = 0)] (2)

measures the discriminator’s error in misclassifying real examples as fake and fake examples as real.

In contrast, the generator loss function ℓG is designed to motivate the generator G to generate
discriminator inputs vG that are similar to the inputs vB from the distribution of real examples pB .
Let f(v) be the activation of the hidden layer in the discriminator D for a given input v. Then, to
encourage the generator G to produce outputs vG statistically similar to the BERT’s outputs vB , we
define the feature matching generator loss to be

ℓGfeature matching = ∥Ev∼pB
[f(v)]− Ev∼pG

[f(v)]∥22 . (3)

This feature matching loss technique was suggested by Salimans et al. (2016) for traditional GANs
and implemented by Croce et al. (2020) in their original GAN-BERT architecture. The complete
generator loss function ℓG is then given by ℓG = ℓGfeature matching + ℓGcaught , where

ℓGcaught = −Ev,y∼pG
[log (1− pD(ŷ = y|v, y = 0))] (4)

directly penalizes the generator G for producing fake examples that were “caught" (identified as
fake) by the discriminator D. In a code implementation, all expectations (for ℓD and ℓG) are taken
empirically.
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3.1.2 Generators

We will now describe the structures of the three variants of generators G1, G2, G3 that we imple-
mented to address the AES task. We note that the G1 generator, described below, was used
by Croce et al. (2020) in the original GAN-BERT paper, but G2 and G3 were our original
contributions. We wrote all code for this project–including the implementation of G1–from
scratch, referring only to the code from Croce et al. (2020) when mathematical details were
missing from their paper. We will use the terms G1, G2, and G3 to refer to both the individual
generators and the entire GAN-BERT model (the generator combined with its discriminator).

(a) G1 (b) G2 (c) G3 (d) D

Figure 2: The three generator architectures–the Neural Network Generator G1; the BERT Generator
G2; and the GPT2-BERT Generator G3–and the Discriminator D architecture

G1: A Feed-Forward Neural Network

The first generator variant G1 (see Figure 2a) is a feed-forward neural network (FFNN) composed
of (in order) a linear layer with an input dimension of di = 100 and output dimension of dh = 768;
a LeakyRELU activation function; a dropout layer with dropout probability p; and an output linear
layer with an output dimension of do = 768. The FFNN generator G1 takes as input a noisy vector
z ∈ R100, zi ∼ N (0, 1) whose inputs are generated from the standard Gaussian distribution. G1 then
outputs a vector vG ∈ R768 to be passed to the discriminator D.

G2: A BERT Generator

The second generator variant G2 (see Figure 2b) is a single pre-trained BERT transformer module
(Devlin et al., 2018). Note that this BERT transformer module is separate from the BERT transformer
module which processes real essays (pictured in red in Figure 1). Whereas the parameters of the
BERT transformer module processing real essays are frozen and detached from the gradient, the
parameters of BERT transformer module composing G2 are updated according to the loss function
ℓG.

To create a “noisy input" to feed into the G2 BERT transformer module, we first created a “bag of
words" from all words present in essays in the training set. A random essay X̃ was then generated
by selecting L = 510 words according to the frequency with which they are present in the training
set essays. Note that each word in X̃ was selected independently from the same distribution: no
attempt was made at this point to force the words in X̃ to form a cohesive sentence. This random
essay X̃ was then tokenized by the WordPiece BERT tokenizer and the resulting token sequence T̃
was fed into G2. Similar to the other BERT module, the output vG ∈ R768 from G2 to be fed into the
discriminator is the CLS hidden state hCLS .

G3: A DistilGPT2-BERT Generator

The third generator variant G3 (see Figure 2c) is another single pre-trained BERT transformer module.
However, this time, we fine-tuned a pre-trained DistilGPT2 language model (Sanh et al., 2019) to
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generate a fake essay X̃ when given one of the eight real essay prompts P1, . . . ,P8. The DistilGPT2
module was fine-tuned on the real essays Xk in the training set and their respective prompts.

The DistilGPT2-generated essay X̃ was then tokenized and fed into the BERT transformer module.
The output vG = hCLS ∈ R768 from G3 is again the CLS hidden state of the BERT module.

Note that only the BERT transformer is connected to the gradient; after fine-tuning the DistilGPT2
language model to generate fake essays from real essay prompts, its parameters are frozen and
detached from the GAN-BERT loss functions.

3.2 Baseline Models: RoBERTa

Our baseline model is a single pre-trained RoBERTa (Liu et al., 2019) model fine-tuned to our
classification task. We utilize the RoBERTa tokenizer–a byte-level variant of the Byte-Pair Encoding
tokenizer (Sennrich et al., 2016)–to split the essay into a token sequence T = [t1, t2, . . . , tL],
truncated or padded to a sequence length of L = 510. The final input representation is then the sum
of the token embeddings, segmentation embeddings, and position embeddings. The RoBERTa model
then outputs a logit l ∈ RN from which we can generate an output prediction ŷ = argmaxi=1,...,3 li.
Our loss function for fine-tuning the pre-trained model to this task is Cross Entropy Loss.

The pre-trained RoBERTa parameters were downloaded from HuggingFace, but all other parts
of the approach described above were implemented by us from scratch with pertinent libraries.

4 Experiments
4.1 Data

Our models (baseline and GAN-BERT) were trained on the ETS Corpus of Non-Native Written
English (Blanchard, Daniel et al., 2014), a compilation of 12,100 English essays written by speakers
of 11 non-English native languages (1,100 essays for each language) across 8 different essay prompts
as part of the international academic English language proficiency exam, TOEFL. The dataset was
developed specifically for native language identification, but, as acknowledged by its authors, can be
used for other tasks (such as AES).

As stated earlier, each essay Xk is labeled with a human-evaluated score yk ∈
{Low,Medium,High} = S. The training set is composed of n = 9900 essays, and the devel-
opment and test sets are each composed of ñ = 1100 essays. The distribution of essays prompts
P1, . . . ,P8 and score categories Low,Medium,Low for the training, development, and test sets are
presented in Table 1 and Table 2, respectively.

Prompt Frequencies
Train Dev Test

P1 0.1383 0.1382 0.1227
P2 0.1312 0.1091 0.1300
P3 0.1168 0.0845 0.1336
P4 0.1222 0.1282 0.1436
P5 0.1382 0.1527 0.1018
P6 0.0783 0.0645 0.1036
P7 0.1383 0.1645 0.1236
P8 0.1368 0.1582 0.1409

Table 1: Distribution of essay prompts for the
training, development, and test sets

Score Frequencies
Train Dev Test

Low 0.1080 0.1200 0.1173
Medium 0.5420 0.5436 0.5491

High 0.3500 0.3364 0.3336

Table 2: Distribution of essay scores for the
training, development, and test sets

Because of the imbalance of the three score classes in the dataset, we also experimented with
incorporating class weights wi, i = 1, . . . , |S| into our loss functions for both the GAN-BERT
architecture and our RoBERTa baseline modules. The weight wi for class i ∈ S is given by

wi =
n

|S|
∑n

k=1 1{yk = i}
. (5)

Incorporating the class weights into the GAN-BERT loss functions simply changed the computation
of ℓDScore to a weighted empirical mean. To incorporate the class weights into the baseline RoBERTa
model, we simply used Weighted Cross Entropy Loss.
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4.2 Evaluation Method

Our primary evaluation metric for the performance of our models on the AES task is the Quadratic
Weighted Kappa (QWK) score (Cohen, 1968). This score is frequently used to compare the per-
formance of an automated grading system against human graders and is the standard for AES
performance comparison (Wang et al., 2022). The details of computing QWK are outlined in
Section 4.2.1 further below.

In addition to measuring the QWK performance of our models on the AES task, we also measured the
performance of each GAN-BERT model’s discriminator D in identifying “real" versus “fake" (i.e.,
generated by a generator G) inputs. We measured each model’s Real-Fake Classification Accuracy,
Real-Fake Precision, and Real-Fake Recall to understand how well each generator G was able to
mimic real examples (and thereby, hopefully, improve the discriminator’s ability to distinguish
between each score class).

4.2.1 Quadratic Weighted Kappa (QWK)

The details of computing QWK are outlined below:

Let O ∈ R|S|×|S| be the confusion matrix associated with the model’s score classifications ŷk ∈
S, k = 1, . . . , n and the actual scores yk ∈ S, k = 1, . . . , n. By convention (Pedregosa et al., 2011),
Oij is equal to the number of essays known to have score yk = i and predicted to have score ŷk = j

by the model. Then, normalize O to get Õ = 1∑
i,j Oij

Oij ∈ R|S|×|S|.

Let W ∈ R|S|×|S| be a weight matrix defined entrywise as Wij =
(i−j)2

(|S|−1)2 . The weight matrix gives
partial credit in the final QWK score to the model for proximity to the correct label (e.g., if the model
guessed Medium when the essay was actually labeled High, it is penalized less than if it had classified
the essay as Low).

Let a, b ∈ R|S| be count vectors defined entrywise such that ai is the number of essays with an
actual score yk = i, and bi is the number of essays predicted to have score ŷk = i. Then, let
E = abT ∈ R|S|×|S|, and normalize it to get Ẽ = 1∑

i,j Eij
E ∈ R|S|×|S|.

Finally, the Quadratic Weighed Kappa score κ for model performance is given by

κ = 1−
∑

i,j WijÕij∑
i,j WijẼij

. (6)

4.3 Experimental details

For each of the GAN-BERT models, we utilized the Adam optimizer with a learning rate of λ =
0.0002. We trained G1 for 5000 epochs with a batch size of B1 = 100, G2 for 20 epochs with a
batch size of B2 = 24, and G3 for 10 epochs with a batch size of B3 = 9. The training process for
each GAN-BERT model took between 45 minutes (for G1) and 2-3 hours (for G2 and G3).

For the baseline RoBERTa model, we used the Adam optimizer with a learning rate of λ = 2× 10−5,
a batch size of B = 16, and a weight decay of ν = 0.01. We were only able to train for 10 epochs
as the checkpoints exhausted the memory. Given the significant number of parameters in RoBERTa
models, training took about two hours.

For the fine-tuned DistilGPT2 module that fed into G3, we used the AdamW optimizer with a learning
rate of λ = 2× 10−5, a batch size of B = 9, and trained for 10 epochs.

For the G1 GAN-BERT model, we experimented with two different dropout rates p = 0.1, 0.5 for
the dropout layers. We also experimented with the maximum sequence length L = 64, 128, 510 for
the tokenized input to the BERT module. For G2 and G3, we exclusively used a dropout rate of
p = 0.5 and a maximum sequence length of L = 510. For all three GAN-BERT models, we also
experimented with the inclusion and exclusion of class weights wi in the loss function to account for
the class imbalance in our dataset.
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Model Dropout Class Maximum L-M-H QWK R-F Accuracy R-F Precision R-F Recall
Weights? Seq. Len. Train Dev Test Train Dev Test Train Dev Test Train Dev Test

Worst Case – – – -0.808 -0.802 -0.800 – – – – – – – – –
Random – – – 0.009 -0.014 -0.044 – – – – – – – – –

RoBERTa – No – 0.712 0.707 0.675 – – – – – – – – –
RoBERTa – Yes – 0.761 0.755 0.709 – – – – – – – – –

GAN-BERT G1 0.1 No 510 0.9488 0.7420 0.6989 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
GAN-BERT G1 0.1 No 128 0.3780 0.3964 0.3610 0.9219 0.9326 0.9228 0.9999 1.0000 1.0000 0.8439 0.8652 0.8455
GAN-BERT G1 0.1 No 64 0.0883 0.1050 0.0746 0.8777 0.8813 0.8777 1.000 1.0000 0.9989 0.7553 0.7625 0.7563
GAN-BERT G1 0.5 No 510 0.8098 0.7752 0.7311 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
GAN-BERT G1 0.5 Yes 510 0.8008 0.7583 0.7280 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
GAN-BERT G2 0.5 No 510 0.8003 0.7459 0.7344 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
GAN-BERT G2 0.5 Yes 510 0.7890 0.7408 0.7169 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
GAN-BERT G3 0.5 No 510 0.7718 0.7351 0.7192 0.8849 0.8966 0.8869 0.8679 0.8766 0.8614 0.9223 0.9327 0.9345
GAN-BERT G3 0.5 Yes 510 0.7685 0.7326 0.7179 0.8807 0.8807 0.8848 0.8612 0.8543 0.8624 0.9224 0.9330 0.9342

Table 3: Training, development, and test set evaluation metrics for each of our AES models, including
QWK scores on real examples; Real-Fake Classification Accuracy; Real-Fake Precision; and Real-
Fake Recall

4.4 Results

The evaluation metrics for each of our models–baseline and GAN-BERT–are presented in Table 3.
For comparison, we also present the worst-case QWK scores for our dataset (all Low essays scored
as High, all High essays scored as Low, and all Medium essays scored as either Low or High) as
well as the QWK scores from assigning a random score to each essay (over 100 trials). Confusion
matrices for the non-class-weight baseline RoBERTa model and the best GAN-BERT G1, G2, and
G3 models are also presented in Figure 3 (see the Appendix: Section 7).

The RoBERTa baseline model experienced a significant increase in QWK performance with the
inclusion of class weights. With the correct set of hyperparameters, each of the GAN-BERT models
(G1, G2, G3) offered an improvement in 0.1 − 0.3 QWK points over the class-weighted baseline
RoBERTa model. Notably, class weights did nothing to improve any of the GAN-BERT models.

Overall, the non-class-weighted G1 and G2 models acheived the highest QWK scores. However,
the GAN-BERT G3 model had the lowest R-F Classification Accuracies, signifying that the G3

DistilGPT2-BERT generator produced the most fake examples that deceived the discriminator D.
This result was particularly interesting: we knew that G3 had the most potential for fake essay
generation due to the capabilities of GPT2 language models, but we did not expect it to be able to
trick the discriminator one out of ten times.

5 Analysis

When we compare our baseline on the ETS Corpus to baselines for different AES datasets (Phandi
et al., 2015), we see that our baseline performed similarly: for example, the QWK for our baseline
models (κ = 0.675, 0.709 for the non-class-weighted baseline and class-weighted baseline, respec-
tively) was similar to the EASE model (Phandi et al., 2015) on the ASAP data (κ = 0.675). However,
it is important to note that achieving a higher QWK value is more difficult when the score range is
wider: our score range only consists of three possible scores and is therefore not as difficult as the
score range for some of the models on other AES datasets (Phandi et al., 2015).

The baseline model performed particularly well at identifying essays in the High category, but it
struggled in identifying Low category essays as evidenced in Figures 3a, 3b, 3c. We believe this
could be due to the under-representation of Low-scored essays in the ETS Corpus dataset. Including
class weights in the loss function for the baseline RoBERTa boosted QWK performance significantly.
The baseline model also rarely (and, on the Development dataset, never) confused Low and High
scored essays. If it confused score categories, it erred on the upward side, mistaking Low for Medium
and Medium for High. Both of these trends are desired qualities in an Automated Essay Scorer,
which made us optimistic for the performance of our more complex GAN-BERT models.

Varying the maximum sequence lengths L for G1 offered quantitative insight into the conflict between
the G1 generator and its respective discriminator. A sequence length of L = 512 caused the output
vB of the BERT module to be too complex for the feed-forward neural network structure of G1 to
mimic (as evidenced by the 100% R-F Accuracy). On the other hand, a decrease in sequence length to
L = 64 improved the G1 generator’s performance (as evidenced by a decrease in R-F Accuracy), but
denied the discriminator enough information in such a short token sequence to differentiate between
the quality of essay categories (as evidenced by the significant decrease in QWK).
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In utilizing a GAN architecture, the hope is that the competition between generator and discriminator
will cause both modules to increase in performance. The generator, in mimicking BERT outputs for
real essays with labeled scores, might encourage the discriminator to better understand the differences
between the score categories. However, both the G1 and G2 generators were never able to capture
the complexity of BERT’s output and definitively failed to produce believable examples. Although
the discriminators for G1 and G2 produced the highest QWK scores above the baseline, we don’t
believe that either of these GAN-BERT models were able to take full advantage of their generative
adversarial structure.

Fortunately, the G3 GAN-BERT architecture was able to better capitalize on the competition between
generator and discriminator to elevate both modules. The G3 generator caused a decrease in Real-
Fake Accuracy, Real-Fake Precision, and Real-Fake Recall without compromising significant losses
in QWK scores on real essays. The confusion matrices in Figure 3 also show us that the G3 generator
produced a discriminator D that was able to differentiate between Low and Medium essays much
better than the G1 or G2 models. Thus, the essays and fake outputs vG generated by G3 enabled the
discriminator to better understand what exactly defined a Low-scoring essay.

To understand better how the G3 generator successfully deceived its discriminator, we examined
three examples of essays produced by the DistilGPT2 fine-tuned language model that that were
misclassified by the discriminator as real essays with High, Medium, and Low scores, respectively
(see the Appendix: Section 7.2.1 for the text and discriminator classification probabilities of these
three generated essays). Even from these three examples, it seems that essay length, spelling (i.e.,
presence or absence of mispelled words), the use of smooth transition words and phrases (e.g.,
“furthermore", “moreover", “to the contrary", etc.), sentence variety, and vocabulary mastery–all
of which are factors used by human evaluators–may be factors utilized by the G3 GAN-BERT
discriminator in its automated evaluation.

Finally, when we look at the confusion matrices for the baseline model and the three generator
architectures (see Figure 3), we see an interesting pattern emerge: the baseline RoBERTA model was
the best at identifying High-scoring essays (94% accuracy); the G1 and G2 model discriminators were
the best at identifying Medium-scoring essays (81-92% accuracy); and the G3 model was the best at
identifying Low-scoring essays (86-94% accuracy). This would suggest that a stacked ensemble or
soft-voting ensemble of all four models has potential to achieve higher QWK scores.

6 Conclusions & Future Work
In summary, all three GAN-BERT architectures–the feed-forward neural network generator G1, the
BERT generator G2, and the DistilGPT2-BERT generator G3–had better Quadratic Weighted Kappa
(QWK) performance for essay scoring than the baseline RoBERTa model. More specifically, all
three GAN-BERT architectures improved upon the baseline RoBERTa model in being able to better
differentiate between Low and Medium level essays, and between Medium and High level essays. The
feed-forward generator G1 and G2 GAN-BERT models had the highest QWK scores (κ = 0.78, 0.75
on the development set and κ = 0.73, 0.73 on the test set, respectively). The G3 model demonstrated
the most evidence of taking advantage of the competitive nature of the GAN structure: the generator
confused the discriminator more often (one times out of ten) without compromising too much QWK
performance (κ = 0.73, 0.71 on the development and test sets, respectively).

One of the largest limiting factors on the development of our models was the cost of training time.
The success of the G3 GAN-BERT in producing a competitive generator suggests to us that, with
more training time, it would be useful to attach the DistilGPT2 module in the G3 generator to the
gradient (as opposed to fine-tuning it in advance and freezing its parameters during the GAN-BERT
training).

With additional training time, we also suggest another GAN-BERT structure altogether G4: the
discriminator D itself is a BERT transformer; essays are tokenized and fed directly into the dis-
criminator; and the generator G is a DistilGPT2 language model attached to the gradient. Such a
structure would actually be simpler than the G3 network (as it occludes the pre-preprocessing BERT
transformer for real essays), but would require more time to train.

Finally, because of the unique expertise of each of our four types of models as mentioned in
Section 5, we believe that an ensemble of the four models (RoBERTA, G1, G2, and G3) could
achieve exceptionally high QWK scores and would be worth investigation.
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7 Appendix

7.1 Additional Figures

(a) RoBERTa, Training Set (b) RoBERTa, Development Set (c) RoBERTa, Test Set

(d) G1, Training Set (e) G1, Development Set (f) G1, Test Set

(g) G2, Training Set (h) G2, Development Set (i) G2, Test Set

(j) G3, Training Set (k) G3, Development Set (l) G3, Test Set

Figure 3: Confusion Matrices for RoBERTa Baseline and GAN-BERT Model Performance on the
Training, Development, and Test Sets, normalized over the true counts (i.e., by row)

11



7.2 Fake Essays generated by Fine-tuned DistilGPT2 for G3, but classified as Real by D

Prompt: Do you agree or disagree with the following statement? Young people nowadays do not
give enough time to helping their communities.

7.2.1 DistilGPT2-Generated Essay Example #1: Scored as “High"

Discriminator D’s Classification Probabilities:

p(y = [Fake,Low,Medium,High]) = [0.3574 0.0007 0.0086 0.6333]

Essay Text:

The statement that young peoples nowadays do not give enough time to helping their communities is
more of a general concequence than a reflection of the reality of the world. Some scholars contend
that it is a fact that young people nowadays don’t give enough time to helping their communities,
while others assert that the young people’s attitude towards helping their communities is only a
manifestation of their true belief.

It is certainly true that young people, especially young people, are busy with their job and other
expenses related their working life like the rest. However, today’s working conditions are still more
severe, causing most of the young employees to go for holidays, or to spend the weekend doing
something for the holiday.

These days, the most conspicuous example is the recent global war in which all countries joined to a
"social justice" campaign. Since the United Nations launched a massive civil war in South East Asia,
almost all people in the region could not afford their own cars. The consequences led to the mass
protests in all countries of the world, in particular the US.

A lot of people still think that young people nowadays are just spoiled, even children. However, the
fact is that nowadays they do care more about their future. They prefer to work hard and go out
everyday. They seem to be working in the offices instead of just doing their job. Of course, there is a
need to spend time for themselves, but there is also a need to focus their efforts with their relatives.

Moreover, people are less intrested in their future. People live in situations like conflicts and
difficulties like poverty, which does not allow young people to contribute themselves in their life.
They are also not able to organize their own work, as they do not have enough money. Additionally,
most of young people enjoy studying outside the university and it helps them earn money in the
future.

As far as I am concerned, the reality seems to be to the contrary that young people do devote enough
time to help their communities. I have no doubt that nowadays young people are more careless than
the previous. They are not doing their work for fun, but because of their selfishness, their attitude
towards the work, the lack of experience and the lack of willingness to have responsibility. For
example, we can think that an art college student spends her vacation with her friends in a small town,
because she is too busy with her schoolwork. They are not able to dedicate their time to helping the
communities.

Furthermore, if I lived in the U.S. I do not know how much time I want to spend for my community,
it will not become an issue. I think that young people nowadays can choose to spend the most of their
time instead of spending free time for other interests.
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7.2.2 DistilGPT2-Generated Essay Example #2: Scored as “Medium"

Discriminator D’s Classification Probabilities:

p(y = [Fake,Low,Medium,High]) = [0.4171 0.1063 0.4634 0.0133]

Essay Text:

Yes, and I think there are various advantages of young people nowadays helping their communities.
There are two advantages for me: For example, they tend the most important things during the college
years, and generally help other people to have a home for themselves. They would be able to do the
same job at the same time. In addition, the younger people would be able to get more responsabilities
for the parents, and more, the older people would be able to think responsable to the children. It is
hard to say why the younger people is helping their communities because the education system is a
complex one. They also could not be aware of certain benefits such as their educatnce and the society.

For example, a high school student is able to study law, but also to have friends. He would not be able
to go to a public university but if he goes to a college, and if he needs to pay his tuition, the college
will take that decision.

As I mentioned before, we are very important people, and are not aware of the ways they can help
their communities. If they want to give a part on the society, young people would have it more and
more, and they would not get any more time.

7.2.3 DistilGPT2-Generated Essay Example #3: Scored as “Low"

Discriminator D’s Classification Probabilities:

p(y = [Fake,Low,Medium,High]) = [0.2521 0.4527 0.2905 0.0047]

Essay Text:

Well,I do agree with young people nowadays do not give enough time to helping their communities.
So young people nowadays don’t have any time to spend their time to learn and learn a lot, but we
don’t want to.So it is very different and I don’t know if it could happen for our live then it can happen
in our world.There are many reasons that young people don’t want to do this. So I do agree some
ways.

First,in my study I came to college for my studies and I found alot of bad things in the world. But I
study hard and I had problem for my study some exam year that night that I felt very bad. And in my
exam I felt very bad and because I was going to test the exam in the lab which is the same exam. So I
said to me that I can’t teach about studying by heart, But I study many people and I tried to work and
I feel bad.

Second, I think we are very busy in world because we are not a good people. So the old people don’t
want to do my study or I think in the future they have some important situations we have not. So what
it could happen in our life is that we live at a good or bad place if we do nothing. So in my opinion it
is really better
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