
Multi-task Learning using BERT
Stanford CS224N Default Project

Pankhuri Aggarwal and Nina Cruz
Department of Computer Science

Stanford University
pankhuri@stanford.edu and ninacruz@stanford.edu

Abstract

This paper focuses on developing a multi-task model for natural language pro-
cessing related tasks. The tasks include sentiment analysis, paraphrase detection,
and semantic textual similarity at the sentence-level. We implement a minBERT
transformer-based model for this purpose and use that as our baseline model. Then,
we use a combination of gradient surgery, regularization techniques such as the
Smoothness-inducing Adversarial Regularization, and dropout layers to improve
our model performance. We evaluate the impact of using these techniques on the
model performance for the three listed tasks. On the test set, our best performing
model achieves an accuracy of 72.6% for paraphrase detection, accuracy of 53.3%
for sentiment analysis, and correlation of 0.427 for semantic textual similarity. The
three-task average performance is 0.562 on the test set.

1 Key Information to include
• Mentor: N/A
• External Collaborators (if you have any): N/A
• Sharing project: N/A

2 Introduction

The development of pre-trained models such as BERT has greatly improved performance and training
efficiency for many natural language processing (NLP) tasks. Muti-task learning (MTL) has become
a popular technique to handle various downstream tasks simultaneously. MTL is able to combat some
pervasive problems in NLP tasks such as overfitting and data scarcity (Chen et al., 2021). Though
effective, using MTL presents a number of challenges such as which architecture to use, how to train
multiple models, how to combine the losses, how to monitor the losses and gradients to improve
performance for all tasks, etc. The advantages of MTL make these challenges worthwhile to pursue
and motivate us to experiment and find methods to combat these challenges.

In this paper, we use MTL along with a pre-trained minBERT model for three NLP tasks, namely
paraphrase detection, sentiment analysis, and semantic textual similarity. We use minBERT as a
baseline model and then experiment with a multitude of techniques to improve model performance.
The challenge is to manage the different datasets and tasks to be able to develop a multi-task model
that performs well on all three tasks. We experiment with different architectures and techniques, such
as gradient surgery (Yu et al., 2020) and SMART regularization (Jiang et al., 2021), and evaluate their
impact on our model.

This paper first discusses previous work in the field of MTL and highlights some challenges that the
task presents. Then, it details the approach used in the development and analysis of the experimental
process. The Experiments section provides details about the datasets, the evaluation metrics, and
the experimental setup. Following this, the Results section presents the observed results for each
experiment. The next two sections focus on the analysis of these results, describe the limitations, and

Stanford CS224N Natural Language Processing with Deep Learning

discuss possible extensions. Finally, the Conclusion provides a summary of the results and highlights
the learnings of this paper.

3 Related Work

In their paper, Chen et al. (2021) describe the benefits of using MTL in the field of NLP. MTL
has been able to improve performance and reduce training costs by simultaneously training related
tasks. It also combats overfitting and data scarcity, which are common problems in natural language
processing.

Zhang et al. (2023) discuss the challenge of designing and training a single model for multiple tasks.
They determined that task-relatedness is the key to choosing the correct multi-task training method,
which is of two types: “joint training" and “multi-step training". According to them, joint training
should be used when all tasks can be trained simultaneously while multi-step training should be used
when one’s task output is used for another task. In this project, we use joint training for three separate
tasks.

Yu et al. (2020) have also highlighted that MTL poses various optimization challenges such as dealing
with multiple gradients. They propose a model-agnostic approach called ‘gradient surgery’, which
uses the strategy of projecting different task-specific gradients on the normal plane of each other, to
optimize MTL. Their work shows that this approach leads to higher model performance and training
efficiency for MTL tasks.

4 Approach

The first part of this project consists of implementing the minBERT model, as detailed in the paper
by Devlin et al. (2019). Specifically, we implement the following layers of the BERT transformer:
the attention layer, embed layer, and add plus normalize layer. We then implement the classifier,
which takes in the pooled BERT representations and outputs a logit of sentiment classes. Finally, in
this part of the project, we write the step() function in the AdamW optimizer, which is used as the
optimization algorithm to minimize loss. The rest of the minBERT implementation is provided as
base code from the CS224N Default Project Handout (CS224N, 2023).

Following this, the second part of this project consists of creating an effective multi-task model based
on our minBERT implementation. The tasks include sentiment analysis, paraphrase detection, and
semantic textual similarity. To generate a baseline, we use our minBERT model and train it on each
of these tasks simultaneously. We use cross-entropy loss for sentiment analysis, binary cross-entropy
loss for paraphrase detection, and the mean squared error for the similarity task. The total loss is
generated by using a sum of these three losses. The baseline results obtained are reported in the
Results section.

Our extensions to the baseline minBERT implementation are guided by initial and intermediate task-
specific performance and overall performance on our three datasets. Specifically, we add gradient
surgery (Yu et al., 2020), try various types of regularization, add layers to underfitting tasks, and
implement hyperparameter tuning to finalize our model.

Gradient surgery combines the three gradients obtained from our three datasets by projecting a
dissimilar gradient onto the normal gradient of another, thereby decreasing the effect of conflicting
gradients. This is demonstrated in the equation below, where gi and gj are the gradients of the i-th
and j-th task.

gi = gi −
gi · gj
||gj ||2

· gj

We implement gradient surgery by integrating existing code from Tseng (2020) into our model.

After implementing gradient surgery, we test several regularization techniques to help mitigate
overfitting. For overfitting on the sentiment task, we integrated an implementation of SMART
(Smoothness-Inducing) regularization (Jiang et al., 2021) code written by the Open Source AI
Research Lab (2019). We experiment with SMART due to its ability to effectively combat overfitting
without aggressive updates (Jiang et al., 2021). This has been further detailed in the Appendix.

2

For overfitting on the similarity task, we experiment with l2 regularization (integrated into AdamW
with weight decay) (Loshchilov and Hutter, 2019a), l1 regularization, and l∞ regularization. For the
l2 regularization, we add a weight decay value of 0.05 to the AdamW optimizer. For the other two
norms, we adjust similarity loss after calculating it using MSE Loss:

loss = mse_loss(sts_logits) + 0.05 · ||weights||p.

To address the issue of underfitting (i.e. low accuracy and correlation on both training and development
sets), we add linear layers to underfitting tasks to increase the expressivity of our model.

After combining several of these techniques into a model that produces the best results, we experiment
manually with batch size, learning rate, weight decay, dropout rate, the number of dropout layers,
and activation functions to pick the hyperparameters that optimize model performance.

We also experiment with implementing class weights in the binary cross-entropy loss for sentiment
analysis to test if it improves performance on the task and performance per class. The class weights
per class (Wi) are calculated using the total number of observation in the training set (TC) and
dividing it by number of classes (5) times the total number of observation per class (Ci) in the training
set. This is described in the equation below, for class i = 0, ..., 4:

Wi = TC/(5 ∗ Ci)

This adds higher weights to classes with fewer observations and put more emphasis on these classes
(Hasan, 2020).

Finally, we experiment with two activation functions between the linear layers of the similarity task.
The ReLU (Rectified Linear Unit) activation is selected because it is computationally efficient, widely
used, and often yields great results. However, it suffers from the dying ReLU problem, which causes
gradients to become zero and networks to stop learning when inputs are close to zero. Since similarity
is measured on a scale of 0 to 5, the dying ReLU problem is a cause of concern. Thus, we also
experiment with the LeakyReLU activation which combats this problem (Gharat, 2019).

5 Experiments

5.1 Data

For this project, we use four datasets, obtained from the Default Project Handout (CS224N, 2023)
Each of these have been detailed below.

• Stanford Sentiment Treebank Dataset: This dataset consists of sentences from movie reviews, which
are parsed into phrases and then labeled as ‘negative’, ‘somewhat negative’, ‘neutral’, ‘somewhat
positive’, or ‘positive’. There are 11,855 sentences in total, of which approximately 80% (8,544 +
1,101) are used for training and development and the remaining are used for testing. This dataset
is used for the sentiment analysis task. Amongst the labels for training and development dataset
, 13% are ‘negative’, 26% are ‘somewhat negative’, 19% are ‘neutral’, 27% are ‘somewhat
positive’ and 15% are ‘positive’. Thus, there is a slight imbalance in the classes.

• CFIMDB Dataset: This dataset is made up of binary-labeled movie reviews (positive/negative).
In total, there are 2,434 reviews. Approximately 80% (1,701 + 245) of the reviews is used for the
purposes of model training and development while the remaining is used for testing. This dataset is
used for pretraining some of the final layers of the BERT model (in the minBERT implementation
stage). However, it is not used in the multi-task modelling process.

• Quora Dataset: This dataset is made up of question pairs, which are labeled as paraphrases or not
paraphrases. There are 400,000 question pairs but the project uses a subset consisting of 202,152
examples. Out of these, approximately 80% (141,506 + 20,215) will be used for training and
development while the remaining will be used for testing. This dataset is used for paraphrase
detection. Within the training and development datasets, 37% of the labels are 1 and 63% are 0.
There is an imbalance in the labels.

• SemEval STS Benchmark dataset: This dataset is made up of sentence pairs with labels on a scale
between 0 to 5. Here, 0 indicates sentences are unrelated while 5 indicates that sentences are
equivalent in meaning. In total, there are 8,628 sentences in the dataset. Out of these, approximately

3

80% (6,041 + 864) will be used for training and development while the remaining will be used
for testing. This dataset will be used for assessing semantic textual similarity. When rounding the
labels for the training and development sets, approximately 12% are 0, 14.5% are 1, 17% are 2,
22.5% are 3, 24% are 4, and 10% are 5. There is a slight imbalance in the labels.

5.2 Evaluation method

For the paraphrase detection task and sentiment analysis task, we use accuracy to evaluate the model
performance. Since we observe imbalance in both the datasets, we also report balanced accuracy and
macro-averaged F1 scores for the final model for both these tasks. For the sentence similarity task,
we evaluate model performance using Pearson correlation of the true similarity values against the
predicted similarity values. During the experimentation process, we compare these metrics for the
training and development sets to check for underfitting or overfitting in the model.

5.3 Experimental details

Following the implementation of minBERT, we implement each of the methods described in the
Approach section as well as combinations of the methods that improved performance on the develop-
ment set to choose the best performing model. For each of the initial model architectures (before
hyperparameter tuning), we use the following default parameters.

learning rate batch size number of epochs dropout probability optimizer weight decay
1e-5 8 10 0.3 AdamW 0.0

Figure 1: Default Hyperparameter Configuration

For each task, we use a different type of loss. For sentiment analysis, we use cross-entropy loss as it
is a multi-class classification problem. For paraphrase detection, we use binary cross-entropy loss as
it is a binary classification task. For semantic textual similarity, we use mean squared error as the
outcome (similarity) is a float ranging from 0 to 5.

We run experiments with the following configurations:

• gradient surgery
• gradient surgery and increase semantic textual similarity (STS) dropout probability to 0.5
• gradient surgery and use l2 regularization by adding weight decay of 0.05 in AdamW
• gradient surgery and l1 regularization on STS loss
• gradient surgery and l∞ regularization on STS loss
• gradient surgery and add an extra linear layer (plus activation) to each task
• gradient surgery and increase dropout probability to 0.5 for both STS and SST (sentiment

analysis)
• gradient surgery, 0.5 STS and SST dropout probability, and SMART regularization for SST
• final architecture

Our final architecture uses gradient surgery, a single linear layer and a dropout layer with probability
0.3 for paraphrase detection, and a single linear layer and dropout layer with probability 0.5 for
sentiment analysis. For semantic textual similarity, there are two linear layers with dropout layers
before each with probabilities 0.5 and 0.3 respectively. There is also a ReLU activation layer between
the two linear layers. We use l∞ regularization for this task. See Figure 2 for a depiction of the final
architecture.

For hyperparameters, we experiment with different learning rates, batch sizes, weight decay, class
weights for loss, and activation functions. This has been described in more detail in the Results
section. Our final chosen hyperparameters are: learning rate of 5e-5 (for finetune), batch size of 8,
ReLU activation function, and no use of weight decay or class weights. Additionally, we continue
using 10 epochs and the AdamW optimizer.

Our training time for different model architectures is fairly consistent. It is approximately 3 minutes
and 30 seconds per epoch.

4

Figure 2: Final Architecture Diagram

5.4 Results

The accuracies and correlation on the training and development sets are reported in Figure 3 from
multiple runs of our model with various extensions. Note that “Paraphrase" and “Sentiment" values
are accuracies, “sst" refers to sentiment analysis, “sts" refers to semantic textual similarity, and “gs"
refers to gradient surgery. Additionally, “final architecture" includes the following: an extra linear and
dropout layer and l∞ for similarity, higher dropout probability (0.5) for both sentiment and similarity,
and gradient surgery (see Experimental Details for more details).

Training Set Accuracy Development Set Accuracy
Paraphrase Sentiment STS Correlation Paraphrase Sentiment STS Correlation

Baseline minBERT 0.663 0.337 0.274 0.667 0.347 0.254
gradient surgery 0.756 0.920 0.966 0.746 0.494 0.338

gs + increased STS dropout 0.755 0.927 0.961 0.745 0.495 0.362
gs + l2 regularization 0.711 0.449 0.625 0.704 0.396 0.326
gs + l1 regularization 0.689 0.470 0.434 0.683 0.423 0.352
gs + l∞ regularization 0.753 0.927 0.963 0.746 0.496 0.363

gs + add one linear layer each 0.703 0.473 0.718 0.700 0.401 0.387
gs + increase dropout (sts & sst) 0.679 0.438 0.398 0.678 0.414 0.338
gs + dropout + SMART(on sst) 0.750 0.273 0.959 0.739 0.258 0.335

final architecture 0.723 0.728 0.873 0.720 0.513 0.396

Figure 3: Training and Development scores for all three tasks, with experimentation in model
architecture. ‘Final architecture’ is defined above.

On the test set leaderboard, we achieved the following results with our final architecture (before
tuning hyperparameters):

Paraphrase test accuracy: 0.718, sentiment test accuracy: 0.518, similarity test correlation: 0.363.

Gradient Surgery: Adding gradient surgery improves performance in all three tasks. This is expected
because it mitigates the effect of conflicting gradients “cancelling each other out" (Yu et al., 2020).
Instead, it projects conflicting gradients in order to make them more similar to each other, thereby
allowing for decreases to the loss of both tasks.

Increasing Dropout: As expected, increasing the dropout probability for the semantic textual
similarity task reduces the problem of overfitting and increases correlation on the development
set. We later increase dropout for sentiment analysis as well, since this task is also overfitting on
the training data. In our final architecture, this increased dropout does appear to help increase the
development set accuracy for sentiment and similarity tasks.

Regularization: Interestingly, none of our regularization efforts helped to significantly improve
performance on the development set. As expected, l2 and l1 regularization do help to mitigate

5

overfitting on the STS task. However, these models do worse than the basic gradient surgery plus
increased dropout. The same is true when using SMART regularization for the sentiment task.
SMART is designed to prevent aggressive updating and thus, we experiment with it to reduce
overfitting (Jiang et al., 2021). However, it does not improve results. The low results for SMART
regularization may also be due to the fact that sentiment analysis had two regularization techniques
(increased dropout and SMART) being applied together. Using l∞ regularization did not effectively
reduce overfitting, likely because minimizing the l∞-norm of the weights will not affect most weight
values; it does not encourage small values and instead only encourages minimization of one weight
at a time (the maximal element) (StClair, 2023). Even so, using l∞ regularization does noticeably
improve performance on the similarity task, so we retain it in our final model. Since the l1, l2,
and SMART regularization techniques result in worse performance (though l2 and l1 do help with
overfitting), it is necessary to add expressivity to our model through building more layers.

Adding Layers: To increase the expressivity of our model, we first experiment with adding a second
linear layer (with ReLU activation in between) to each of our tasks. This ultimately only improves
the score for the similarity task, so we only retain the extra linear layer for similarity in our final
architecture.

Training Set Accuracy Development Set Accuracy
Paraphrase Sentiment STS Correlation Paraphrase Sentiment STS Correlation

batch size = 16 0.732 0.776 0.932 0.728 0.519 0.353
weight decay = 0.1 0.700 0.408 0.545 0.692 0.365 0.282
wd = 0.1, lr = 5e-6 0.678 0.400 0.438 0.674 0.381 0.347

wd = 0.05, lr = 5e-6 0.730 0.760 0.934 0.728 0.513 0.372
lr = 5e-6 0.730 0.760 0.934 0.728 0.513 0.372
lr = 5e-5 0.735 0.767 0.826 0.728 0.516 0.438
lr = 3e-5 0.750 0.858 0.923 0.741 0.490 0.432
lr = 6e-5 0.749 0.857 0.908 0.740 0.485 0.425

lr = 5e-5, weighted loss 0.753 0.899 0.921 0.744 0.477 0.426
lr = 5e-5, LeakyReLU 0.759 0.888 0.939 0.744 0.492 0.456

Figure 4: Training and Development scores for hyperparameter tuning with the final architecture.
Highlighted row indicates the final model chosen. Here, “wd" indicates weight decay, “lr" indicates
learning rate and weighted loss indicates the use of class weights in cross-entropy loss for sentiment
analysis. Unless otherwise specified, ReLU is the activation function used.

On the test leaderboard for our final architecture and a learning rate of 5e-5 (the only hyperparameter
adjustment), we obtain the following results:

Paraphrase test accuracy: 0.726, sentiment test accuracy: 0.533, similarity test correlation: 0.427.

Additionally, for our final architecture, we also obtain the following metrics on the development set:
paraphrase detection F1 score of 0.694 and balanced accuracy of 68.8%, and sentiment classification
F1 score of 0.485 and balanced accuracy of 48%. These values are slightly lower than the typical
accuracy scores obtained on the development set.

Hyperparameter Tuning:

• Learning rate: In addition to the default learning rate of 1e-5, we test learning rates of 5e-5 and
3e-5 for finetuning, as suggested in the original BERT paper (Devlin et al., 2019). We also try 6e-5
and 5e-6. The higher learning rate of 5e-5 helps to achieve a significantly higher score for STS
correlation specifically. Therefore, we choose this learning rate for our final model.

• Weight decay: Apart from the default zero weight decay, we also test weight decay values of 0.1
and 0.05, which, as described in the regularization section, is a form of l2 regularization for all
of the tasks. Weight decay helps with the issue of overfitting but ultimately lowers the overall
model performance, even when training for a larger number of epochs. This may be due to lack of
expressivity of the model.

6

• Batch size: Following the suggestions in the original BERT paper (Devlin et al., 2019), we test a
larger batch size of 16 (as compared to the default 8). Because this does not improve our overall
scores, we do not train further with larger batch sizes.

• Epochs: During training, we observe that model performance did not improve after 6-9 epochs.
Thus, we use 10 epochs which is the default.

• Optimizer: We use the default optimizer - AdamW. This is because Adam is computationally faster,
inherits the advantages of other optimizers, and performs well for deep learning tasks (Gupta,
2023). AdamW uses an enhanced and optimized way to incorporate weight decay (Loshchilov and
Hutter, 2019b). Thus, it is chosen.

After finalizing these hyperparameters, we also experiment with the following:

• Class weights: Due to the imbalance in the STS dataset and the per-class analysis presented in
the Analysis section, we try using class weights when calculating the cross-entropy loss for the
sentiment analysis task. This is done with the intent of improving accuracy across all classes, as
detailed in the Approach section. However, this technique does not significantly improve results
and thus, it is not used in the final model.

• Activation functions: In between the two linear layers for the similarity task, we test the ReLU
and LeakyReLU activations. The model performs slightly better with the LeakyReLU activation
function on the development set. However, on the test set, using ReLU provides better results.
Thus, we use the ReLU activation function.

True Label Paraphrase Sentiment Similarity
Accuracy % of Values Accuracy % of Values Accuracy % of Values

0 0.721 62.5% 0.307 12.7% 0.139 11.7%
1 0.316 37.5% 0.727 26.2% 0.333 11.8%
2 X X 0.301 20.8% 0.448 16.6%
3 X X 0.620 25.3% 0.314 24.3%
4 X X 0.448 15.0% 0.189 24.5%
5 X X X X 0.000 11.1%

Figure 5: Accuracies by label for each task on the development sets. Note that similarity correlation
scores are rounded to the nearest whole number. Percent of values refers to percent of datapoints in
each task with the specified true label. See Appendix for visualization of these results.

6 Analysis

The final architecture for our model is chosen to maximize the effectiveness of our extensions to the
minBERT baseline. There is significant improvement from our baseline model’s performance on
the development set (paraphrase 0.667, sentiment 0.347, and similarity 0.254) to our final model’s
performance on the development set (paraphrase 0.728, sentiment 0.516, and similarity 0.438).
Notably, our greatest improvements are in the sentiment analysis and similarity tasks; we focus our
extensions on these tasks because their baseline scores were much lower than that of paraphrase
detection.

Overall, the most significant improvement in model performance resulted from the addition of
gradient surgery to mitigate the negative effects of conflicting gradients for the three tasks. This
improvement indicates that the gradients for the three tasks likely were conflicting and therefore the
baseline without gradient surgery was not able to train effectively for any of the three tasks.

We train the model with several regularization techniques, including dropout layers and l2, l1, l∞,
and SMART regularization as discussed in the Results section. We choose to target semantic textual
similarity for initial regularization efforts because it was overfitting most severely (see Figure 3).
We find that l2 regularization (increasing the weight decay for the AdamW optimizer), does reduce
overfitting for both sentiment and similarity tasks, but ultimately reduces model performance for
these two tasks. This may be due to low overall expressivity of the model. However, we also see that

7

adding a linear layer to each task does not improve the overall performance of our model. It does
improve the similarity correlation, suggesting that our initial configuration was not expressive enough
for the similarity task. To combat overfitting in the sentiment analysis task, we increased the dropout
rate, allowing for better generalization to the development set and test set. We also see that SMART
regularization does not improve results for the sentiment analysis task when used in addition to a
higher dropout rate. Therefore, we choose the simpler solution of dropout rate as opposed to the
more complicated SMART regularization tool for our final model.

Ultimately, through our experiments, we attempt to simultaneously improve the expressivity and
decrease overfitting on our three tasks, specifically targeting the low-performing sentiment analysis
and similarity tasks. The added expressivity and regularization improve correlation for the similarity
task over the baseline, and the higher dropout for sentiment classification allows for higher accuracy
scores for this task as well. Interestingly, the paraphrase detection performs best when there are fewer
additions to the model (after the initial improvement when implementing gradient surgery). This
result indicates that these tasks may be somewhat conflicting. As we see with the implementation
of gradient surgery, the gradients may have been conflicting for the three tasks. Although gradient
surgery improves this issue significantly, it may still be that performing well on the other two tasks
results in somewhat lower performance on paraphrase detection. This is an inherent challenge in
multi-task learning. Even so, more focus on improving the model for the paraphrase detection task
may allow for increased paraphrase detection accuracy.

We further explore our results by manually calculating per-class accuracies for each task (see Figure
5). This is motivated by the slighlty lower macro-averaged F1 and balanced accuracy scores on our
final model compared to the regular accuracy (and correlation) scores obtained. Overall, we see
that classes with a higher number of observations have higher accuracies. This is expected, as the
model is better able to learn when to predict a class label if it has seen more examples from that class.
Therefore, although we would like to see high accuracies in all classes, these results are unsurprising.
It is somewhat surprising that class five of similarity (true scores between 4.5 and 5.0) has an accuracy
of 0.000. That is, our model never predicts a similarity higher than 4.5, and upon inspection of the
predicted values, we see that it never predicts a similarity higher than 4.2. This is an interesting result
that merits further study.

7 Limitations and Extensions

Our final model shows significant improvement over the baseline model. However, there are still
possible improvements that can be made, specifically to the performance of the sentiment analysis
and semantic textual similarity tasks. For the paraphrase detection task, performance can be improved
on the class level. Additionally, even after experimenting with multiple techniques, our model
shows signs of overfitting on the semantic textual similarity task and the sentiment analysis task.
Though incorporating weight decay helped to combat overfitting, it negatively impacted overall model
performance. Thus, further work can focus on combating overfitting more effectively.

For the purpose of this paper, we experiment with a multitude of techniques and model architectures.
To improve performance, there are more techniques that can be tested. These include but are
not limited to pretraining the BERT model on more datasets, using different optimizers (Adagrad,
RMSProp, SGD), using cosine similarity techniques, etc. We encourage further work to also focus
on improving performance on each class for the different tasks.

8 Conclusion

This project explores the use of extensions to a baseline minBERT model to simultaneously improve
performance on three downstream tasks - paraphrase detection, sentiment analysis and semantic tex-
tual similarity. Our implementations of various types of regularization, different model architectures,
gradient surgery, and hyperparameter tuning are guided by intermediate accuracies and patterns of
overfitting on the training sets. We find that gradient surgery greatly improves results for multitask
learning, and further slight improvements can be made by adjusting types of regularization, dropout
probability, and learning rates. Our final model, which incorporates gradient surgery, increased
dropout rates and an extra linear layer, dropout layer, and l∞ regularization on the similarity task, is
able to improve substantially upon the baseline results.

8

References
Shijie Chen, Yu Zhang, and Qiang Yang. 2021. Multi-task learning in natural language processing:

An overview.

CS224N. 2023. Cs 224n: Default final project: Minbert and downstream tasks.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language understanding.

Snehal Gharat. 2019. What, why and which? activation functions.

Ayush Gupta. 2023. Optimizers in deep learning: A comprehensive guide.

Faiyaz Hasan. 2020. Deep learning with weighted cross entropy loss on imbalanced tabular data
using fastai.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2021.
Smart: Robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization.

Open Source AI Research Lab. 2019. Smart-pytorch.

Ilya Loshchilov and Frank Hutter. 2019a. Decoupled weight decay regularization.

Ilya Loshchilov and Frank Hutter. 2019b. Decoupled weight decay regularization.

Rachel StClair. 2023. Introduction to vector norms: L0, l1, l2, l-infinity.

Wei-Cheng Tseng. 2020. Weichengtseng/pytorch-pcgrad.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning. In Advances in Neural Information Processing
Systems, volume 33, pages 5824–5836. Curran Associates, Inc.

Zhihan Zhang, Wenhao Yu, Mengxia Yu, Zhichun Guo, and Meng Jiang. 2023. A survey of multi-task
learning in natural language processing: Regarding task relatedness and training methods.

9

https://arxiv.org/abs/2109.09138
https://arxiv.org/abs/2109.09138
http://web.stanford.edu/class/cs224n/project/default-final-project-bert-handout.pdf
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://medium.com/@snaily16/what-why-and-which-activation-functions-b2bf748c0441#:~:text=ReLU%20activation%20function%20is%20widely,function%20is%20the%20best%20choice.
https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-deep-learning-optimizers/#:~:text=The%20results%20of%20the%20Adam,for%20most%20of%20the%20applications.
https://towardsdatascience.com/deep-learning-with-weighted-cross-entropy-loss-on-imbalanced-tabular-data-using-fastai-fe1c009e184c
https://towardsdatascience.com/deep-learning-with-weighted-cross-entropy-loss-on-imbalanced-tabular-data-using-fastai-fe1c009e184c
https://arxiv.org/abs/1911.03437
https://arxiv.org/abs/1911.03437
https://github.com/archinetai/smart-pytorch
http://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101v3
https://www.aiplusinfo.com/blog/introduction-to-vector-norms-l0-l1-l2-l-infinity/
https://github.com/WeiChengTseng/Pytorch-PCGrad.git
https://proceedings.neurips.cc/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf
https://arxiv.org/abs/2204.03508
https://arxiv.org/abs/2204.03508

A SMART Regularization Equations

Jiang et al. (2021), present the equation below for Smoothness-Inducing Adversarial Regularization
(SMART).

min
θ

F (θ) = L(θ) + λsRs(θ)

Here, λs> 0 represents a tuning parameter, Rs(θ) represents smoothness-inducing adversarial regu-
larizer and L(θ) represents the loss function.

The equation for the loss function is presented below. Note that l(·, ·) represents the loss function for
the target task, xi, yi denote the sentence embeddings and associated labels respectively, f(·; θ) is
the model and n represents the data points of the target task.

L(θ) =
1

n

n∑
i=1

l(f(xi, θ), yi)

The equation for the regularizer Rs(θ) is presented below. Here, the tuning parameter is ϵ > 0.

Rs(θ) =
1

n

n∑
i=1

max
||x̃i−xi||p≤ϵ

ls(f(x̃i, θ), f(xi, θ))

10

B Figures

The figures in this section show the results from Figure 5, by task.

Figure 6: Paraphrase detection accuracy on the development set by true label.

11

Figure 7: Sentiment analysis accuracy on the development set by true label.

Figure 8: Semantic Textual Similarity accuracy on the development set by true label.

12

Figure 9: Improvement in Scores from Baseline to the Final Model, per task.

13

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Limitations and Extensions
	Conclusion
	SMART Regularization Equations
	Figures

