
Evaluating fine-tuning methods for robust multi-task
sentence embeddings

Stanford CS224N Default Project

Connor Toups
Department of Computer Science

Stanford University
ctoups22@stanford.edu

Kaleb Tsegay
Department of Computer Science

Stanford University
kbtsegay@stanford.edu

Ammar Alinur
Department of Computer Science

Stanford University
aalinur@stanford.edu

Abstract

In this paper, we evaluate diverse fine-tuning methods to generate high-quality
embeddings that generalize well on three NLP tasks: sentiment analysis, paraphrase
detection, and semantic textual similarity. We evaluate the impact of Gao et al.
(2021)’s proposed SimCSE approach of intermediately fine-tuning on an NLI
dataset to improve downstream performance and compare it to linear probing and
fine-tuning only on the downstream tasks. Surprisingly, we find that intermediate
fine-tuning harms performance both when linear probing and when fine-tuning on
the target tasks. We offer three reasons for this degraded performance: the use of a
learnable output layer diminishes the need for intermediate fine-tuning; multi-task
settings have conflicting gradients that can lead to suboptimal convergence; and
fine-tuning is sensitive to distributional shift between training stages. We also
show that fine-tuning on sentiment analysis harms performance on semantic textual
similarity datasets and, vice versa, fine-tuning on semantic textual similarity harms
performance on sentiment analysis; however, fine-tuning on paraphrase detection
doesn’t harm performance on semantic textual similarity nor sentiment analysis
datasets.

1 Key Information to include
• Mentor: Default Project
• External Collaborators (if you have any): No
• Sharing project: No

2 Introduction

Using a single model that has been adapted to perform on a variety of downstream tasks has a number
of benefits over specialized models that can only perform one task: less total memory is required to
store the parameters of a single compared to multiple models; less compute is required to train a single
model for multiple tasks relative to models for each task, enabling wider and more democratized
deployment; and there can be some degree of positive transfer between tasks, which can be especially
beneficial for tasks that have limited training data (Ruder, 2017).

However, we find that much of the existing work on multitask model training would be infeasible for
many downstream practitioners to implement – either because it requires retraining a model from

Stanford CS224N Natural Language Processing with Deep Learning



scratch or significantly modifying architectures that are typically abstracted away by platforms like
HuggingFace.

From an accesibility standpoint, we might hope that fine-tuning strategies could be employed to
effectively train a multi-task model. Fine-tuning on top of a pretrained model is a central paradigm
of foundational models and enables large models to be adapted to diverse downstream tasks in
a computationally efficient and practically accessible way (Bommasani et al., 2021). As models
continue to get larger and – in some cases – less open source (see the recent release of GPT-4 as
evidence for both points), model practitioners will be even more reliant on fine-tuning if they hope to
train models that are in line with SOTA models.

However, fine-tuning on a single dataset has been shown to distort pretrained features and lead to
lower out-of-distribution (OOD) performance (Kumar et al., 2022). Given this, we predict fine-
tuning on a single dataset will generate poor embeddings for a multi-task model. Fine-tuning on
all three tasks might yield better results, but this presumes that the practitioner has access to the
true downstream distributions at inference time and is likely susceptible to degraded performance if
there’s any distribution shift.

Existing work from Gao et al. (2021) found that fine-tuning on an NLI dataset yields more robust
embeddings that perform well even on non-NLI distributions – and Phang et al. (2018) found that
fine-tuning on an intermediate, most generalized task before fine-tuning on the direct downstream
task can yield better multi-task performance than training on the downstream tasks alone. However,
Gao et al. (2021) only tested their approach on a variety of semantic textual similarity datasets, so it’s
unclear if their approach extends to other tasks in NLP.

This approach doesn’t require any fundamental changes to the model or for the base model to be
retrained; it simply requires one additional pass of fine tuning with a small addition to the output
layer for the NLI task. Leveraging these insights, we quantify the performance and robustness of
fine-tuning on an NLI dataset before training on our downstream datasets.

3 Related Work

Multi-task learning has been an active area of research in the field of deep learning. However, training
these models has proved to have it’s own set of challenges. Previous approaches require large amounts
of additional pretraining on a wide variety of tasks (Aghajanyan et al., 2021). Other approaches
involve fundamental changes to the base architecture of the model (Karimi Mahabadi et al., 2021).

Gao et al. (2021) introduces SimCSE as an alternative option for multi-task learning that only requires
a small amount of additional fine-tuning. This makes it an attractive option for our project. SimCSE
achieves state-of-the-art performance in sentence embeddings using a contrastive learning framework
that includes supervised and unsupervised approaches.

Yu et al. (2020) identifies the challenges of multi-task optimization and proposes a simple yet general
approach to avoid detrimental gradient interference between tasks. The approach involves projecting
a task’s gradient onto the normal plane of the gradient of any other task that has a conflicting gradient.
This approach leads to substantial gains in efficiency and performance in multi-task supervised and
multi-task RL problems. Gradient surgery could be another approach to our problem, but we didn’t
use it for two reasons: (1) it requires access to gradients from all tasks within the same batch, and we
thought this might be unrealistic for model practitioners and (2) it seemed like many other groups
wanted to use it and we wanted to try something different.

Finally, Kumar et al. (2022) highlights the tradeoff between in-distribution (ID) and out-of-distribution
(OOD) accuracy in fine-tuning pretrained models for downstream tasks. It suggests that full fine-
tuning can lead to worse accuracy OOD than linear probing when the pretrained features are good and
the distribution shift is large. The paper recommends a two-step strategy of linear probing followed
by full fine-tuning as an alternative approach.

4 Approach

Below, we describe our approach. To reiterate, our experiments and approach emphasize compu-
tational efficiency (e.g. avoiding re-training from scratch) and feasibility of implementation (e.g.

2



Figure 1: Simplified diagram of our general model architecture (without intermediate fine-tuning).
Red arrows indicate backpropogation of loss.

avoiding making fundamental changes to parts of the model typically abstracted away from model
pracitioners).

4.1 Overall Model

Our overall model is built on top of the original pretrained BERT model introduced by Devlin
et al. (2018). The original BERT model with pretrained weights (or fine-tuned weights in certain
experiments) is used to generate embeddings for the input sentence or sentences.

For our BERT embedding, we use the hidden-state of the last layer of the first token of the sequence
which is then passed through a fully connected and Tanh layer (pooler output).

We define distinct classifiers – described in further detail below – for each of our 3 tasks, and we pass
embedding(s) to these 3 distinct classifiers depending on the task of the input instance xi.

For the reason discussed earlier, we avoid making significant changes to the model and instead rely
primarily on fine-tuning and simple changes that be applied on top of a pre-trained model in order to
generate robust embeddings.

4.2 Output Layers

We define a separate output layer for each of three tasks; the task label – which we know at train and
test time – determines which output layer we pass the embedding(s) from the base BERT model to.

Each of these output layers generates a prediction which – at train time – thereby generates a loss. The
loss function is different for each classifier. The loss is then backpropogated only to the parameters
of the output layer that made the prediction (e.g. the loss incurred on a paraphrase example doesn’t
affect the gradient of the sentiment classifier). If we are fine-tuning the models, then the loss is also
used to update the parameters of the base BERT model.

4.2.1 Sentiment Analysis Classifier

In sentiment analysis, our input is a single token sequence that we retrieve a BERT embedding for.
Our desired output is the class prediction for the sentiment of the input sentence; there are 5 sentiment
classes.

We feed the embedding from BERT into a single fully connected layer which outputs a (1 x N) logit
where N is the number of sentiment classes. We then pass this (1 x 5) logit into a sigmoid activation
function to get the probability distribution over the sentiment classes; we take the argmax of this
distribution to determine our prediction yi.

3



4.2.2 Semantic Textual Similarity Regressor

In semantic textual similarity, our input is two token sequences that we retrieve BERT embeddings
for.

We test two approaches to designing our decoder layer to translate these two BERT embeddings into
a single scalar prediction.

Our first architecture concatenates the two vectors together; we refer to this as our ’concatenate
decoder’. Our second architecture element-wise multiplies the two vectors together; we refer to this
as our ’weighted dot-product’ decoder because the weight matrix of the following linear layer can
learn a weighted summation over the element wise multiplication.

In both architectures, the resulting vector is passed through a fully connected layer which directly
outputs a single scalar prediction for the similarity of the two sequences.

4.2.3 Paraphrase Classifier

In paraphrase classification, our input is two token sequences that we retrieve BERT embeddings for.
Similar to semantic textual similarity, we again test best the concatenate and weighted dot product as
our decoder structure.

The resulting embedding is passed into a fully connected layer and then into a Sigmoid nonlinear
activation layer to determine the probability that the inputs are a paraphrase of each other. We use the
simply majority as our threshold.

4.3 Training Approach

4.3.1 Training on all three downstream tasks.

We have two approaches to training on all three downstream tasks: linear probing and fine-tuning. In
linear probing, we freeze the BERT parameters and only train the output layers. In fine-tuning, we
also update the parameters of the base BERT model.

At train time, each mini-batch only contains examples from a single task; by isolating task examples
from each other, we can ensure that the loss from each batch is only applied the relevant classifier.
That is to say, the parameters of the sentiment classifier aren’t affected by loss incurred on semantic
textual similarity examples.

We use Adam as our optimization function, and we maintain separate Adam instances for each output
classifier so that momentum and learning rates are calculated only based on gradient updates made to
that classifier and not based on updates to any of the other classifiers.

4.3.2 Integrating contradiction/entailment pairs as an intermediate fine-tuning task.

Inspired by the work of Gao et al. (2021), we test the impact of finetuning our BERT model on a
natural language inference dataset using entailment pairs as ground truth positives and contradiction
pairs as ground truth negatives. We refer to this fine-tuning strategy as SimCSE (Simple Contrastive
Sentence Embeddings) – as in the paper.

More concretely, we adopt the contrastive loss function defined in Equation 1. Here, hi represents
the BERT embedding of the premise; h+

i refers to the BERT embedding of the entailment; h−
i refers

to the BERT embedding of the contradiction; N is the batch size. Intuitively, this loss function
should incentivize the embeddings of entailed sentences to be close together and the embeddings of
contradictory sentences to be far part.

−log
ecos sim(hi,h

+
i )∑N

j=1 e
cos sim(hi,h

+
i ) + ecos sim(hi,h

−
i )

(1)

After fine-tuning on these entailment and contradiction pairs, we adopt the same training strategy as
described above.

4



This approach requires no modification to the architecture of the model, is agnostic to the downstream
classifier structure, and is easy and computationally efficient to train since it only requires fine-tuning
on top of a large pre-trained model.

5 Experiments

5.1 Data

For sentiment analysis, we use the Stanford Sentiment Treebank dataset (11,855 instances with 5
classes).. For paraphrase detection, we use a subset of the Quora dataset (202,152 instances with 2
classes). For semantic textual similarity, we use a subset of the SemEval STS Benchmark dataset
(8,628 instances with 6 classes). For NLI data, we use the same subset of the MNLI dataset used by
Gao et al. (2021).

5.2 Evaluation method

Since our project is on the impact of fine-tuning methods, we define our baseline as ’linear probing’
which involves no fine-tuning and gives us a good idea of what the raw BERT embeddings passed
into a fully connected layer can yield. Against this linear probing baseline, we evaluate two styles
of fine-tuning: round-robin fine-tuning and intermediate fine-tuning with a contrastive loss before
round-robin training.

We evaluate the performance of our model on each task separately using the appropriate evaluation
metric: accuracy for SST and paraphrase classifcation, pearson correlation for STS.

SimCSE intermediate fine-tuning. For SimCSE intermediate fine-tuning, we examine how interme-
diate fine-tuning affects the performance of linear probing and round robin fine-tuning; concretely,
this means we intermediately fine-tune and then either train linear probing layers on the target task or
fine-tune on the target tasks afterwards and compare this performance against the performance these
architectures achieved without integrating SimCSE intermediate fine-tuning.

5.3 Experimental details

For linear probing, we use a learning rate of 1e-3; for fine-tuning on the 3 final tasks we use a
learning rate of 1e-3. We use batch sizes of 32 (which is the maximum we could use given the RAM
constraints on our instance).

For SimCSE fine-tuning, we attempt to replicate the conditions of the paper by using 3 epochs for
train and a learning rate of 5e-5. They use batch sizes of 64, but we are unable to accomplish this
given the memory constrains of our cluster and instead use batch sizes of 32.

5.4 Results

5.4.1 Impact of SimCSE

In Table 1, we report the accuracies on our three downstream tasks using our baseline round-robin
style training and using the SimCSE contrastive loss intermediate fine-tuning objective. Surprisingly,
we find that intermediate fine-tuning with a contrastive loss term lowers performance compared to
round-robin training both when fine-tuning and when only linear probing. It harms performance most
on the semantic textual similarity task and slightly helps performance on the sentiment analysis task
in the linear probing architecture; this is especially surprising since Gao et al. (2021) evaluate the
SimCSE methodology on STS tasks.

In section 6, we discuss possible explanations for SimCSE’s poor performance on our tasks.

5.4.2 Leave one out fine-tuning testing as a generalizability baseline

In Table 2, we show the impact of fine-tuning on two tasks but not on a third, left-out task. All
tasks, including the left-out one still have their classifier layers trained, but the left-out task doesn’t
have its loss propagated to the layers of the BERTbase model. We use this test to demonstrate how

5



Linear Probing Finetuning
Round Robin w/ SimCSE Round Robin w/ SimCSE

Sentiment Analysis .386 .390 .494 (.480) .487
Paraphrase Classification .694 .632 .823 (.822) .775
Semantic Textual Similarity .304 .195 .370 (.355) .346
Average .461 .406 .562 (.552) .536

Table 1: Impact of intermediate fine-tuning on an NLI dataset with a contrastive learning objective
relative to round-robin training. We find that, contrary to our expectation, intermediate fine-tuning
harms performance. All performance figures are on dev set except for our best model which we
evaluate on the test set and report performance in parentheses.

Left Out Dataset During Finetuning
Sentiment Paraphrase STS

Sentiment Analysis Accuracy 0.278 (-.092) 0.495 (+.001) 0.501 (+.007)
Paraphrase Classification Accuracy 0.813 (-.010) 0.628 (-.066) 0.825 (+.002)
Semantic Textual Similarity Correlation 0.395 (+.025) 0.357 (-.013) -0.064 (-.434)

Table 2: Impact of leaving out a single dataset during fine-tuning. Figures in parentheses are
the difference in metric score from the baseline. Along the diagonal, the relevant baseline is the
performance of that task in the linear probing setting (since we don’t fine-tune); everywhere else, the
relevant baseline is that task’s fine-tuning performance.

fine-tuning can degrade the robustness of embeddings on unseen tasks – consistent with the findings
of Kumar et al. (2022) – and to understand, partially, which tasks potentially degrade the performance
of the other tasks.

We find that leaving out a task during fine-tuning significantly degrades performance on that task
(even though we trained a linear classifier on the task’s data) and this degradation of performance is
largest for the STS task and smallest for the paraphrase classification task. For a left-out task, we
define degradation in performance relative to the performance of that task in the ’linear probing’
experiment in Table 1 (which didn’t fine-tune on any tasks); this is the fair comparison since we don’t
fine-tune and only train output layers for the left-out task. For an included task, we define change in
performance relative to the performance of that task in the fine-tuning experiment; this is appropriate
since we fine-tune on this task.

We also find that leaving out sentiment data improved the performance on the STS task and, vice versa,
leaving out STS data improved performance on the sentiment analysis task – potentially signalling
that the STS and sentiment tasks have conflicting gradients and are dissimilar enough that the same
model’s embedding struggles to perform well on both.

Contrastingly, we find that leaving out paraphrase data during the fine-tuning stage doesn’t improve
performance on the other tasks. It’s possible that including paraphrase data doesn’t conflict as
much with either of the two other tasks, so leaving it out of the fine-tuning stage doesn’t improve
performance on the other tasks.

5.4.3 Concatenate vs weighted dot product decoder for STS and paraphrase tasks

We evaluate two decoder schemes for the output layers of the STS and Paraphrase tasks. Our first
approach simply concatenates the two embedding vectors xi and xj together and passes them through
a fully connected layer. Our second approach takes the elementwise product of vectors xi and xj

and passes them through a fully connected layer. In paraphrase detection, the logits are then passed
through a Sigmoid layer.

We find that weighted dot product yields better results and converges faster; we use weighted dot
product for our SimCSE experiment and don’t test the concatenate decoder.

6



Linear Probing Finetuning

Concatenate Weighted
Dot Product Concatenate Weighted

Dot Product
Paraphrase Classification .681 .694 .760 .823
Semantic Textual Similarity .277 .304 .345 .370

Table 3: Performance of concatenating vs. weighted dot product of sentence embeddings on the
paraphrase classification and semantic textual similarity. We find that the dot product passed into a
fully connected layer yields significantly better performance.

6 Understanding why SimCSE harms performance

Gao et al. (2021) find that training with a contrastive loss objective (defined in Equation 1) using
entailment pairs and contradiction pairs as negatives improves the performance of BERT embeddings
on a variety of STS tasks.

However, when we adopt this training strategy for our task, we find that it hurts performance relative
to the performance we achieve when we don’t intermediately fine-tune using this contrastive loss.

We offer three possible explanations for this degraded performance: (1)Gao et al. (2021) do not
learn a fully connected layer on top of their BERT embeddings for their downstream tasks while
we do; (2) the multi-task setting we are in result in conflicting gradients which harms performance;
(3) fine-tuning performance is sensitive to the particular data distribution being used in pre-training,
fine-tuning, and at evaluation.

6.1 Difference in output classifiers

Expounding on the first point, Gao et al. (2021) use the cosine similarity of the outputted embeddings
from BERTbase directly as their input to their activation function. We, contrastingly, learn a fully
connected layer on top of our outputted embeddings before passing to the activation function. This
fully connected layer potentially adds expressive power to the model that mitigates the need for the
intermediate step of tine-tuning the embeddings using the SimCSE objective.

6.2 Multitask conflicting gradients

Regarding the second point, we are in a multi-task regime with 3 distinct tasks and datasets. This
introduces a variety of factors that can alter performance: Yu et al. (2020) find that training on
multiple tasks can result in conflicting gradients – concretely, gradients that point in the opposite
direction and therefore have opposite cosine similarities – that ultimately result in the model failing
to efficiently converge to a global optima. With the introduction of SimCSE, we implicitly introduce
another task whose gradients potentially conflict with the gradients of our other tasks, resulting in a
further suboptimal convergence point. In Table 2, we generally find that fine-tuning on two tasks but
only linear probing on the other results in performance gains for the two fine-tuned tasks at the cost
of performance for the non-fine-tuned task. We suggest this is evidence of conflicting gradients in
our setting.

6.3 Sensitivity to data distributions and distribution shift

Expounding on the final reason, Kumar et al. (2022) has found that fine-tuning can degrade perfor-
mance on OOD examples, and Peters et al. (2019) has found that the success of fine-tuning depends
on the similarity of the pretrain and fine-tune tasks: at a high level, we take this as a sign that
fine-tuning is sensitive to data distributions – and, by extension, distributional shift – involved in the
pre-training and fine-tuning stages of training. Indeed, Gao et al. (2021) find performance of their
SimCSE method strongly depended on the evaluation dataset and the choice of fine-tune dataset; we
chose the dataset they found performed best as the fine-tune dataset, but it’s possible that this choice
of dataset performs specifically well for their choice of evaluation datasets and performs poorly for
ours.

7



7 Conclusion

In this paper, we explored the efficacy of various fine-tuning methods to generate high-quality
embeddings that generalize well on three natural language processing tasks: sentiment analysis,
paraphrase detection, and semantic textual similarity. We evaluated the impact of intermediately
fine-tuning on an NLI dataset using Gao et al. (2021)’s proposed SimCSE approach to improve
downstream performance and compared it to linear probing and fine-tuning only on the target tasks
tasks.

Surprisingly, we find that intermediate fine-tuning with a contrastive loss term harms performance
compared to round-robin training, both when fine-tuning and when only linear probing. We suggest
three possible explanations for this degraded performance: the use of a learnable output layer,
conflicting gradients in multi-task settings that lead to suboptimal convergence, and the sensitivity of
fine-tuning to distributional shift between training stages. Our results demonstrate that fine-tuning,
while often effective in improving performance, is sensitive to the datasets used in each stage of
training and the target distribution used at evaluation.

Additionally – inspired by recent work from Kumar et al. (2022) – we evaluate the impact of
fine-tuning on two the three datasets on the left-out dataset to estimate the loss of generalizability
incurred by fine-tuning. We find that leaving out sentiment analysis data during the fine-tune stage
improved performance on the STS task, and vice versa, leaving out STS data improved performance
on the sentiment analysis task. Conversely, leaving out paraphrase data during the fine-tuning stage
did not improve performance on the other tasks. Our work suggests certain tasks may directly
conflict with each other (sentiment analysis and STS) while other tasks may be more compatible with
others (paraphrase detection). We encourage further research into this phenomenon – potentially by
measuring the degree of cosine similarity in the gradients of different tasks.

References
Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava, Xilun Chen, Luke Zettlemoyer, and Sonal

Gupta. 2021. Muppet: Massive multi-task representations with pre-finetuning.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano
Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter
Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil
Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar
Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal
Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu
Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa,
Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles,
Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung
Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu
Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh,
Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori,
Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai
Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi
Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. 2021. On the
opportunities and risks of foundation models.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple contrastive learning of
sentence embeddings. In Empirical Methods in Natural Language Processing (EMNLP).

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. 2021.
Parameter-efficient multi-task fine-tuning for transformers via shared hypernetworks. In Pro-
ceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th

8

http://arxiv.org/abs/2101.11038
https://doi.org/10.48550/ARXIV.2108.07258
https://doi.org/10.48550/ARXIV.2108.07258
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.18653/v1/2021.acl-long.47


International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
565–576, Online. Association for Computational Linguistics.

Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang. 2022.
Fine-tuning can distort pretrained features and underperform out-of-distribution. In International
Conference on Learning Representations.

Matthew E. Peters, Sebastian Ruder, and Noah A. Smith. 2019. To tune or not to tune? adapting
pretrained representations to diverse tasks. In Proceedings of the 4th Workshop on Representation
Learning for NLP (RepL4NLP-2019), pages 7–14, Florence, Italy. Association for Computational
Linguistics.

Jason Phang, Thibault Févry, and Samuel R. Bowman. 2018. Sentence encoders on stilts: Supple-
mentary training on intermediate labeled-data tasks.

Sebastian Ruder. 2017. An overview of multi-task learning in deep neural networks.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning. arXiv preprint arXiv:2001.06782.

9

https://openreview.net/forum?id=UYneFzXSJWh
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.48550/ARXIV.1811.01088
https://doi.org/10.48550/ARXIV.1811.01088
https://doi.org/10.48550/ARXIV.1706.05098

	Key Information to include
	Introduction
	Related Work
	Approach
	Overall Model
	Output Layers
	Sentiment Analysis Classifier
	Semantic Textual Similarity Regressor
	Paraphrase Classifier

	Training Approach
	Training on all three downstream tasks.
	Integrating contradiction/entailment pairs as an intermediate fine-tuning task.


	Experiments
	Data
	Evaluation method
	Experimental details
	Results
	Impact of SimCSE
	Leave one out fine-tuning testing as a generalizability baseline
	Concatenate vs weighted dot product decoder for STS and paraphrase tasks


	Understanding why SimCSE harms performance
	Difference in output classifiers
	Multitask conflicting gradients
	Sensitivity to data distributions and distribution shift

	Conclusion

