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Abstract

Fine-tuning large language models to simultaneously perform well on different
downstream tasks poses an important challenge in natural language processing
(NLP) [1], as saving different models for every downstream task is increasingly
infeasible, given their ever-growing number of parameters [2]. In this paper, we
test to what extent this issue can be resolved by augmenting models with Low
Rank Adaptation (LoRA)[3]. This technique allows fine-tuning of large-language
models (LLMs) on different NLP tasks at a fraction of the capacity requirements
of three separate models [3]. We compare its performance to that of a basic version
of the Bidirectional Encoder Representations from Transformers (BERT) model
[4]. We define performance as average accuracy on sentiment analysis, paraphrase
detection, and semantic similarity scoring. We find that LoRA exhibits strong
performance in a multitask setting while also offering reduced computational
complexity. Our findings are consistent with those of the original authors and
further offer new insights into the suitability of LoRA in a multitask setting.

1 Key Information to include

• Mentor: Shai Limonchik

2 Introduction

Transformer models and the concept of self-attention [5] have raised the bar in all advanced NLP
applications [6]. Models that have been trained on a large and universal corpus of text have proven
to be especially useful for both generalist and domain-specific applications [7]. While effective,
this pre-training is computationally expensive and has prompted the emergence of so-called large
transformer language models with a high number of parameters, such as BERT [8] with 110 million
trainable parameters and GPT-3 [9], which is currently the largest single transformer language model
with 175 billion parameters [6].

In order to solve specific NLP tasks, these models require a domain- and task-specific second
training phase after the universal pre-training. This so-called fine-tuning typically entails minor
adjustments to all the learned parameters, which substantially improves the model performance for
the specific task but makes it lose its universal functionality and applicability to different NLP tasks
[10]. Combined with the storage requirements induced by a large number of model parameters,
storing a fine-tuned large language model for each individual NLP task of an application on one
device becomes infeasible [11]. This creates the need for a new, leaner approach to fine-tuning,
which does not alter the foundational model but still enables the model to pick up on domain- and
task-specific patterns and exhibit strong performance across the board.

Hu et al. [6] propose a solution to these conflicting goals that capitalizes on the structure of transformer
layers. Transformer layers are composed of multiple matrices with full rank, denoted by Wq (queries),
Wk (keys), Wv (values), and Wo (outputs). Aghajan et. al [12] argue that the effective changes in the
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matrices during the fine-tuning process have a lower intrinsic dimension. The LoRA methodology
capitalizes on this, reducing the adaptation during fine-tuning to changes in low-rank decompositions
of a matrix with the same dimensions as the frozen matrix from the transformer layer. With the
original frozen matrix denoted as Wo ∈ Rd×k, the changes made during fine-tuning are denoted as
∆W ∈ Rd×k. The latter is represented with a low-rank decomposition ∆W = BA with A ∈ Rd×r

and B ∈ Rr×k where the parameter r is set to be substantially smaller than the dimensions d and k.
During training, the Wo and ∆W are added coordinate-wise, but only A and B receive parameter
updates. This overcomes the need to calculate and store gradients for the larger Wo matrix. Thus,
instead of altering the foundational model parameters, these are frozen and not changed during
fine-tuning. This approach greatly reduces the computational costs of fine-tuning, as the number of
trainable parameters in the decomposition matrices is far smaller than the number of parameters in
the model. Using this approach, the storage requirements of each fine-tuned NLP application, which
is based on the same foundational model, are greatly reduced, as the foundational model must only
be stored once alongside the smaller domain-specific decomposition matrices.

Known drawbacks and limitations. While the advantages of LoRA in terms of computational
efficiency and storage requirements are obvious, there are also some known drawbacks. First, LoRA
increases the complexity of the fine-tuning process and the pipeline. While regular fine-tuning only
entails loading existing parameters and adjusting them with conventional training methods, LoRA
introduces a more complex model architecture with matrices that do not follow the convention of large
models, such as BERT, of using an identical number of hidden layers throughout the model [8]. The
introduction of the new parameter r induces the need for additional hyperparameter tuning. While
LoRA accelerates the training by 25%, it is not faster by a sufficient magnitude to compensate for the
additional time commitment of hyperparameter tuning. Another drawback is that the approach relies
on a well-balanced pre-training corpus. It will be able to amplify certain relations in the data, but it
will not be able to introduce knowledge about an entirely new domain, as the original parameters
are frozen and still dominate the added low-rank ∆W . A further limitation already mentioned in the
original LoRA paper is that it is "not straightforward to batch inputs to different tasks with different
A and B in a single forward pass if one chooses to absorb A and B into W to eliminate additional
inference latency" [6].

Despite these disadvantages, we see the enormous potential of this technology in its ability to maintain
the versatility of large language models while enabling time-efficient fine-tuning of multiple NLP tasks
based on one model, which also leads to a substantial reduction in incremental storage requirements
for each NLP tasks. In this project, we explore the tradeoff between this and the performance of
LoRA, in order to holistically assess its suitability to multitask finetuning of the BERT model. We
will do this by implementing LoRA in BERT models with varying degrees of sophistication and
comparing its performance against traditionally finetuned BERT models. Identifying the conditions
under which LoRA performs comparably well will allow for a more nuanced understanding of
its applicability and contribution and could facilitate suitable deployment of lightweight multitask
models in future use cases.

3 Related Work

There has been plenty of work studying challenges posed by multitask learning [13] and offering
solutions [14]. LoRA is part of a body of work that focuses on the challenge of reducing the storage
and computation required to train large language models for multitask learning. Other approaches in
this area have used parameter subsetting and masking [15], parallelization techniques [16], pruning
[17], as well as modifying the existing transformer architecture [18].

While LoRA has been applied in some studies in the NLP area to reduce computational requirements
[19] and to exploit its interpretability for image data [20, 21], it has, to the best of our knowledge, not
been applied in a multitask learning application.

A large part of this project focuses on modifying BERT and adding various improvements to it and
comparing these improvements to LoRA. There have been many efforts that implement and extend
such improvements of BERT. These have come in the areas like attention modification [22] and
knowledge distillation [23] [24]. Our baselines are inspired by this type of research and include
modifications of BERT that use cosine similarity loss.
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Finally, our work draws on work from the general domain of multitask learning and multitask fine-
tuning [25] in particular, as these ideas form the underpinnings of the baselines we compare LoRA
to.

4 Approach

In order to conduct a holistic analysis of the tradeoff between performance, storage and computation
offered by LoRA, our approach is to compare it to multiple baseline models, all of which are
modifications of BERT. We finetune each baseline, as well as LoRA, and compare their storage
requirements, training times, and accuracies. We describe each baseline below.

To test the performance of LoRA in a highly optimized multitask setting similar to a production
environment, we apply a number of multitask modeling approaches to compare LoRA against
(see Experimentation). This includes gradient surgery to avoid detrimental gradient interference
by projecting "a task’s gradient onto the normal plane of the gradient of any other task that has a
conflicting gradient." [25]

For each of the model, add three separate heads for each subtask. Each head receives the last hidden
BERT-layer of the [CLS]-token. For the tasks that require two inputs, we concatenate the individual
BERT outputs of each input and feed the concatenation through the respective heads. We found that
using two linear layers with Dropout and a ReLU activation function [26] substantially improves the
performance compared to a single linear layer, while adding more layers did not yield substantially
better performance.

Baselines. For our first baseline , we freeze the pre-trained BERT [4] and only train the task-specific
heads. We use cross entropy as baseline loss function for the sentiment classification and for the
paraphrase detection task. Cross entropy is defined as

L(y, ŷ) = −
C∑

j=1

yj log(ŷj) (1)

where ŷ ∈ RC are predicted probabilities and y ∈ RC are the true label probabilities. For the ordinal
similarity prediction task, we use mean squared error loss, defined as

L(y, ŷ) = (y − ŷ)2 (2)

where ŷ is the predicted value, and y is the true label. This baseline is at the lower end of the spectrum
of the tradeoff we are examining, as the freezing of the BERT layers minimizes both the storage and
computation requirements of training this model compared to the others in our analysis. Consequently,
we expect this baseline to exhibit the worst performance out of our test models.

Our second baseline will be a fully fine-tuned BERT model that uses gradient surgery [25]. In this
model, the BERT parameters are unfrozen during training. In order for the gradient surgery method
to work, we stretch the datasets to be the same length artificially and then train on a batch of data for
each task sequentially. Using the same loss functions as described above, we then perform gradient
surgery, using an implementation by Wei Tseng [27]. This approach ensures that conflicting gradients
in our loss functions do not get in the way of each other. The algorithm proceeds as follows:

Algorithm: Gradient Surgery
Require: Model Parameters θ, Minibatch B = {Tk}

gk ← ∇θLkθ ∀k
gPC
k ← gk ∀k

for Ti ∈ B do
for Tj ∈ B \ Ti do

if gPC
i · gj < 0 then
gPC
i ← gPC

i − gPC
i ·gj
||gj ||2 gj

end if
end for
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end for
return ∆θ = gPC =

∑
i g

PC
i

Unlike the first baseline, training this model requires updating every single parameter of the original
model, making it very computationally expensive. However, since the BERT layers are shared
between all three tasks, this model is on par with the first baseline in terms of storage requirements.
This baseline is expected to perform significantly better than the first baseline.

Next, we want to test how sophisticated improvements to a standard BERT model translate to LoRA.
Thus, our third baseline will be identical to the second baseline with one extension. For semantic
textual similarity scoring, we will use cosine similarity loss, defined as

L(x1, x2) = (cos(x1, x2)− y)2 (3)

where x1 and x2 are the model’s output embeddings and y is the label divided by five and cos(x1, x2)
measures the cosine similarity between the embeddings. This loss function may be able to improve
performance on semantic textual similarity, as it forces the embeddings of a model into a shape where
similar inputs for a given task yield a higher cosine similarity and vice versa. It is unclear if this
performacnce gain also translates to LoRA.

The fourth and final baseline we test LoRA against will be a version of BERT with separate, unfrozen
parameters for each task. This version requires triple the computation and triple the storage of the
second baseline. Barring any benefits from parameter sharing however, we would expect it to exhibit
the best performance of the four baselines.

LoRA Implementations. In order to test LoRA in combination with BERT, we implemented
a LoraLinear layer from scratch. This module amends the logic of a regular Linear layer by
functionalities that store A and B matrices (see Introduction) as parameters and automatically
handle the (de-)composition, prediction, and training of the combined layer. Unlike the LoRA
implementation described by the authors of the original LoRA paper, this module natively supports
multiple sets of A and B matrices specifically for multitask applications when specifying a list of
subtasks during initialization and a specific subtask during evaluation. We provide functionalities
that specifically make the gradients of the A and B parameters compatible with PyTorch’s autograd
functionality while freezing all other BERT parameters and the option to deactivate the LoRA
functionalities, allowing for traditional fine-tuning for testing purposes. However, to explore whether
sharing the A/B-matrices can also have a beneficial effect, we also implemented a version of LoRA
that uses gradient surgery to only train one low rank decomposition∆W = BA per W0. Varying
between these two options, as well as using cosine and MSE loss for the sts task, we thus arrive at
four distinct versions of LoRA we test. By varying between the baseline loss and cosine loss as well
as parameter sharing of the A and B matrices, we end up with four LoRA configurations to configure
(see Table 1).

Research approach. Having built the baseline models, we can now proceed to comprehensively
compare each of them to LoRA by taking not only the model performance, but also resulting storage
requirements and training durations into account. The different characteristics of the baseline models
in this approach will allow us to present a holistic analysis of the usability of LoRA for multitask
finetuning. We provide an overview of the models we use in table 1 below.

5 Experiments

Datasets. For our experiments we use three datasets, each corresponding to one downstream NLP
task we test on. For sentiment analysis, we use the Stanford Sentiment Treebank (SST) dataset [28],
for paraphrase detection, we use the Quora dataset [29], and for semantic textual similarity scoring,
we use the SemEval STS Benchmark dataset [30].

Evaluation Method. Our models will be simultaneously evaluated on their performance on three
NLP tasks. For sentiment analysis and paraphrase detection, we will use accuracy of our predictions,

4



Model Name BERT Layers Learning Rate LoRA STS LOSS Shared BERT Layers

Baseline 1: Frozen 1e−3 ✗ MSE ✗

Baseline 2: Unfrozen 1e−5 ✗ MSE ✓

Baseline 3: Unfrozen 1e−5 ✗ Cosine ✓

Baseline 4 Unfrozen 1e−5 ✗ Cosine ✗

LoRA 1 Frozen 1e−5 ✓ MSE ✗

LoRA 2 Frozen 1e−5 ✓ Cosine ✗

LoRA 3 Frozen 1e−5 ✓ MSE ✓

LoRA 4 Frozen 1e−5 ✓ Cosine ✓

Table 1: Experiment Results

defined by
# Correct Predictions

# Total Predictions
(4)

For semantic textual similarity scoring, we will use pearson correlation of predictions and results as
an evaluation metric, defined by:

corr(X,Y ) =
Cov(X,Y )

sdX ∗ sdY
(5)

where X are predctions and Y are labels. We will further evaluate our models on their average
performance across the three tasks, which will be a simple average of the three tasks’ respective
evaluation metrics.

Experimental Details. For each of the described baselines, as well as the LoRA implementation,
we run the same experiment. When sharing parameters, we stretch the sst and the sts datasets until
they are the same size as the Quora dataset. We do this, because an equal number of batches for each
task is required for gradient surgery to function. We then train on the datasets using a batch size of 8
before testing the performance of our models on an unseen test set for each task. For baseline 1, we
found a learning rate of 1e−3 to be most suitable, all other experiments were run on a learning rate of
1e−5. Throughout each experiment, we log training speeds and accuracies over time, as well as the
size of the final model. The results of this are summarized in table 1.

Results. Table 2 reports the performances of our LoRA implementations, as well as the baselines
we tested against. The worst overall performance was exhibited by baseline 1, in which only the
heads of our model were finetuned to the three NLP tasks.

Experiment Average Performance SST Accuracy Paraphrase Accuracy STS Correlation

Baseline 1: 43.53% 38.42% 67.27% 24.89%

Baseline 2: 55.13% 50.77% 78.94% 35.69%

Baseline 3: 63.32% 49.23% 79.31% 58.41%

Baseline 4 62.42% 49.96% 78.46% 58.85%

LoRA 1 57.95% 49.51% 76.73% 47.61%

LoRA 2 62.23% 48.68% 76.95% 61.61%

LoRA 3 57.93% 47.13% 69.10% 57.55%

LoRA 4 61.52% 48.77% 69.22% 66.58%

Table 2: Performance Results
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Experiment Incremental Storage Requirements (3 Tasks) Bundled Storage Requirements

Baseline 1: 1.78M 111.78M

Baseline 2: 111.78M 111.78M

Baseline 3: 111.78M 111.78M

Baseline 4 331.78M 331.78M

LoRA 1 5.10M 115.10M

LoRA 2 5.10M 115.10M

LoRA 3 2.89M 115.10M

LoRA 4 2.89M 112.89M

Table 3: Computational Results

Figure 1: Training times

6 Analysis

Overall Performance Overall, our empirical performance testing confirmed our initial hypotheses.
Our performance results are displayed in Figure 2. First, baseline 1 exhibited the worst performance,
which is expected, as only the heads were trained on the specific tasks, with BERT layers frozen.
This basic finding reiterates the need for fine-tuning in the first place. In general terms, we find that
LoRA exhibits comparable performance to the related BERT baselines. This overall performance
finding is in line with that of the original authors.

Choice of Loss Functions. As expected, using cosine similarity loss was able to improve perfor-
mance on semantic textual similarity, as it forces the embeddings of a model into a shape where
similar inputs for a given task yield a higher cosine similarity and vice versa. We were able to show
this improvement for the regular unfrozen BERT as well as LoRA, indicating that LoRA is generally
applicable to both commonly used and more sophisticated objective functions.

Storage Requirements. In order to fit multiple NLP applications that are based on the same large
language model on one device, the store necessary for each application is crucial. We measure the
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Figure 2: Performance graphs

storage requirements in number of parameters and differentiate between two scenarios: A scenario
in which a copy of the BERT model is already present on the device for other NLP tasks and only
the incremental storage requirements of the three additional NLP tasks at hand is of concern, and a
scenario in which we need to store a solitary application that is independent of other NLP applications
already on the device. The first column is particularly relevant for a world with a small number of
large language models that serve as the basis for a large number of task-specific NLP applications.
Only adding heads to a frozen BERT requires the lowest number of parameters (1.78M) to store but
also clearly shows the lowest performance across all tasks. Training separate BERT models shows the
highest overall performance but also requires the storage of about 332 million parameters. The best
LoRA configuration achieves 98% of the performance improvement of the best-performing baseline
compared to the worst-performing baseline while only requiring an incremental storage of 4.5% of
the respective additional parameters.

Furthermore, it is worth noting that the usage of independent LoRA parameters for each NLP task
allows workflows in which specific "plug-and-play" applications can be added, updated, or amended
independent of each other. As an example, updating model parameters of the similarity model on
a new and improved Quora dataset would be possible without the need to retrain all three specific
models, which would not be possible in the case of gradient surgery, rendering the usage of LoRA
more risk-averse and future-proof for real world NLP applications.

Code Complexity and Parameter Tuning. When analyzing the codebase that was built up for
this project, the majority of complexity for the trainer of multitask models evolves around manually
weighting loss functions or even implementing gradient surgery as an integrated approach for this task.
A joint training furthermore required us to make compromises in terms of learning-rate, independent
early-stopping, and number of epochs. While we generally kept these parameters constant for our
final runs, we saw the potential of decoupling the optimization processes, as the training processes of
separate LoRA parameters are effectively independent of each other. Furthermore, we found that the
smaller dimension of the A/B matrices has a substantial impact on the performance, introducing the
need for an additional hyperparameter to be considered for training.

Parameter Sharing. Both for the unfrozen BERT as well as LoRA, we can see a distinct difference
between sharing parameters across all tasks and handling those separately. While shared parameters
seem to have an advantageous effect on the similarity and paraphrase tasks, which are structurally
very similar, the conceptually different sentiment tasks suffers slightly from sharing parameters with
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the other two tasks. Using LoRA generally allows the creation of specific shared tasks groups. Here,
this could mean sharing the A/B-matrices for the paraphrase and similarity tasks while allowing the
sentiment task to train an independent set of parameters. While similar approaches are generally
thinkable without the usage of LoRA, the incremental storage requirements of each additional task
with a separate parameter space of around 110M is unfeasible for many applications.

Training duration. Our training speed results are displayed in Figure 1. All measurements here
were made on the same virtual machine. While the authors of the original paper found training speed
to be increased by 25%, we were only able to achieve a training-speed increase of roughly 10%. All
measurements were undertaken on AWS’s EC 2 instance of type "Deep Learning AMI GPU PyTorch
1.13.1 (Ubuntu 20.04)" with an NVIDIA A10G GPU. This difference could be due to inefficiencies
in the overhead of our training loop and is thus not an indication of a substantial difference to the
original authors’ findings. As noted by the authors, this training speed-up aspect of LoRA is far less
significant than its reduced storage requirements.

7 Conclusion

This project successfully implemented variations of BERT that simultaneously performed different
NLP tasks and compared them to similar implemenatations that used our custom version of LoRA.
We find that LoRA offers a significant advantage with regards to storage requirements and training
time. This confirms the findings of the original authors. Our analysis further establishes that LoRA is
highly suitable for multitask settings, exhibiting comparable performance to our baselines across all
tasks.

Future Work There are various directions that further examinations of LoRA in a multitask learning
context could take. First, experiments in settings with higher number of distrinct NLP tasks may
accentuate the differences in training time and storage between LoRA and conventional fine-tuning.
Experimenting on a more varied selection of datasets would also cement the generality of our findings.
One potential interesting source for such datasets is offered by ChatGPT, which is able to synthetically
create datasets. We include an example of this in the appendix. Furthermore, all of the models in
our analysis could be further improved in their performance by adding more enhancements, such
as regularization, hyperparameter tuning, and techniques such as warm-up. While applying this to
all models in our experiments is out of scope for this project, we found initial promising results by
applying warm-up to our shared parameter LoRA implementation and increasing the batch size to 24,
resulting in test leaderboard scores of 52.35%, 72.74%, and 74.45% on sst, sts, and para respectively.
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8 Appedix:

The below data is a short excerpt of data returned by ChatGPT4 when prompted with "Generate me a
list of 500 pairs of sentences and add a score from 0 to 5 on a continuous scale of how similar they
are".:

No. Sentence 1 Sentence 2 Score
1 The sun is shining brightly today. It’s a sunny day outside. 4.5
2 She baked a delicious apple pie. He made a tasty banana bread. 3.5
3 The car engine needs repair. The motorcycle engine is malfunctioning. 4.7
4 The ocean waves crashed against the shore. The desert sands shifted in the wind. 1.8
5 The night sky was filled with stars. The dark room made it hard to see. 1.7
6 I need to buy some dog food. She’s purchasing cat food for her pet. 4.4
7 Chocolate chip cookies are my favorite. I love oatmeal raisin cookies. 4.0
8 He played table tennis at the community cen-

ter.
She enjoyed a game of ping pong with her
friends.

4.6

9 He lost his wallet at the amusement park. She misplaced her purse at the theme park. 4.0
10 She planted roses in her garden. He cultivated tulips in his backyard. 3.7
11 The baby giggled when tickled. The infant laughed when being tickled. 4.8
12 He wore a blue shirt and black pants. She donned a red dress and white shoes. 2.5
13 I’m going for a run in the park. I’ll be jogging at the park today. 4.3
14 She studied hard for the math exam. He prepared diligently for the history test. 3.6
15 The movie was fantastic, and I enjoyed it. I loved the film; it was amazing. 4.5
16 The author wrote a compelling novel. The writer penned an engaging book. 4.7
17 I can’t find my keys, and I’m late. I misplaced my wallet, and I need to hurry. 3.8
18 The city was bustling with activity. The urban area was alive with action. 4.6
19 Her new hairstyle looked stunning. His fresh haircut was quite stylish. 3.4
20 I’m learning to play the guitar. I’ve started taking piano lessons. 2.7
21 The rain poured down all day. It was a nonstop downpour. 4.4
22 The children played in the park. The kids had fun at the playground. 4.2
23 She picked up a gallon of milk from the store. He grabbed a loaf of bread at the supermarket. 3.6
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No. Sentence 1 Sentence 2 Score
24 The concert was so much fun. I had a blast at the live performance. 4.3
25 They went on a hike in the mountains. The group trekked through the forest. 3.2

Using such data to train
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