
Multitask Finetuning on BERT using Gradient
Surgery and Linear Probing before Finetuning

Stanford CS224N Default Project

Arvind Mahankali
Department of Computer Science

Stanford University
amahanka@stanford.edu

Abstract

We study multitask finetuning of BERT to obtain good performance on sentiment
analysis (SA), paraphrase detection (PD), and semantic textual similarity (STS).
We also study the effect of gradient surgery (PCGrad) and linear probing followed
by finetuning (LP-FT) on the dev set performance. We find that PCGrad improves
performance on the STS task without significantly worsening performance on the
other tasks, and conjecture that it makes better use of the shared structure between
PD and STS. We also find that LP-FT worsens performance on the STS task, which
we hypothesize is due to the linear probing phase becoming stuck in a region with
low gradient norm.

1 Key Information
• Mentor: Gabriel Poesia

2 Introduction

The goal of this project is to understand the effectiveness of various optimization techniques when
doing multitask learning with transformers on natural language tasks. Specifically, we aim to train a
single transformer with a BERT backbone (Devlin et al. (2019)) to achieve good performance on (1)
sentiment analysis (SA), (2) paraphrase detection (PD), and (3) semantic textual similarity (STS). In
sentiment analysis, the input is a sentence, and the output is an integer between 1 and 5 that signifies
whether the sentence conveys a positive emotion or a negative emotion. In paraphrase detection, the
input is a pair of sentences, and the goal is to determine whether the two sentences are paraphrases of
each other. Finally, in semantic textual similarity, the goal is, given a pair of sentences, to determine
how closely related the two sentences are (represented by a scalar).

Multitask learning can present optimization challenges. The work of Yu et al. (2020) demonstrates in
multi-task supervised and reinforcement learning tasks that optimization can fail to make progress
when the gradients from the different tasks conflict (i.e. the dot products are negative) under certain
additional conditions which they refer to as the “tragic triad.” To address this issue, they propose
the PCGrad algorithm, which (roughly speaking) modifies the gradients from the different tasks by
making them orthogonal. The first question this project seeks to answer is whether PCGrad can
improve test accuracy on the three tasks mentioned above, compared to ordinary multitask training.

Additionally, we will investigate a complementary approach known as LP-FT (studied by Kumar
et al. (2022) in the context of out-of-distribution generalization). Kumar et al. (2022) find that,
for pre-trained models with task-specific linear heads attached, training the linear head prior to
performing full fine-tuning will lead to improved performance when the model is evaluated on data
which is different from the finetuning data distribution. Similarly, we may expect that finetuning
the BERT backbone with respect to one task, say sentiment analysis, can distort the embeddings
of the paraphrase detection examples, if the paraphrase detection examples come from a different

Stanford CS224N Natural Language Processing with Deep Learning

distribution than the sentiment analysis examples. Thus, we also investigate whether LP-FT can help
improve the training process and improve test error.

3 Related Work

One of the approaches we apply, LP-FT, is extensively studied theoretically and empirically in Kumar
et al. (2022), which shows that LP-FT achieves much better out-of-distribution performance than
regular finetuning, without sacrificing in-distribution performance. While we are not concerned with
out-of-distribution performance in this project, this technique is still potentially relevant to us if the
data for the different tasks comes from different distributions, as discussed above. In addition, a
natural question is whether training the linear heads first, before finetuning, can provide a better
initialization compared to a random initialization. We note that the later work by Lee et al. (2022)
studies the effect of fine-tuning a more general subset of layers on out-of-distribution generalization
— it is an interesting question for later work whether such a technique could be applied to multitask
training. The other approach that we apply, PCGrad, was initially proposed by Yu et al. (2020) — they
empirically investigate it in the context of multitask supervised learning (on computer vision tasks)
and reinforcement learning. Here we will determine whether it can lead to performance benefits in
NLP tasks as well.

4 Approach

Basic Multitask Approach First, we describe our basic multitask learning architecture/algorithm.
To each sentence x ∈ RT×|V | (where T is the length of the sentence and |V | is the vocabulary size),
we prepend a [CLS] token — the context-dependent BERT embedding fθ(x) ∈ Rd of this [CLS]
token (where θ represents the parameters of the BERT model) is the pretrained representation to
which the linear heads for each of the tasks is applied.

For sentiment analysis, we use a linear head W1 ∈ Rd×5, which we directly apply to fθ(x). We
finetune W1 and fθ(x) together on the sentiment analysis task using the cross-entropy loss function.
For paraphrase detection, given two sentences x ∈ RT1×|V | and y ∈ RT2×|V |, we apply a linear head
W2 to both fθ(x) and fθ(y). With this linear head, we obtain an unnormalized logit L, which is
converted to a number between 0 and 1 using a sigmoid function — we train on paraphrase detection
using the binary cross entropy loss. To obtain the logit L, we first take the cosine similarity of
W2fθ(x) and W2fθ(y) (where for two vectors u and v, their cosine similarity is defined as u·v

∥u∥2∥v∥2
).

We then apply ReLU (the effect being that sentences with similarities less than 0 are treated the same).
Then, we subtract 0.5 and multiply by 5, so that σ(L) can represent a wide range of probabilities.

For semantic textual similarity, we apply a similar technique to obtain a scalar between 0 and 5 as the
output. If W3 ∈ Rd×d is our linear head for semantic textual similarity and the input sentence pair is
(x, y), then we first take the cosine similarity of W3fθ(x) and W3fθ(y). We subtract 0.5 from this
cosine similarity, then multiply by 5 and apply the sigmoid function. Finally, we multiply the result
by 5. Here we simply use the mean squared error loss.

Batches for Multitask Approach We interleaved the minibatches from the SA, PD and STS
datasets as follows. Note that the PD dataset had the most examples. We simultaneously iterated
through the batches from the SA, PD and STS datasets in order, until we reached the end of the PD
DataLoader. Whenever we reached the end of the SA/STS DataLoaders, we re-started from the
beginning. At each iteration, we drew one batch from the SA DataLoader and did an AdamW step
using the cross-entropy loss, then took one batch from the PD DataLoader and did an AdamW step
using the binary cross-entropy loss, and finally took one batch from the STS DataLoader and did an
AdamW step using the mean squared error loss. We interleave the batches when applying PCGrad
(described below).

PCGrad (Yu et al. (2020)) We implement PCGrad in a manner similar to the algorithm described
in Algorithm 1 of Yu et al. (2020). First, we draw batches from the three tasks as described above. For
each of the batches, we compute the gradients for the parameters due to the respective loss functions
— we denote these gradients by gSA, gPD and gSTS respectively. Then, we define gPC

SA as follows.
(1) Initially, gPC

SA is equal to gSA. (2) Then, if gPC
SA conflicts with gPD, we subtract from gPC

SA the

2

orthogonal projection of gPC
SA onto gPD. (3) If gPC

SA still conflicts with gSTS , then we subtract from
gPC
SA its orthogonal projection onto gSTS . Note that we actually perform steps (2) and (3) in random

order as recommended in Yu et al. (2020). In a similar manner, we obtain gPC
PD and gPC

STS . The final
gradient for this batch with respect to the parameters is gPC

SA + gPC
PD + gPC

STS , which is used as the
gradient that is given as input to AdamW.

LP-FT First, we train the linear heads on their respective tasks for several epochs. Then, we fully
finetune the model as in the basic multitask approach.

Separate-task Finetuning Baseline As a baseline, we also separately finetuned BERT on the three
tasks, without any shared parameters. For each task, we used linear heads in the same manner as
described in the basic multitask approach.

5 Experiments

5.1 Data

For sentiment analysis, we used the Stanford Sentiment Treebank (SST) dataset Socher et al. (2013).
In this dataset, the inputs are sentences, and the outputs are scores which are integers between 1 and
5, signifying whether the emotion of the sentence is positive or negative.

For paraphrase detection, we use a dataset provided by Quora Iyer et al.. In this dataset, the inputs are
pairs of sentences, and the outputs are binary labels (i.e. 0 or 1) that signify whether the sentences
are paraphrases of each other.

Finally, in the semantic textual similarity task Agirre et al. (2013), the inputs are pairs of sentences,
and the output is a scalar between 0 and 5 which signals how closely related the sentences are.

5.2 Evaluation method

Our evaluation metrics for SA and PD are simply classification accuracy. For the STS dataset,
our evaluation metric is the Pearson correlation between the model outputs and the true labels.
Specifically, we apply the model to each of the examples in the dev set — then, we take the covariance
between the model outputs and the true labels, and then divide by the standard deviation of the model
logits and the standard deviation of the correct labels.

5.3 Experimental details

The experimental configurations are as follows. The learning rate was 1e − 5 for finetuning, and
when applying LP-FT, we used a learning rate of 1e− 3 for the initial linear probing phase. We used
5 epochs when finetuning jointly on all the datasets. For linear probing, 10 epochs were used for
SA/STS, and 5 epochs were used for PD. For the basic multitask approach, we used a batch size of
64. For PCGrad, we used a batch size of 32 due to memory constraints. We additionally run the basic
multitask approach with a batch size of 32 to compare with PCGrad.

While finetuning, at the end of every epoch, we took the average of the dev set accuracies on the three
tasks, and saved the model which had the highest average accuracy. Here, one epoch is defined as
making one iteration through all of the batches of PD (while simultaneously drawing one batch for
SA/STS per each batch of PD). The dev set accuracy for the STS task is defined as follows — we
take the logit output by the model and round it to the nearest integer. If the rounded logit is equal to
the correct label, then we say the model is correct, and otherwise we say it is incorrect.

5.4 Results

First, we show the results on the test sets in Table 1. We only included the predictions of these three
models, since they were the best performing models on the dev set. We also include the results for
the dev sets in Table 2.

In summary, the basic multitask approach performs well, and PCGrad leads to a significant advantage
over the basic multitask approach on the STS task without suffering significantly on the other tasks —

3

Model SST Accuracy PD Accuracy STS Correlation
Basic Multitask (Batch Size 64) 0.514 0.827 0.813
Basic Multitask (Batch Size 32) 0.512 0.844 0.812

PCGrad (Batch Size 32) 0.512 0.835 0.822
Table 1: Results on test set.

Model SST Accuracy PD Accuracy STS Correlation
Basic Multitask (Batch Size 64) 0.503 0.829 0.821

PCgrad (Batch Size 32) 0.507 0.838 0.837
Basic Multitask (Batch Size 32) 0.504 0.844 0.813

PCgrad with LPFT (Batch Size 32) 0.496 0.804 0.620
Basic Multitask with LP-FT 0.507 0.810 0.665

PD-only finetuning (5 epochs) N/A 0.845 N/A
SST-only finetuning (10 epochs) 0.525 N/A N/A
STS-only finetuning (10 epochs) N/A N/A 0.770

Table 2: Results on dev set for all models. By default, methods use batch size 64 unless otherwise
noted.

this is the case on both the test and dev sets. We note that the LP-FT models performed quite poorly
on the STS task — we study this further in the next section.

Note that on the STS task, the multitask models (aside from the LP-FT models) achieved significantly
higher performance then the baseline model that was finetuned only on STS. It is quite possible
that this is largely due to a difference in training time, since the multitask models are trained for the
equivalent of many epochs on the STS task (every epoch of the multitask training loop corresponds
to several epochs of STS, since the PD dataset is much larger than the STS dataset). However, there
is still a possibility that the improved performance is due to shared structure between the tasks, since
after a certain number of epochs, the dev set accuracy of the baseline model finetuned only on STS
did not improve (see Figure 1), suggesting that it might not simply be due to the multitask models
having more running time.

6 Analysis

PCGrad v.s. Basic Multitask Approach In this section, we attempt to analyze the PCGrad
approach and the basic multitask approach, and understand the improved performance of the PCGrad
approach on the STS task.

It is possible that the improved performance of PCGrad on the dev set is because PCGrad makes better
use of shared structure between the STS and PD tasks. As shown in the first two images of Figure 2,
near the beginning of the process, the STS and PD gradients require much larger adjustments than the

Figure 1: Dev set accuracy of baseline model that is finetuned only on STS

4

Figure 2: The first image shows the difference between the unmodified PD gradient gPD and
the modified PD gradient gPC

PD throughout the PCGrad training run. The second image shows
the difference between the unmodified STS gradient gSTS and the modified STS gradient gPC

STS

throughout the process. The third image shows the difference between gSST and gPC
SST throughout

the process. The last graph shows all three plotted on the same graph (after several time steps have
passed) — the blue curve represents the adjustment to the STS gradient, the orange (barely visible)
representing the adjustment to the PD gradient, and the red representing the adjustment to the SA
gradient. Observe that in the last image, after the first few thousand steps, the red curve (i.e. the
adjustment to the SA gradient) is significantly larger than the adjustments to the other tasks’ gradients.

PD Dataset STS Dataset
Basic Multitask Model 0.964 0.959

PCGrad Model 0.972 0.966
Table 3: Correlation between cosine similarity obtained from PD head and STS head. Evaluated for
the PCGrad model and the basic multitask model, using sentence pairs from PD dataset and STS
dataset.

SST gradient — the most likely conclusion from this is that the STS and PD gradients conflicted with
each other. Afterwards, as shown in the last image of Figure 2, the adjustments to the STS and PD
gradients are relatively small. In summary, Figure 2 suggests that throughout the process, PCGrad
only allows updates in directions which are conducive to both STS and PD.

The above observations are intuitively reasonable because STS and PD are similar tasks — the goal
is to determine whether two sentences are similar. Furthermore, for both tasks, we compute the logits
in a similar manner, using cosine similarity which is then scaled appropriately. In order to support the
conjecture that the PCGrad performs better due to making better use of shared structure between the
STS and PD tasks, we perform the following experiment with the goal of showing that the PD head
and the STS head of the PCGrad model behave similarly. For every sentence pair in the STS dev set,
we apply the PCGrad model’s PD linear head to the sentence pair and then take the cosine similarities
of the resulting embeddings. We then take the cosine similarities using the STS linear head as usual.
We then compute the Pearson correlation between the cosine similarities computed using the PD
head, and the STS head. We then repeat this for the basic multitask model and for the PD dataset.

The results are in Table 3 and Fig 3. As seen in Figure 3, for both the PCGrad and the basic multitask
model, there is a clear linear relationship between the outputs of the PD head and the STS head. As
seen in Table 3, this relationship is slightly stronger for the PCGrad model.

5

Figure 3: (Upper Left) Scatterplot where the x-axis is the cosine similarity when the PCGrad model’s
PD head is applied to a pair in the PD dataset, and the y-axis is the cosine similarity when the PCGrad
model’s STS head is applied to the same pair from the PD dataset. (Upper Right) Scatterplot where
the x-axis is the cosine similarity when the basic multitask model’s PD head is applied to a pair
in the PD dataset, and the y-axis is the cosine similarity when the PCGrad model’s STS head is
applied to the same pair from the PD dataset. (Lower Left) Scatterplot where the x-axis is the cosine
similarity when the PCGrad model’s PD head is applied to a pair in the STS dataset, and the y-axis is
the cosine similarity when the PCGrad model’s STS head is applied to the same pair from the STS
dataset. (Lower Right) Scatterplot where the x-axis is the cosine similarity when the basic multitask
model’s PD head is applied to a pair in the STS dataset, and the y-axis is the cosine similarity when
the PCGrad model’s STS head is applied to the same pair from the STS dataset.

Effect of Using LP-FT Surprisingly, LP-FT seems to hinder dev set performance according to
Table 2, particularly on STS. The following experiments suggest that this is due to LP-FT moving the
parameters to a region where the gradients have low norm, making it difficult for the later finetuning
process to recover. First, observe in Figure 4 that the train and dev accuracy of the linear probe
remains at roughly 0.2, which is the performance achievable by guessing uniformly at random,
suggesting that the linear probe does not learn useful information.

Next, to further support this conjecture, we plot the outputs, on the STS train and dev datasets, of the
model trained on STS with linear probing — see Figure 5. Compared to the distribution of labels
for the STS train and dev sets, the output of the model is skewed heavily towards outputting 5. This
means the cosine similarity output by the STS linear head is 1/close to 1 for a large portion of inputs,
which may occur if the rank of the STS linear head has become very low. Based on Figure 5, it is
likely that the gradient signal to the STS linear head is low, since the sigmoid is applied to the output
of the STS linear head, and the output of the STS linear head is in a region where the sigmoid is close
to 1. This likely causes the later finetuning process to also not receive as much of a gradient signal
for the STS task.

7 Conclusion

We analyze the effect of PCGrad and LP-FT on multitask learning with BERT. We find that PCGrad
improved performance on STS without significantly adversely affecting performance on other tasks.
However, LP-FT worsened performance on the STS task due to optimization issues. One question for
future work is whether it is possible to modify the similarity head/the way similarity is computed to

6

Figure 4: Train and dev accuracy on STS of linear probing.

Figure 5: The top two figures show the output of the STS linear probing model on the STS train and
dev sets respectively. For comparison, the bottom two figures show the distribution of labels in the
STS train and dev sets.

7

improve the performance of the LP-FT models. Another question for future work is whether surgical
finetuning Lee et al. (2022) can improve performance in multitask NLP.

References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. *SEM 2013

shared task: Semantic textual similarity. In Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic
Textual Similarity, pages 32–43, Atlanta, Georgia, USA. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pages 4171–4186. Association for Computational Linguistics.

Shankar Iyer, Nikhil Dandekar, and Csernai Kornel. First quora dataset release: Question pairs.

Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang. 2022.
Fine-tuning can distort pretrained features and underperform out-of-distribution. In The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net.

Yoonho Lee, Annie S. Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and Chelsea
Finn. 2022. Surgical fine-tuning improves adaptation to distribution shifts. CoRR, abs/2210.11466.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual.

8

https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://openreview.net/forum?id=UYneFzXSJWh
https://doi.org/10.48550/arXiv.2210.11466
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://proceedings.neurips.cc/paper/2020/hash/3fe78a8acf5fda99de95303940a2420c-Abstract.html

	Key Information
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

