
Investigating Disfluency Generation for the Creation of
Humanlike Utterances in Conversation

Custom Project, Mentor: Siyan Liu

Ayushi Gupta∗
Computer Science

Stanford University
ayushig@stanford.edu

Alice Zhang
Computer Science

Stanford University
alicebz@stanford.edu

Zuyi Liz Zhao
Computer Science

Stanford University
zuyi@stanford.edu

Abstract

Developing conversational agents that communicate in a natural and human-like
manner is a challenging task in natural language processing (NLP). Existing NLP
models often produce artificially fluid utterances that lack the disfluencies of natural
speech, such as interruptions and repetitions. Our explorations reveal a discrepancy
between the goals of generating human-like disfluencies and disfluency generation
models intended to augment data for disfluency detection models. Current models
primarily focus on detecting complex disfluencies and avoid simple ones, which
is not reflective of human behavior. In this paper, we present a novel application
of an existing BiLSTM-based disfluency generation NLP model, trained on the
Switchboard Dialog Act Corpus (SwDA) dataset, to address this gap. Furthermore,
we integrate our disfluency generation model with DialoGPT and SpeechT5 for
Text-to-Speech (TTS) to create SpokenDisfloGPT, a vocal chatbot.

1 Introduction

One of the ultimate objectives of dialogue systems is to create coherent utterances indistinguishable
from human conversation, and many current conversational frameworks achieve some spectrum of
this goal [1]. The pursuit of such artificially-generated language development has therefore spawned
many disfluency detection and classification methods to remove disfluency from input data and
increase ease and effectiveness in speech recognition and processing [2].

If our goal has been to mimic human behavior, however, then many modern agents have overshot the
window of fluidity exhibited by humans and have returned full circle to artificiality. Technology has
impressive potential towards greater access to human-oriented services but cannot properly do so with
obviously artificial responses. With that in mind, we set out to investigate the generation of disfluent
text from fluent inputs to create more natural utterances similar to typical human conversation through
the incorporation of disfluency that promotes natural language but does not extend to incoherence.

2 Related Work

Disfluency detection data augmentation tools have been developed to improve the performance of
disfluency detection models. The LARD tool as developed by Passali et al. [3] is a non-neural

∗Authors are ordered alphabetically by last name.

CS224N: Natural Language Processing, Winter 2023, Stanford University. (LateX template from NIPS 2017.)



approach that performs disfluency detection by annotating a large corpus of speech data. A newer
version of LARD tool, while not publicly available, utilizes natural language processing techniques
to generate disfluencies [4]. Yang et al. [5] proposed a neural approach for data augmentation in
disfluency detection, using two-part model to generate disfluent sentences. These methods have
shown promising results in improving the accuracy of disfluency detection models.

Despite the successes of such models with natural generation, however, we must recognize that most
augmentation methods explored by other researchers prioritize disfluency augmentation to improve
accuracy over artificial language tasks such as disfluency detection, classification, and extraction,
and put less emphasis on disfluency generation for human consumption with the intent of eventually
mimicking human-to-human conversation. As we cannot determine the successes of such models on
natural generation per our specific purposes, we aim to develop a model that considers this issue as
the main focus of its generated disfluencies.

There also exists work in combining conversational GPT models with TTS models to create vocal
chatbots. To put our model into practical use, we extensively studied such models and integrated
Microsoft’s SpeechT5 and DialoGPT (large) models to our proposed model which serves as our
conversational vocal chatbot with human-like disfluency generating capabilities not seen in any
existing chatbots.

3 Approach

3.1 Baselines.

LARD. LARD [3] is an automated method for generating a vast amount of synthetic disfluencies
based on existing corpora containing fluent text. LARD can handle repetitions, replacements, and
restarts. Passali et al. categorize a repetition as a sequence of words preceding a fluent utterance that
consists of the same content, a replacement as a disfluent phrase being corrected or replaced by the
fluent phrase, and a restart as a disfluency that cause a speaker to begin a completely new utterance
rather than correct or replace the disfluency in the original sentence. Passali et al. have developed
a newer version of LARD [4], but it is not publically available. The newer LARD model utilizes a
BERT-based language model to select the reparandum candidate of a disfluency rather than randomly
selecting it as the publically available LARD [3] model does. For our research purposes we only
make use of LARD’s ability to produce repetitions and replacements as LARD’s restart algorithm
requires the use of two or more fluent sequences into one disfluent output, which could affect our
quantitative metrics when averaging disfluency frequency and length over the resulting utterances
and result in more variance during model comparison.

Planner-Generator Model. The Planner-Generator Model [5] generates augmented disfluent texts
by leveraging neural methods. The Planner decides on where to insert disfluent segments and the
Generator generates the corresponding disfluent segments based off the results from the Planner. The
Planner incorporates a bidirectional LSTM encoder in its architecture while the Generator consists
of a bidirectional LSTM encoder and an RNN decoder. The Planner uses the softmax of its hidden
states to compute decision probabilities which the Generator then uses to determine the input value
of each step of its decoder. The final disfluent sentence is therefore generated based on these decision
probabilities where it would either directly copy a step of the input fluent sentence as the output
sentence or generate a sequence of words to act as a disfluency or reparandum for the resulting
utterance. Although Yang et al. originally trained the model on the Switchboard-1 Telephone Speech
Corpus, we train the model on the Switchboard Dialog Act Corpus instead. See Appendix 7.4 for a
visualization of the model architecture.

3.2 Our Models.

Disfluency Generator. Transformers have traditionally outperformed RNNs for a variety of NLP
tasks (with one relevant example being Karita et al. [6] finding greater performance of Transformer
models than RNNs for speech applications through higher accuracy and faster convergence). With
that in mind, we chose to change the Planner-Generator (PG) encoder from an RNN to a transformer
template that was published alongside the RNN structures. As Yang et al. [5] chose to use RNN
models over transformers as per resulting performance, we attempted to improve performance of
their published transformer encoder and decoder classes by adding another normalization layer to

2



both so as to reduce internal variance, improve convergence, and increase generalization of the model
during training. We ran this model with 6 transformer layers and 8 transformer heads in the encoder
as those were the default values provided by Yang et al., and we first wanted to measure transformer
effectiveness without altering too many other variables. To further explore the effect transformer
influence would have on a model’s resulting performance, we then chose to implement transformers
for both the encoder and decoder classes of our second transformer model, decreasing the number
of layers and heads that were run on the previous model to 3 layers and 4 heads so as to prevent
overfitting with the inclusion of two complex transformers.

Disfluency Generator with LARD. While the baseline PG model is effective in generating simple
repetitions and interruptions, the limited number of complex disfluencies in the training set leads to
difficulty in generating more complex disfluencies. To address this issue, we incorporated a heuristic
replacement generator from LARD, which allowed for the generation of more complex disfluencies
involving the correction of a previous word. LARD’s replacement generator is called on top of the
PG model’s disfluent output at a probability of 11%, which is the calculated percentage of complex
disfluencies, defined as any disfluency that is longer than two tokens in the SwDA test set.

SpokenDisfloGPT. In addition to developing our disfluency generation model, we integrate it with a
GPT model fine-tuned on multiturn conversations and a TTS model to create a vocal chatbot we call
SpokenDisfloGPT. The combination of these models allows for a seamless and natural conversation
experience between the chatbot and the user. The conversational GPT model provides high-quality
responses to the user’s queries, while our disfluency generation model adds a layer of human-like
disfluencies to the chatbot’s speech, making it sound more natural and realistic. Then the TTS model
converts the disfluent output into audio format, which allows SpokenDisfloGPT to produce a spoken
response to the user’s queries. We designed SpokenDisfloGPT to evaluate the performance of our
disfluency generation model and demonstrate its practical use. See Appendix 7.5 for an example
flow of SpokenDisfloGPT.

4 Experiments

4.1 Data

The Switchboard Dialog Act Corpus (SwDA)[7] corpus extends the Switchboard-1 Telephone Speech
Corpus, Release 2 (Switchboard) [8]. See Appendix 7.1 for a data sample. Switchboard is a widely
used disfluency detection dataset, although as Passali et al. [3] have noted, it and SwDA by extension
are highly imbalanced, with less than 6% of tokens being disfluent. We do not use data augmentation
to correct this imbalance because our model aims to imitate human-like disfluency generation, which
should reflect a low percentage of disfluencies assuming that the SwDA corpus is representative
of human disfluency. Following the conventions of the Dysfluency Annotation Stylebook for the
Switchboard Corpus, we used the SwDA disfluency annotations to identify and separate fluent and
disfluent segments of each utterance in order to create fluent inputs for our model at test time.

We perform the following preprocessing steps on our dataset:

1. Normalize the text by converting to lowercase, removing punctuation other than apostrophes,
and tokenizing using the Natural Language Toolkit (NLTK).

2. Use the NLTK part-of-speech (POS) tagger to obtain POS information. We follow the
part-of-speech tags used in the Penn Treebank Project. See Appendix 7.2 for a full list.

3. Remove instances where the entire utterance is disfluent.

4. Format the data to fit the expected input format of our disfluency generator model. See
Appendix 7.3 for how the data is formatted.

4.2 Evaluation Method

Following Yang et al.[5], we use BLEU to compare the disfluent sentences generated by our model
with reference disfluent sentences reserved for testing from the SwDA dataset. However, given that
the disfluency generation task is relatively open-ended, we note that BLEU does not capture the full
scope of our model’s quantitative performance. Therefore, we leverage novel metrics to evaluate
the quality of our generated disfluencies. Specifically, we evaluate the quality of our generated

3

https://staff.fnwi.uva.nl/r.fernandezrovira/teaching/DM-materials/DFL-book.pdf
https://staff.fnwi.uva.nl/r.fernandezrovira/teaching/DM-materials/DFL-book.pdf


disfluencies by tracking the average number of separate disfluencies per utterance, the average
number of disfluent words per disfluency, the top 3 insertion indices for each separate disfluency, and
the top 3 grammatical patterns of each disfluency for both our generated outputs and the reference test
set (including and excluding disfluencies of length 1). We then compare these metrics to assess the
performance of our model. To fully account for the subjective and open-ended nature of disfluencies,
we incorporate qualitative evaluation methods such as naturalness ratings and error analysis.

4.3 Experimental Details

Disfluency Generator. The Planner-Generator model provided by Yang et al. [5] acted as our baseline
for disfluency generation and was developed with an architecture consisting of a bidirectional LSTM
encoder for the Planner portion of the model as well as a bidirectional LSTM encoder and an RNN
decoder for the Generator. It was run with a learning rate of 0.001, a gradient vector maximum norm
of 0.1, and a layout weight of 1 with a batch size of 64 and an Adam optimizer. We trained this model
for the default value of 30 epochs, which took a little over an hour. Each epoch trained around 156
seconds each, with the shortest training time being 154 seconds and the longest being 158 seconds.

Our first transformer model consisted of a transformer encoder for the Planner and Generator with
two normalization layers in each encoder layer. To keep parameters consistent with Yang et al.’s
baseline, this model was run on a 0.001 learning rate with a batch size of 64 and an Adam optimizer.
The transformers consisted of the default values of 6 layers and 8 heads. We trained this model for 30
epochs and found that epoch took around 762 seconds each to train, with the shortest training time
being 759 seconds and the longest being 765 seconds. We implemented our second transformer model
with a transformer encoder for the Planner and a transformer encoder and decoder for the Generator
with two normalization layers in each encoder layer and three normalization layers in each decoder
layer. We ran this model on a 0.001 learning rate with a batch size of 64 and an Adam optimizer but
decreased the number of layers and heads to 3 layers and 4 heads. We trained for 30 epochs and saw
an average training time for each epoch of 462 seconds, with the shortest training time being 459
seconds and the longest being 468 seconds. We then incorporated LARD’s replacement generator [3]
to all three models’ outputs.

In accordance to the metrics set by Yang et al. [5], the second transformer model (which we will now
reference as the PG+Transformers Enc&Dec) began to show highest accuracy after around 10 epochs
and lowest layer loss (the loss found during regularization of the model’s parameters at each layer)
around 7 epochs in but was comparable to the baseline for target loss (the loss found when comparing
the model’s generated disfluent sentences with the reference disfluent sentences from the SwDA
dataset). For the test set it was either comparable to the first transformer model (PG+Transformer
Enc) or performed worse after 5 epochs. The baseline was comparable to PG+Transformer Enc
results over the training set but saw highest accuracy and lowest loss for the duration of the 30 epochs
on the test set. The PG+Transformer Enc saw lowest accuracy and highest loss for the duration
of training on the training set but was comparable to PG+Transformers Enc& Dec for the test set
on most metrics aside from layer accuracy (the accuracy found for model regularization between
layers) and layer loss, in which it was more comparable to baseline results. See Appendix 7.6 for
visualizations plotted over 25 epochs due to logging issues for the last 5 epochs with PG+Transformer
Enc’s training.

SpokenDisfloGPT. To integrate our disfluency generation model into a vocal chatbot, we thoroughly
evaluated several conversational GPT models and TTS models. Our evaluation process was pri-
marily qualitative in nature. We considered Microsoft’s DialoGPT, (including small, medium, and
large variants) [9], Facebook’s BlenderBot (specifically the 90M-small variant) [10], and OpenAI’s
ChatGPT API. Additionally, we experimented with Microsoft’s SpeechT5 for TTS model [11] and
the gTTS python module that utilizes Google Translate’s TTS API. Due to compute and funding
limitations that restricted the use of ChatGPT [12] and the larger variants of BlenderBot, we chose to
use the large variant of DialoGPT. It is important to note that the responses generated by DialoGPT
are typically brief, which restricts the complete potential of disfluency generation. However, this
aligns well with our model as it was primarily trained on short utterances. Following our qualitative
assessment, we utilized SpeechT5 despite its occasional flaws in duplicating audio, as the SpeechT5
model’s human-like voice quality was considered superior to that of Google Translate’s TTS API. We
also explored the possibility of a graphical user interface for the vocal chatbot using Flask, although
due to time constraints, we were unable to fully develop this aspect of the project.

4



4.4 Results

Model Good Generated Disfluency Bad Generated Disfluency
LARD Repetitions
& Replacements

which seems to
seems to be

plastic cans and
meth I am sorry glass

PG Model
BRNN Enc

some of the some of it runs off
right away in to the
streams and rivers

uh back in those days they also
use to give you uh uh good

for uh you know you and gas
and things like this

PG Model
BRNN Enc
w/ LARD

that ’s that ’s what single well
I actually meant i was uh

i ’m i ’m hoping that this uh
the flex will uh uh things a little bit

PG Model
Transformer Enc

i i ’ve never i ’ve never
seen an actual capsule

like i i say
the the acid acid rock

PG Model
Transformers

Enc&Dec

i mean they played all
the irish jigs and so forth

and i just got through reading
uh by by uh and michener

PG Model
Transformers

Enc&Dec
w/ LARD

and if you keep up with
a consistent you know pace

our biggest electrical plants
in rhode island island island

island island island in rhode island

Dataset/Model BLEU Avg. Num Disfl Top 3
Num Disfl Dist Avg. Disfl Len

SwDA Test Set
Full N/A 0.4952

(0, 2800),
(1, 1220),
(2, 287)

0.5726

SwDA Test Set
Filtered N/A 1.3512

(1, 1220),
(2, 287),
(3, 72)

1.5622

LARD
Repetitions 0.3723 1 (1, 4258) 1.678

LARD
Replacements 0.3608 1 (1, 1642) 5.8825

PG Model
BRNN Enc 0.74589 1.087

(1, 1343),
(2, 61),
(3, 19)

1.262

PG Model
BRNN Enc
w/ LARD

0.7407 1.0789
(1, 1351),
(2, 58),
(3, 17)

1.618

PG Model
Transformer Enc 0.7400 1.0728

(1, 1339),
(2, 78),
(3, 7)

1.1144

PG Model
Transformers

Enc&Dec
0.7287 1.232

(1, 1193),
(2, 189),
(3, 39)

1.1118

PG Model
Transformers

Enc&Dec
w/ LARD

0.7244 1.2204
(1, 1209),
(2, 178),
(3, 36)

1.4268

5



Dataset/Model
Top 3

Insertion Indices
(I-I)

Top 3
POS Pattern

(P-P)

Top 3
I-I Dist

Top 3
P-P Dist

SwDA Test Set
Full & Filtered 0, 4, 5 CC, NN, RB

(0, 1351),
(4, 85),
(5, 72)

(‘CC’, 349),
(‘NN’, 259),
(‘RB’, 191)

LARD
Repetitions 0,1,2 NN, JJ, RB

(0, 2018),
(1, 583),
(2, 410)

(‘NN’, 872),
(‘JJ’, 353),
(‘RB’, 196)

LARD
Replacements 1, 0, 2

NN PRP VBP,
NN DT NN,

JJ NN

(1, 370),
(0, 309),
(2, 265)

(‘NN PRP VBP’, 23),
(‘NN DT NN’, 20),

(‘JJ NN’, 18)

PG Model
BRNN Enc 0, 10, 14 CC, NN, RB

(0, 1421),
(10, 10),
(14, 10)

(‘CC’, 566),
(‘NN’, 188),
(‘RB’, 117)

PG Model
BRNN Enc
w/ LARD

0, 3, 5 CC, NN, RB
(0, 1345),
(3, 20),
(5, 18)

(‘CC’, 523),
(‘NN’, 174),
(‘RB’, 110)

PG Model
Transformer Enc 0, 4, 6 CC, NN, RB

(0, 1409),
(4, 16),
(3, 16)

(‘CC’, 523),
(‘NN’, 259),
(‘RB’, 143)

PG Model
Transformers

Enc&Dec
0, 7, 3 CC, RB, NN

(0, 1388),
(7, 44),
(3, 39)

(‘CC’, 804),
(‘RB’, 208),
(‘NN’, 122)

PG Model
Transformers

Enc&Dec
w/ LARD

0, 4, 7 CC, RB, NN
(0, 1316),
(4, 47),
(7, 46)

(‘CC’, 751),
(‘RB’, 199),
(‘NN’, 119)

Dataset/Model

Top 3
POS Pattern

for Longer Disfl
(P-P-Long)

Top 3
P-P-Long

Dist

SwDA Test Set
Full & Filtered

PRP VBP,
JJ VBP,
CC NN

(‘PRP VBP’, 134),
(‘JJ VBP’, 63),
(‘CC NN’, 42)

LARD
Repetitions

DT NN,
DT VBZ,
PRP VBP

(‘DT NN’, 51),
(‘DT VBZ’, 32),
(‘PRP VBP’, 31)

LARD
Replacements Identical to P-P Indentical to P-P Dist

PG Model
BRNN Enc

JJ VBP,
PRP VBZ,
PRP VBP

(‘JJ VBP’, 66),
(‘PRP VBZ’, 46),
(’PRP VBP’, 34)

PG Model
BRNN Enc
w/ LARD

JJ VBP,
PRP VBZ,
PRP VBP

(‘JJ VBP’, 64),
(‘PRP VBZ’, 43),
(‘PRP VBP’, 29)

PG Model
Transformer Enc

PRP VBP,
JJ VBP,

PRP VBZ

(‘PRP VBP’, 34),
(‘JJ VBP’, 34),

(‘PRP VBZ’, 33)
PG Model

Transformers
Enc&Dec

PRP VBP,
JJ VBP,

PRP VBZ

(‘PRP VBP’, 63),
(‘JJ VBP’, 24),

(‘PRP VBZ’, 13)
PG Model

Transformers
Enc&Dec
w/ LARD

PRP VBP,
JJ VBP,

PRP VBZ

(’PRP VBP’, 62),
(‘JJ VBP’, 23),

(‘PRP VBZ’, 13)

6



Qualitative Results. We observed that for good results, the model tended to place disfluencies in
natural locations within the sentence. Furthermore, the model appeared to use slightly complex
disfluent phrases, rather than simple interruptions or hesitations, resulting in more varied output.
However, we also observed a common problem in NLP models when generating text in general,
which is the repetition of tokens. While the model was able to generate natural-sounding disfluencies
in many cases, there were instances where it produced repetitive and unnatural phrases. In addition to
the issues mentioned above, we also observed other unexpected behavior with the PG-based models,
such as incorrect annotations for the disfluencies that it had generated itself (wrongly indicating that
a disfluency is a fluent token) and special tokens that are included and decoded in the final output.

Quantitative Results. The SwDA Test Set Filtered is a subset of the SwDA Test Set that only includes
inputs that contain at least one disfluency. This filtering ensured that we could more adequately test
our disfluency generation models against the presence and accuracy of disfluencies in the data. In
terms of BLEU score, the vanilla PG model developed by Yang et al. [5] but trained on the SwDA
outperforms our other models. However, according to some of our other metrics, the PG+Transformer
Enc, the PG+Transformers Enc&Dec, and the PG+Transformers Enc&Dec w/ LARD models perform
better. PG+Transformers Enc&Dec achieves an average number of disfluencies per utterance similar
to the filtered SwDA test set, and correspondingly has the most similar distribution. PG+Transformer
Enc and PG+Transformers Enc&Dec achieve similar insertion indices for disfluencies. Many models
achieve a similar parts-of-speech pattern when looking at single-token disfluencies.

5 Analysis

Trends. There is a significant predominance of single word disfluencies and a tendency towards
one disfluency per utterance in the disfluencies generated by our model. However, this observation
is consistent with the prevalence of single-word interregnums, such as “uh” or “um”, in human
disfluencies. Additionally, the occurrence of multi-word disfluencies was found to be relatively low,
in line with the ground-truth data. It is worth noting that the PG model outputs exhibited a low number
of separate disfluencies per utterance, which could potentially be attributed to the segmentation of
utterances within the dataset.

Since LARD is designed heuristically to only insert a disfluency at one location within a given
utterance, all of its generated disfluent sentences will only have one disfluency each. Additionally,
because LARD’s replacement generator is meant to repair and correct a misspoken word in the given
sentence, the disfluencies tend to be longer.

Dataset Limitations. The limitations of our dataset must be acknowledged in order to properly
contextualize our findings. Firstly, the dataset is segmented by dialogue tags rather than by sentence,
which results in some inaccuracy in the insertion indices of disfluencies on a sentence level. Addition-
ally, utterances with less than five tokens may not provide enough meaningful context for the model
to properly generate disfluencies. Finally, the dataset does not contain many complex disfluencies,
which limits the ability of the model to learn how to effectively generate these types of disfluencies.

6 Conclusion

In this work, we explored several architecture variants of the Planner+Generator (PG) model first
proposed by Yang et al. [5], by using transformers instead of BiLSTMs and performing hypertuning,
as well as using heuristic disfluency generation tools. While we saw dataset limitations in terms
of dialogue tagging and underperformance from our models compared to the SwDA-trained PG
model in terms of BLEU score, many of our models overperform the vanilla PG model in our novel
metrics for disfluency analysis. Moreover, we demonstrated that pre-existing disfluency generation
models, which were designed for the purposes of data augmentation for disfluency detection training,
are not fully aligned with the aim of generating human-like disfluencies. Finally, we integrate the
SwDA-trained PG model with DialoGPT and SpeechT5 for TTS to create SpokenDisfloGPT, a
vocal chatbot that serves to both evaluate our disfluency generation model and to demonstrate its
effectiveness. While this work constitutes an investigation of possible disfluency generation models,
we have presented a novel application for disfluency generation outside of data augmentation. Our
hope is to contribute to solving the challenge of creating believable conversational agents with
human-like disfluencies.

7



References
[1] Tingchen Fu, Shen Gao, Xueliang Zhao, Ji-rong Wen, and Rui Yan. Learning towards conversational ai: A

survey. AI Open, 3:14–28, 2022.

[2] Yang Liu, Elizabeth Shriberg, Andreas Stolcke, and Mary Harper. Comparing hmm, maximum entropy, and
conditional random fields for disfluency detection. Ninth European Conference on Speech Communication
and Technology, 2005.

[3] T. Passali, T. Mavropoulos, G. Tsoumakas, G. Meditskos, and S. Vrochidis. Lard: Large-scale artificial
disfluency generation, 2022.

[4] T. Passali, T. Mavropoulos, G. Tsoumakas, G. Meditskos, and S. Vrochidis. Artificial disfluency detection,
uh no, disfluency generation for the masses, 2022.

[5] Jingfeng Yang, Diyi Yang, and Zhaoran Ma. Planning and generating natural and diverse disfluent texts
as augmentation for disfluency detection. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1450–1460, Online, November 2020. Association for
Computational Linguistics.

[6] Shigeki Karita, Nanxin Chen, Tomoki Hayashi, Takaaki Hori, Hirofumi Inaguma, Ziyan Jiang, Masao
Someki, Nelson Soplin, Ryuichi Yamamoto, Xiaofei Wang, Shinji Watanabe, Takenori Yoshimura, and
Wangyou Zhang. A comparative study on transformer vs rnn in speech applications, 2019.

[7] Andreas Stolcke, Klaus Ries, Noah Coccaro, Elizabeth Shriberg, Rebecca Bates, Daniel Jurafsky, Paul
Taylor, Rachel Martin, Marie Meteer, and Carol Van Ess-Dykema. Dialogue act modeling for automatic
tagging and recognition of conversational speech. Computational Linguistics, 26(3):339–371, 2000.

[8] John J. Godfrey and Edward Holliman. Switchboard-1 Release 2, 2021.

[9] Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. Dialogpt: Large-scale generative pre-training for conversational response generation,
2020.

[10] Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott, Michael Auli, and Sergey Edunov. Facebook fair’s
wmt19 news translation task submission, 2019.

[11] Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li,
Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, and Furu Wei. SpeechT5: Unified-modal encoder-decoder
pre-training for spoken language processing. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 5723–5738, May 2022.

[12] OpenAI, Nov 2022.

8



7 Appendix

7.1 SwDA Hugging Face Data Instance

Taken from the Hugging Face dataset card information for the SwDA dataset. See the dataset card for more
information about the data fields.

{’act_tag’: 115, ’caller’: ’A’, ’conversation_no’: 4325, ’damsl_act_tag’: 26,
’from_caller’: 1632, ’from_caller_birth_year’: 1962, ’from_caller_dialect_area’:
’WESTERN’, ’from_caller_education’: 2, ’from_caller_sex’: ’FEMALE’, ’length’:
5, ’pos’: ’Okay/UH ./.’, ’prompt’: ’FIND OUT WHAT CRITERIA THE OTHER CALLER
WOULD USE IN SELECTING CHILD CARE SERVICES FOR A PRESCHOOLER. IS IT EASY OR
DIFFICULT TO FIND SUCH CARE?’, ’ptb_basename’: ’4/sw4325’, ’ptb_treenumbers’: ’1’,
’subutterance_index’: 1, ’swda_filename’: ’sw00utt/sw_0001_4325.utt’, ’talk_day’:
’03/23/1992’, ’text’: ’Okay. /’, ’to_caller’: 1519, ’to_caller_birth_year’:
1971, ’to_caller_dialect_area’: ’SOUTH MIDLAND’, ’to_caller_education’: 1,
’to_caller_sex’: ’FEMALE’, ’topic_description’: ’CHILD CARE’, ’transcript_index’:
0, ’trees’: ’(INTJ (UH Okay) (. .) (-DFL- E_S))’, ’utterance_index’: 1}

7.2 Alphabetical list of part-of-speech tags used in the Penn Treebank Project

Number Tag Description
1. CC Coordinating conjunction
2. CD Cardinal number
3. DT Determiner
4. EX Existential there
5. FW Foreign word
6. IN Preposition or subordinating conjunction
7. JJ Adjective
8. JJR Adjective, comparative
9. JJS Adjective, superlative
10. LS List item marker
11. MD Modal
12. NN Noun, singular or mass
13. NNS Noun, plural
14. NNP Proper noun, singular
15. NNPS Proper noun, plural
16. PDT Predeterminer
17. POS Possessive ending
18. PRP Personal pronoun
19. PRP$ Possessive pronoun
20. RB Adverb
21. RBR Adverb, comparative
22. RBS Adverb, superlative
23. RP Particle
24. SYM Symbol
25. TO to
26. UH Interjection
27. VB Verb, base form
28. VBD Verb, past tense
29. VBG Verb, gerund or present participle
30. VBN Verb, past participle
31. VBP Verb, non-3rd person singular present
32. VBZ Verb, 3rd person singular present
33. WDT Wh-determiner
34. WP Wh-pronoun
35. WP$ Possessive wh-pronoun

9

https://huggingface.co/datasets/swda#data-fields
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html


7.3 Sample Data Formatting

7.4 PG Model Architecture

7.5 Flow of SpokenDisfloGPT

10



7.6 Training and Test Set Statistics During Model Training

Figure 1: Accuracy comparison over 25 epochs for the training set

Figure 2: Loss comparison over 25 epochs for the training set

Figure 3: Accuracy comparison over 25 epochs for the test set

Figure 4: Loss comparison over 25 epochs for the test set

11


	Introduction
	Related Work
	Approach
	Baselines.
	Our Models.

	Experiments
	Data
	Evaluation Method
	Experimental Details
	Results

	Analysis
	Conclusion
	Appendix
	SwDA Hugging Face Data Instance
	Alphabetical list of part-of-speech tags used in the Penn Treebank Project
	Sample Data Formatting
	PG Model Architecture
	Flow of SpokenDisfloGPT
	Training and Test Set Statistics During Model Training


