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Abstract

Tremendous progress has been made in the development of modern natural lan-
guage processing systems due to transformer-based autoregressive models. Un-
fortunately, these architectures rely on a finite vocabulary which bottlenecks their
transferability to new languages. Recent work (Rust et al., 2023) has shown that by
casting the task as a vision problem, these issues can be alleviated for encoder-only
language models. Inspired by the recent success of diffusion models on image
generation tasks, we propose a conditional diffusion-based decoder for model-
ing rendered natural language. We demonstrate that our approach is capable of
generating coherent, plausible natural language rendered as images. We also pair
our decoder with a powerful off-the-shelf encoder and investigate its potential for
sequence-to-sequence tasks such as machine translation. We compare our approach
with strong transformer-based autoregressive baselines in both the unconditional
and sequence-to-sequence setting.
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2 Introduction

Transformer-based autoregressive models (Vaswani et al., 2017) have significantly improved the
state-of-the-art of natural language systems, and their downstream performance on zero-shot, few-
shot (Brown et al., 2020), and fine-tuned (Wang et al., 2019) tasks has made them the standard
architecture for modern practitioners and researchers. One of the most common building blocks in
this modern NLP stack is a tokenizer, which maps sequences of unstructured natural language to
sequences of discrete subwords units that can be more easily processed. While subword tokenizers
have allowed for more expressive language models capable of operating over longer sequences of text,
they also restrict models to operate over a finite size vocabulary. This vocabulary bottleneck created
by tokenizers is a key challenge faced by language systems when generalizing to new languages, and
several attempts have been made to remove tokenizers entirely (Choe et al., 2019; Xue et al., 2021;
Clark et al., 2022).

PIXEL (Rust et al., 2023) avoids this challenge altogether by casting language modeling as a vision
problem: text is rendered as images and the model uses masked autoencoding (He et al., 2021), which
is similar to BERT (Devlin et al., 2019) and other masked language models but for continuous domains
like images, to learn a language encoder representation. Since text is rendered as images, there is
no need for tokenization. Notably, PIXEL generalizes well to languages with similar orthographic
features. To our knowledge, there has been no work that explores applying similar techniques to
natural language generation.
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Just as transformers have taken the natural language processing community by storm, denoising diffu-
sion probabilistic models (DDPMs) (Ho et al., 2020) have emerged as an important generative model
for high-quality samples in continuous domains such as audio (Kong et al., 2021), images (Dhariwal
and Nichol, 2021), and text-to-image generation (Rombach et al., 2021; Ramesh et al., 2022).

Inspired by these two observations, our goal is to cast natural language generation as a visual task, such
that diffusion models can learn to generate text. The advantages of this approach include removing
the vocabulary bottleneck, non-autoregressive generation, and robustness to languages with similar
orthographic features. From a research perspective, existing diffusion model research has not heavily
investigated text rendering and Ramesh et al. (2022) observe that DALL·E-2 “struggles at producing
coherent text.” Our work investigates whether this simple approach can yield performance similar or
better than existing decoder-only and encoder-decoder transformer models for both unconditional
generation and machine translation. Additionally, just as many ideas from the natural language
processing community have been transferred over to visual recognition tasks, we are excited by the
possibility of the flipped scenario as well.

Our contributions are as follows:

1. We introduce a framework for pixel-based language generation applicable to both uncondi-
tional text generation and sequence-to-sequence machine translation.

2. We compare the quantitative performance of our approach for unconditional text generation
and machine translation against strong transformer-based baselines and present qualitative
results.

3 Related Work

Given recent interest in large-scale language (Vaswani et al., 2017; Brown et al., 2020), diffusion (Ho
et al., 2020), and multimodal (Radford et al., 2021; Rombach et al., 2021) models trained with
self-supervision for use on downstream tasks (Bommasani et al., 2021), the deep learning community
has begun to explore the use of techniques from domains such as vision applied to tasks in text.

Visual representations of natural language. To the best of our knowledge, one of the early examples
of using vision for language tasks was shown by Radford et al. (2021), where the CLIP vision encoder
representations of rendered instances of text from SST (Socher et al., 2013) was used for zero-shot
sentiment analysis. A key insight was that optical character understanding abilities of CLIP allowed
for tokenization-free and competitive zero-shot classification performance on text understanding tasks.
Similarly, CLIPPO (Tschannen et al., 2022) performs contrastive pre-training using rendered texts
instead of tokenized texts and shows competitive performance to baselines on the GLUE (Wang et al.,
2019) benchmark. PIXEL (Rust et al., 2023) uses masked autoencoding with vision transformers (He
et al., 2021) to pre-train a masked language model on rendered texts. A key difference between our
work and prior use of vision for natural language is that we focus on generation whereas prior work
focuses on representation learning and language understanding objectives.

Diffusion language models. Diffusion models (Ho et al., 2020) have shown impressive generation
abilities in continuous domains such as images and audio, and interest in extending them to language
modeling has increased rapidly. Diffusion-LM (Li et al., 2022) and CDCD (Dieleman et al., 2022) use
a denoising diffusion probabilistic model to generate sequences of tokens that have been projected into
a learned embedding space. Both works show that unconditional and controllable generation improve
as a result of diffusion-based non-autoregressive modeling. D3PM (Austin et al., 2021) shows that
diffusion modeling techniques can be applied directly to discrete data modalities, including language,
without the need to first project tokens into a learned continuous representation for downstream
modeling. Unlike our work, these methods all rely on a subword tokenizer for modeling and operate
on a continuous form of language space rather than on a visual representation of language.

Non-autoregressive machine translation. Developing non-autoregressive approaches to generation
and translation has remained appealing due to parallelism and generative modeling advantages. Gu
et al. (2017) introduce a transformer-based encoder-decoder architecture, similar to Vaswani et al.
(2017), that instead uses a non-causal attention mask in the decoder to enable fast translation.
Similarly, approaches using iterative refinement (Lee et al., 2018, 2020), similar to the sampling
process used with diffusion-based methods, have been explored for non-autoregressive generation.
Diffusion-based approaches for zero-shot neural machine translation (Nachmani and Dovrat, 2021)
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Figure 1: Our approach for training and generating from pixel-based natural language decoder.

have also begun to emerge, following similar architectures as prior work but with a diffusion pre-
training objective over categorical vocabulary distributions. All of these existing approaches require
a tokenizer as well as use the language data directly rather than the visual representation.

Tokenizer-free methods. Subword tokenizers have been important for the success of modern
language modeling systems, allowing for longer sequences with improved perplexity. While many
early works (Sutskever et al., 2011; Graves, 2014) relied on character-level methods, later works were
able to significantly improve on these results using tokenization and more expressive architectures.
In Choe et al. (2019), the authors find that the gap between byte-level and tokenized language models
can be bridged by increasing the capacity of the underlying architecture. Additionally, Xue et al.
(2021) and Clark et al. (2022) explore scaling up efficient token-free representations for language and
show promising results in this direction, motivating further research in this area. Unlike PIXEL (Rust
et al., 2023) and our work, all of these previous approaches do not operate on visual representations
of natural language.

4 Approach

4.1 Denoising Diffusion Probabilistic Models (DDPMs)

DDPMs (Ho et al., 2020) are a class of generative models that define latents x1, ..., xN of the same
dimensionality as the data x0 ∼ q(x0). Diffusion models are comprised of a diffusion process and
a reverse process. The diffusion process starts from the data distribution x0 and iteratively adds
Gaussian noise according to a fixed noise schedule for N diffusion steps:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

q(x1:N |x0) =

N∏
t=1

q(xt|xt−1) (2)

where β1, β2, ..., βN is a noise schedule that converts the data distribution x0 into latent xN . The
choice of noise schedule has been shown to have important effects on sampling efficiency and
quality (Ho et al., 2020).

The reverse process is defined by a Markov chain parameterized by learned parameters θ that
iteratively refines latent point xN ∼ N (0, I) into data point x0. The learned transition probabilities
are defined as,

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σθ(xt, t)) (3)

pθ(x0:N ) = p(xN )

N∏
t=1

pθ(xt−1|xt) (4)

where the objective is to gradually denoise samples at each reverse diffusion step t. In practice, σθ

is set to an untrained time-dependent constant based on the noise schedule, and Ho et al. (2020)
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found σθ(xt, t) = σt = 1−ᾱt−1

1−ᾱt
βt to have reasonable practical results, where αt = 1 − βt, and

ᾱt =
∏t

i=1 αi.

The training objective is to maximize the log likelihood of pθ(x0) =
∫
pθ(x0, ..., xN )dx1:N , but the

intractability of this marginalization leads to the following evidence lower bound (ELBO):

E [log pθ(x0)] ≥ Eq

[
log

pθ(x0:N )

q(x1:N |x0)

]

= Eq

log p(xN ) +
∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)

 (5)

The forward process can be computed for any step t such that q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I),

which can be viewed as a stochastic encoder. To simplify the above variational bound, Ho et al. (2020)
propose training on pairs of (xt, x0) to learn to parameterize this process with a simple squared L2
loss. The following objective is simpler to train, resembles denoising score matching (Song and
Ermon, 2020) and was found to yield higher-quality samples:

L(θ) = Ex0,ϵ,t

[∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∥∥2] (6)

where t is sampled uniformly between 1 and N , ϵ ∼ N (0, I), and ϵθ is the learned diffusion model.

In Deng et al. (2023), an updated training procedure based on scheduled sampling (Bengio et al.,
2015) is used to improve generation quality. A key observation is that xt at training time is derived
using q(xt|xt−1) and at test time the model’s learned reverse process pθ is used instead. This means
that if the model makes a mistake at test time, it will not be able to correct for it. To mitigate this,
we generate xt using pθ(xt) with some probability m during training and we increase m as training
progresses so that our model becomes robust to its own mistakes at generation time.

4.2 Rendering Text as Pixels

Figure 2: Sxample from ren-
dered E2E dataset with orig-
inal text: "A child friendly
restaurant that has English
food is Loch Fyne."

An original aspect of our approach is training a diffusion model for
natural language generation tasks through generating images of text,
which to our knowledge has not been explored. Our method learns
to model grayscale images of rendered English text and therefore
requires that human language datasets are preprocessed and rendered
accordingly. Given a string of text, either a short sentence for our
unconditional text generation task or a target English translation for
our machine translation task, we first split the sentence into sub-
words using an off-the-shelf implementation of the GPT-2 bytepair
tokenizer (Radford et al., 2019a) from HuggingFace (Wolf et al.,
2020). The reason for explicitly rendering subword tokens is to
allow more characters to fit per line on the image canvas and to
increase the accuracy at text decoding time with the optical character
recognition (OCR) system. Our diffusion model does not explicitly
use the tokenizer for generating rendered images.

We draw each subword on a 224x224 white canvas separated by
spaces in Deja Vu Serif, a font that is known for improving OCR
accuracy. While most short words will be tokenized as their original
forms (e.g. "hi" is tokenized as "hi"), long words may be tokenized
into multiple subwords (e.g. "important" may be tokenized as "import" and "ant") by the tokenizer.
To distinguish tokens that compose a larger word from those that are standalone words, we use a
special separator token "#" in between subword tokens that compose a larger word.

We repeat the above process for every example in the dataset and save the results to disk. An example
of a rendered text string using our method can be seen in Figure 2.

4.3 Generating and Decoding Text

Our diffusion model uses a UNet backbone (Ronneberfer et al., 2015) and the the objective is to
learn the distribution of images with English text from the E2E dataset. For our conditional machine
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translation task, the diffusion model is a UNet similar to our unconditional architecture but with a
frozen text encoder and cross-attention layers added to allow the generation to be conditioned on
input text in a source language. Our text encoder is RoBERTa (Liu et al., 2019). Our diffusion model
architecture is from the HuggingFace Diffusers library (von Platen et al., 2022) and our custom
training codebase is a heavily modified version of markup2img (Deng et al., 2023). We sample from
the diffusion model using the original DDPM sampling algorithm (Ho et al., 2020) using the default
noise schedule and T sampling steps to iteratively refine Gaussian noise into an image with rendered
English text. To decode rendered outputs, we use Tesseract (Kay, 2007), a powerful off-the-shelf
OCR system, to convert images to text for use with downstream metrics.

4.4 Baselines

To establish baselines for our diffusion experiments, we trained transformer-based models using the
same text data sources as our diffusion models. We ran three initial baseline experiments: uncon-
ditional text generation with a 87M parameter GPT-2 (Radford et al., 2019b), machine translation
with a 60M parameter T5 (Raffel et al., 2019), machine translation with a 60M parameter T5 and
span corruption pretraining prior to finetuning. Our T5 training scripts and our GPT-2 training scripts
were adapted from and guided by Wolf et al. (2020). We wrote our own evaluation scripts, but were
similarly guided by Wolf et al. (2020).

5 Experiments

5.1 Datasets and Tasks

For our unconditional experiments, we train our diffusion and baseline GPT-2 models on 42k
human reference sentences from E2E (Novikova et al., 2017), a lexically rich dataset of restaurant
descriptions. The task is to generate high-quality text, measured by the lm-score (Section 5.2).

For our conditional experiments, we train our baseline and diffusion models on the WMT-14 German-
to-English translation dataset (Bojar et al., 2014) with 4.5M training sentence pairs. The task is to
translate German sentences into English sentences.

5.2 Evaluation method

To evaluate the quality of unconditionally generated text, we report the lm-score (Li et al., 2022).
This metric is the perplexity of the generated text under a large fine-tuned "teacher" model. Our
teacher model was the pretrained "gpt2-large" available on HuggingFace (Wolf et al., 2020). A lower
lm-score indicates that the generated text better matches the distribution of text seen by the teacher
during fine-tuning, indicating that the text is realistic and thus high-quality.

For our machine translation task, we used the Bilingual Evaluation Understudy (BLEU) score (Pap-
ineni et al., 2002) and character-level F-score (chrF) score (Popović, 2017) to evaluate our model’s
generated translations with one reference translation for each sentence. The BLEU score assesses the
similarity of predicted and reference translations using n-gram overlap at the word level, while chrF
uses character-level n-gram overlap.

5.3 Experimental details

For our unconditional text generation baseline, we trained our GPT-2 model from random initialization
on the E2E dataset for 20 epochs with a context length of 32, batch size of 32, 8 gradient accumulation
steps, learning rate of 5e-4, and cosine learning rate scheduler. To generate text from the model, we
performed nucleus sampling (Holtzman et al., 2020) with a maximum length of 32 and top probability
score of 0.95. We generated a total of 400 sequences for evaluation.

For our machine translation baseline, we trained our T5 model with random initialization for 100k
steps on the WMT-14 German-English dataset with a context length of 64, batch size of 64, and
learning rate of 5e-5. Separately, we pretrained out T5 model with the span corruption pre-training
objective (Raffel et al., 2020) for 3 epochs with a context length of 64, batch size of 32, and learning
rate of 5e-5. We then finetuned the model using the same method described previously.
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For our diffusion experiments, we train a UNet2DConditional model, which contains 2 convolutional
layers per residual block and 12 total residual blocks. Each residual block has increasing output
channel dimension on the downsampling tower of the UNet, with a reversed tower (decreasing output
channel dimension) for upsampling. The downsampling tower uses 2 down projection blocks and 4
cross-attention down projection blocks (for conditioning generation) and the upsampling tower uses
the same configuration but reversed and with up projection blocks. The output channels per block are
128, 128, 256, 256, 512, 512. Rendered text images are converted to grayscale and normalized to
have a pixel mean of 0.5 and standard deviation of 0.5. We use AdamW with a constant learning rate
1e-4 with 500 warmup steps, weight decay 0.01, and batch size 48. We use T = 1000 generation
steps at test time. For our unconditional model, we train for 70,000 steps on the E2E dataset and
generated 400 samples for evaluation. For our conditional translation model, we train for 135,000
steps and generate translations on the validation split for our quantitative metrics.

5.4 Results

Model lm-score (↓)
GPT2-87M 13.17

Diffusion 5640.05

(a) Unconditional text generation results

Model BLEU (↑) chrF (↑)
t5-small (no span corruption) 6.44 27.94

t5-small (span corruption) 19.11 47.82
Diffusion 0.062 16.09

(b) Sequence-to-sequence machine translation results

Table 1: Task performance for baseline and diffusion models

Table 1a shows the lm-score achieved by our diffusion model and GPT-2 baseline. Table 1b shows
the BLEU and chrF scores achieved by our diffusion model as well as our T5 baseline both with and
without span corruption pretraining on the corpus prior to fine-tuning. See 6 for discussion of these
results.

6 Analysis

6.1 Unconditional Generation

Our diffusion model achieves an incredibly high lm-score relative to our baseline, indicating that the
unconditionally-generated text is very different from the E2E text distribution learned by the teacher
during fine tuning. Qualitatively, we observe that the diffusion model generates images containing
sentences with excellent glyph structure, many coherent words, and some coherent phrases. Thus,
our diffusion model learns lower-level structure of written language well but struggles to capture
higher-level structure. We suspect this is a function of model size, as discussed in 6.3. We note that
the lm-score operates at the subword level due to GPT-2’s tokenization. Thus, nonsensical or even
slightly mispelled words are heavily penalized by this metric because they correspond to subword
sequences not found in the E2E dataset. This explains our high lm-score.

6.2 Machine Translation

Our conditional diffusion model achieves BLEU and chrF scores well below our T5 baselines, with
an incredibly low BLEU score and modest chrF score. We observe similar qualitative results as our
unconditional model: generated images contain excellent glyph structure in the correct language but
higher-level sentence structure is not captured well. Because the BLEU score operates at the word
n-gram level, our diffusion model is heavily penalized for the relative lack of phrase coherence. Our
diffusion model achieves a chrF score of more than half that of our t5-small model without span
corruption, despite getting a BLEU score two orders of magnitude smaller. This suggests that the
model learns lower-level language structure prior to learning higher-level structure.

We note the dramatic difference in the machine translation performance of our T5 baseline model
when pretrained with span corruption (Raffel et al., 2020) prior to finetuning relative to no pretraining.
This suggests that the span corruption objective is a powerful technique for learning rich language
representations. Adopting an analogous masking technique in our diffusion model is a promising
direction.
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(a) (b) (c) (d)

Figure 3: Unconditional generations from diffusion model and OCR-decoded + postprocessed outputs.
(a) "Fitzbillies is a non kidfriendly French restaurant" (b) "Blue Spice provides French food in the
riverside area, danng kid friendly alteet ponup." (c) "The Dumpling Tree offers Calosed food by the
serve Range by who disoss" (d) "French Japanese and its a pub with 3 out of 5 family a rating.."

(a) (b) (c) (d)

Figure 4: Translations from diffusion model and OCR-decoded + postprocessed outputs. Correct
translations: (a) "This phenomenon gained momentum following the November 2010 elections, which
saw 675 new Republican representatives added in 26 States." (b) "The new election laws require
voters to show a photo ID card and proof of US citizenship." (c) "Diet" (d) "But my provocations are
aimed at starting conversation."

6.3 Diffusion Model Scaling Analysis

We observe that the qualitative performance of our diffusion model improves significantly as the
model size is scaled up. Our small diffusion model with a 31M parameter U-Net generates clear
glyphs but not coherent words. As we scale to a 209M parameter U-Net and larger batch size, the
quantity of coherent words generated increases dramatically and some coherent phrases emerge. This
trend suggests that further model and data scaling would allow our diffusion model to better learn
higher-level language structure. Note that our overfitting experiment trained with a single batch of 8
images and a 21M U-Net confirms that our model is capable of forming entirely coherent sentences.
Thus, it is unlikely that there exists a fundamental limitation in diffusion models generating coherent
text passages.

7 Conclusion

In this work, we cast language modeling as a vision task and propose a non-autoregressive diffusion-
based decoder for text generation. We showed that our modeling approach, combined with a powerful
optical-character recognition system, is successfully able to render sequences of character glyphs
and produce words and sentences with some coherence. We find that our unconditional model
is able to generate plausible phrases with minor spelling and syntax errors, and our conditional
sequence-to-sequence model achieves some reasonable character-level n-gram translation scores.
We also find that some of our quantitative metrics, such as BLEU and lm-score, lead to harsh score
penalties for minor spelling and syntax issues produced by our model and the optical character
recognition system, despite qualitative results indicating that our method generates plausible natural
language. We also investigate scaling the model parameters and number of data samples seen during
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(a) Overfit UNet (b) Small UNet (c) Large UNet

Figure 5: Qualitative results (generated unconditional samples) from our diffusion models. We
performed the overfitting experiment on a single batch of the training set to verify that our small
model (21M parameters) had enough capacity to model English fonts and words on the canvas.
Our small model (31M) shows the ability to model characters but not English text. To improve on
this we scaled both the model (209M parameters) and the number of examples seen (in the large
UNet experiment run), which begins to generate more English words (e.g. "Rice", "Boat", "service",
"friendly", etc.). We believe longer training would improve these qualitative results.

training and extrapolate that larger models, while out of our academic budget, may yield improved
performance.

Aside from lower quality generation results compared to our strong autoregressive baselines, limita-
tions of our work include the requirement for rendered text datasets, higher capacity models – and
therefore more compute – than autoregressive baselines, and the need to generate an entire image
even if very short sequences of text are being generated. These limitations are directly related to
current challenges in diffusion models and are not specific to our method. We are excited by the
ongoing research in the generative modeling community to overcome these challenges with diffusion
models such that these improvements can be adopted into our work.

Future work, including addressing the limitations stated above, may include using methods in addition
to scheduled sampling to improve the text rendering abilities of diffusion models. Recent work (Liu
et al., 2022) has shown that using character-aware conditioning, such as representations learned
by tokenizer-free encoders, can significantly improve visual text rendering performance. Another
avenue for achieving this would be to use PIXEL (Rust et al., 2023) as the encoder directly and to
make all components of the encoder-decoder architecture pixel-based, allowing the community to
validate if pixels are all we need for language modeling. Our work also does not investigate using
a diffusion-based decoder as a foundation model (Bommasani et al., 2021), and prescibing more
advanced recipes, such as pre-training on unconditional text and fine-tuning on machine translation,
as well as exploring methods to do controllable generation with classifier-free (Ho and Salimans,
2022) guidance would be fruitful next steps.
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