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Abstract

In most machine learning tasks today, we usually focus on a specific task and train and optimize our
model to perform best on this one task. However, trying to learn different tasks at the same time
may be useful in certain applications such as multilingual machine translation. This research field is
called Multi-Task Learning. How can we make multi-task methods’ results as good as current state-
of-art methods (which are trained on single tasks) and thus reduce the number of parameters used
by the models? As illustrated by Stickland and Murray (2019), multiple factors also motivate the
principle of shared parameters across tasks. Applications with a large number of tasks–such as web-
scale applications–may have constraints on the number of parameters that can be stored. Though
multi-task approaches reduce the number of required parameters, optimizing the learning of multiple
tasks at the same time is challenging. To this end, Stickland and Murray (2019) suggest using new
adaptation modules–PALs or projected attention layers–and a novel method for scheduling training.
In the literature, numerous other techniques to deal with the arising challenges of multitasking have
been published. As an example, Yu et al. (2020a) proposed a method called gradient surgery to
deal with competing gradients. In this project, we set up a multi-task model that can perform three
separate linguistic tasks: sentiment analysis, paraphrase detection, and semantic textual similarity.
Training and evaluating on respectively the Stanford Sentiment Treebank (SST), the Quora Dataset
and the SemEval Benchmark Dataset, we obtain a baseline having an arithmetic mean of 0.648
for the accuracy on the test sets. We evaluate multiple published fine-tuning approaches and study
their interactions to reach a mean dev accuracy of 0.761 and a mean test accuracy of 0.767 ranking
us 5th on the leaderboard. Additionally, we introduce a combination of Pal scheduling (Stickland
and Murray, 2019) and Gradient vaccine (Wang et al., 2020)–Gradient Compromise–that massively
increases the training speed during the first epochs of finetuning.

Sharing project: Marie Huynh is also using this final
project in BIODS53 (Software Engineering for Scien-
tists) which is a 2 credits class to learn good software
engineering practices. (good use of github, organiza-
tion of code, unit testing, automation, ...)

1 Introduction

Natural Language Processing has been a fast-paced
evolving field in the past years, and has achieved great
performance on a variety of tasks including sentiment
analysis, paraphrase detection and semantic similar-
ity. Nevertheless, in this context, models often have a
few hundred million trainable parameters, which makes
"adaptations to new tasks computationally infeasible"
as underlines Maziarka and Danel (2021). Furthermore,
such models also face overfitting and data-scarcity prob-
lems Chen et al. (2021). Multitask learning (MTL) has
emerged as a promising approach which can help us

create better language representations, improve gener-
alization of models and spare resources.

As highlighted in Crawshaw (2020), "the existing meth-
ods of MTL have often been partitioned into two groups
with a familiar dichotomy: hard parameter sharing vs.
soft parameter sharing". On one hand, in hard parame-
ter sharing, you share the model weights between multi-
ple tasks and each weight is trained to jointly minimize
multiple loss functions (Crawshaw, 2020). On the other
hand, in soft parameter sharing, each task has its model
with its individual weights and we penalize the distance
between the model parameters of the different tasks in
order for the parameters to be similar.

In recent years, BERT (Bidirectional Encoder Represen-
tations from Transformers) (Devlin et al., 2018) has be-
come a popular choice for multitasking in Natural Lan-
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guage Processing (NLP) due to its strong performance
on various NLP tasks. Inspired by Stickland and Mur-
ray (2019), we assume soft-parameter sharing with the
whole of BERT would require too many parameters.
In this context, we will consider hard parameter shar-
ing while adding adapters to shared layers and keeping
several task-specific output layers with the objective of
building a multitask BERT on three separate linguistic
tasks : sentiment analysis, paraphrase detection and se-
mantic similarity. Using this approach, we hope to im-
prove accuracy on each individual task through param-
eter sharing, while also reducing the total number of
parameters trained (resulting in reduced model memory
requirements). These optimization goals are critical for
use in limited-memory consumer devices such as smart-
phones.

Despite the great aforementioned advantages, MTL still
faces multiple challenges. As an illustration, tasks can
compete with each other to achieve a better learning rep-
resentation during training. Numerous techniques have
been explored in literature to answer those arising chal-
lenges and we leverage and combine some approaches
to improve on our BERT-based multitask model.

2 Related Work

This section will first discuss recent works of the BERT
model in MTL and will then tackle novel approaches
dealing with the challenges of MTL in NLP.

2.1 BERT Model and Multitasking

Introduced by Devlin et al. (2018), the BERT model has
led to state-of-the-art results in many NLP tasks and has
significantly reduced the need for labeled data by pre-
training on unlabeled data over different pre-training
tasks. BERT is first trained trained on plain text for
masked word prediction and next sentence prediction
tasks. We call this first step pretraining. Then, it is fine-
tuned on a specific linguistic task with additional task-
specific layers using task-specific training data. In 2019,
Liu et al. (2019) proposed a multitask learning frame-
work for BERT that simultaneously learns to classify
multiple attributes of text, such as pairwise text classi-
fication and text similarity. The lower layers–the text
encoding layers–are shared across all tasks, while the
top layers are task-specific, combining different types
of natural language understanding (NLU) tasks. The
latter reached state of the art results on ten NLU tasks.
Furthermore, several recent works aim to improve mul-
titasking performance by modifying the BERT architec-
ture itself. One such approach is the ’Projected Atten-
tion Layer’ (PAL) introduced by Stickland and Murray
(2019). The PAL is a low-dimensional multi-head at-
tention layer that is added in parallel to normal BERT
layers and specific to each task. This layer allows for
a global attention layer that is specific to each task,

without having the number of parameters multiplied by
the number of tasks, as most of the parameters will be
shared in the classic multi-head attention layer.

2.2 Multitask Fine-Tuning

Other recent works have also focused on optimizing the
fine-tuning process for multitask learning. The latter
faces numerous challenges, the first one being to make
sure that training the model for a task does not ruin the
accuracy of another task.

2.3 Scheduling

First, how do we iterate through the tasks? The classic
approach for multi-task learning is to use round-robin
sampling (cycling through the different tasks one af-
ter the other). The problem is that if the dataset con-
tains more instances of one task than another, it will
repeat several times all the examples of the task with
few data points before it repeats all the examples of
the other task. This will lead to overfitting for the task
that repeats a lot and underfitting for the other one. To
this end, Stickland and Murray (2019) propose a novel
method for scheduling training. At first, the tasks are
sampled proportionally to their training set size but then
to avoid interferences, the weighting is reduced to have
tasks sampled more uniformly.

2.4 Gradient Treatment Methods and Finetuning
Regularization

Second, how do we deal with competing gradients?
During finetuning, the gradients of each task are com-
puted and used to update the shared model parameters.
However, the gradients of one task can interfere with
the gradients of another task, leading to suboptimal per-
formance on both tasks. To deal with competing gradi-
ents, Yu et al. (2020a) proposed a method called gra-
dient surgery. This approach projects competing for
gradients from one task onto the normal plane of an-
other task, preventing the competing gradient compo-
nents from being applied to the network and impair-
ing optimization. This approach therefore encourages
the model to learn similar representations for the differ-
ent tasks. Finally, aggressive fine-tuning often causes
over-fitting and thus failure to generalize to unseen data.
The SMART fine-tuning framework developed by Jiang
et al. (2020) aims to improve the latter in two steps. The
first step is Smoothness-Inducing Adversarial Regular-
ization, which reduces overfitting and improves gener-
alization by adding a smoothness inducing adversarial
regularizer to the loss function. The second step is Breg-
man proximal point optimization, which acts as a strong
regularizer to prevent aggressive parameter updates dur-
ing fine-tuning. This step improves the stability and
convergence of the training process by preventing the
updates from deviating too heavily from the previous
ones. The SMART framework has been shown to im-
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prove the performance of fine-tuning on various NLP
tasks with limited data.

3 Approach

In this section we will describe the approach we fol-
lowed. This consists in two main steps: handling the
multitasking approach of the model, i.e. how can we
update BERT when we want to finetune for different
tasks. The second step consists in how can we change
the architecture of our Multitask classifier so that it per-
forms better without adding too many parameters.

3.1 Baseline : BERT model

As a baseline, we implemented a simple classifier con-
sisting of a BERT model that has on top one dropout
and a linear layer trained for each task. We recall that
the Bert model consists of a stack of 12 Bert layers.
Each Bert-Layer can be defined as:

BL(h) = LN(h+ SA(h))

with LN a normalization layer and SA a self-attention
layer defined as:

SA(h) = FFN(LN(h+ MH(h)))

Here, FFN is simply a feed-forward network and MH
is a multi-head attention layer.

Sentiment classification and paraphrase detection are
both considered as classifications, whereas semantic
similarity is handled as a regression task. Our model
has been first pre-trained (only the classification layers
are trained) and then finetuned (all the parameters, in-
cluding the BERT layers, are trained) using a random
task scheduler, meaning that at each step of the train-
ing, the task used for training is sampled randomly. Ex-
cept if precised otherwise, the learning rate used will be
10−3 for pretraining and 10−5 for fine-tuning.

3.2 Learning to multitask

As we have previously seen, multitasking raises two
main problems: how should we schedule the learning,
and how do we deal with competing gradients. In this
section, we will describe approaches we used to tackle
both of these issues as well as a method to make sure
our finetuning does not diverge too much from our pre-
trained BERT model.

3.2.1 Task Scheduling

Since we have far more training examples for para-
phrase detection (140,000) vs sentiment classification
(8,500), we optimized task scheduling via the approach
proposed in Stickland and Murray (2019).

P(taski) = Nα
i (1)

where:
P(taski) = taski probability
Ni = task i dataset size

α = 1− .8 ∗ e− 1

E − 1
e = current epoch;E = # of epochs

3.2.2 Finetuning with gradient treatment methods
and Regularized Optimization

To prevent opposing task gradients from impairing
training, we implemented gradient surgery and tried ap-
proaches from two sources: Yu et al. (2020b) and Nzey-
imana (2022) (with Automated Mixed Precision).

As a reminder, gradient surgery consists of projecting a
gradient gi on gj if they have a negative cosine similar-
ity by doing:

g′i = gi −
gi · gj
||gj ||2

· gj

A more sophisticated method, gradient vaccine, does
not assume that all tasks must enjoy similar gradient
interactions and instead uses Φij , the cosine similarity
between gi and gj :

g′i = gi+
||gi||

(
ΦT

ij

√
1− (Φij)2 +Φij

√
1− (ΦT

ij)
2
)

||gi||
√
1− (ΦT

ij)
2

gj

On the other hand, as aggressive finetuning often leads
to overfitting and failure to generalize. We incor-
porated the SMART regularization framework (Jiang
et al., 2020) using a SMART-Pytorch library to avoid
the latter.

SMART consists of two steps. The first step
is Smoothness-Inducing Adversarial Regularization,
which seeks to reduce overfitting and improve general-
ization when fine-tuning a task with limited data. This
step optimizes the following equation:

min
θ
F(θ) = L(θ) + λsRs(θ),

where L(θ) is the loss function, λs > 0 is a tuning pa-
rameter, and Rs(θ) is the smoothness inducing adver-
sarial regularizer, defined as:

Rs(θ) =
1

n

n∑
i=1

max
∥x̃i−xi∥p≤ϵ

ℓs (f (x̃i; θ) , f (xi; θ)) ,

The second step of SMART is Bregman proximal point
optimization. This approach works as a strong regular-
izer to prevent aggressive parameter updates that occur
during fine-tuning. Essentially, it prevents θt+1 update
from deviating too heavily from θt update. This ap-
proach takes the form:

θt+1 = argminθF(θ) + µDBreg (θ, θt) ,
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where µ > 0 is a tuning parameter, and DBreg(·, ·) is
the Bregman divergence defined as

DBreg (θ, θt) =
1

n

n∑
i=1

ℓs (f (xi; θ) , f (xi; θt))

3.2.3 Individual Pretraining

During pretraining, the parameters of BERT are frozen,
so the three classifiers are independent. This is why we
implemented individual pretraining which consists of
training our multitask classifier on each task with
frozen BERT layers, and then loading the 3 best sets
of parameters for each fully connected layer used in
the classifier. This made a massive difference as ex-
plained in the Experiments section.

3.2.4 Our contribution: Scheduling with Gradient
Treatment Methods

One problem with Gradient Surgery (or Gradient Vac-
cine) is that it is not compatible with any type of
scheduling. Indeed, one gradient per task is needed,
so the schedule must be round-robin. That is why we
introduce a new method that we call Gradient Com-
promise–detailed in Algorithm 1–which combines both
the idea of the PAL schedule and the treatment of the
gradients from the gradient vaccine. The idea is to only
update our model every batch of batches, and every
time the task of a batch is chosen by a slightly modified
PAL schedule.

Algorithm 1: Process several batches
input : Epoch index e, number of epochs Ne, nb.

of batches Nbatches, dataset size Sdata

output : Schedule, losses

schedule← [’sst’, ’para’, ’sts’];
α← 1− 0.8 ∗ (e− 1)/(Ne − 1) ;
p← (Sdata)

α ;
p← probs/

∑
probs ;

pb ← (p ∗ nbatches − 1)/(nbatches − 3) ;
pb ← clip(pb) ;
pb ← pb/

∑
pb ;

+random_choice(names, pb, nbatches − 3) ;
shuffle(schedule) ;
for task in schedule do

loss[task]← loss[task] + loss(batch, task) ;
end
β ← 0.2 + 0.8 ∗ (e− 1)/(Ne − 1)
returnloss/(Sdata)

β

3.3 Tuning the architecture

3.3.1 Handling two inputs

Both paraphrase detection and semantic textual simi-
larity have to deal with two input sentences and one

output. How to handle these two inputs is a major de-
cision in the model architecture. There are two main
approaches: running both inputs individually in BERT
and then performing some type of polling (concatena-
tion, max pooling, cosine similarity, ...) or concatenat-
ing both sentences (separated by a [SEP] token) and
feeding one long sentence to BERT. Both approaches
have been tested and the results are available in the Ex-
periment section.

3.3.2 Projected Attention Layers

As described in the Related Works section, one way to
improve the accuracy of multitasking is to add some
task-specific attention layers, called Projected Attention
Layers. Stickland and Murray (2019) propose a low-
rank approach: output = V Dg(V Eh), with V D and
V E two matrices forming a low-rank matrix.

As described in the paper, we changed the BERT lay-
ers themselves. The idea is to add a new attention term
that is specific to each task and has only a few parame-
ters. This way, most of the attention parameters are still
shared in SA(h), but the model can fine-tune the atten-
tion mechanism to each task by adding PAL(h) in the
Bert layer:

BL(h) = LN(h+ SA(h) + PAL(h))

The task-specific attention is defined as PAL(h) =
V Dg(V Eh). The paper compares different choices for
g: the identity function, a feed-forward network, or a
multi-head attention. We implemented a simpler varia-
tion of the actual Projected Attention Layer as called
in the paper. The paper proposes one multi-head at-
tention layer, shared across all layers, while we imple-
mented a low-rank multi-head attention layer but the at-
tention is not shared across the layers, only the matrices
V D and V E .

3.3.3 Classifier Architecture

Figure 1:
PAL

In many works, researchers only use a
fully connected layer that takes as an
input the embedding of the [CLS] to-
ken, to build a classifier. As we share
the same BERT model for several tasks,
we tried many architectures or classi-
fier heads, hoping that most of the task-
specific parameters would be learned
in the classifier head and not in BERT.
This is why we implemented, some fully
connected layers with dropout and a
ReLu activation function at each layer.
Then we tried to use an RNN with some
fully connected layers to pull the last
hidden state of the RNN. Additionally,
we tried a variant that fed all the to-
kens except the [CLS] token to the RNN,
then concatenated the last hidden state
to the [CLS] embedding and fed this
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vector to several fully connected layers. Finally, we
tried one last variation, using LSTM instead of RNN.
All the architectures described were implemented in-
dividually for each task. Later on, we found out that
adding an LSTM or RNN led to overfitting for some
tasks so we tried using an LSTM only for the Semantic
Textual Similarity task while we kept only fully con-
nected layers for the other tasks.

3.4 Data processing and optimizations

3.4.1 Class imbalances

One major challenge in this project was to handle the
repartition of the classes for the classification tasks. As
illustrated in the Experiments section, the repartition of
class was not uniform so we performed some data aug-
mentation described in section 4.1 to fix that and we
also filtered out inputs that were too long in order to
handle larger batch sizes.

3.4.2 Considering Distance Between Classes : an
intuition from the confusion matrix for SST

For the sentiment classification, we used a simple multi-
task classifier with a Cross-entropy loss. However, this
does not take into account the structure that follows the
classes (for example, class 0 (Negative) is closer to class
1 (Somewhat Negative) than class 4 (Positive). This
can be seen in the confusion matrix. One approach
would be to treat this problem as a regression prob-
lem. We tried the latter, but the results were not con-
clusive. Instead we tried to learn a 5 × 5 matrix that
links the predictions to the actual probabilities of each
class. Let’s imagine that we get the following proba-
bilities [0.02, 0.38, 0.24, 0.32, 0.04], simply taking the
argmax would result in predicting class 1. Here with
such predictions, we might think that instead, it is class
2, as the model is uncertain between somewhat positive,
neutral and somewhat negative. This is why we multi-
ply these probabilities by C a 5×5 matrix, that produces
p̃ our new probabilities for each classes.

Figure 2: Confusion Matrix on the dev set of SST

3.4.3 Memory optimization

As our model (Hugging Face bert-base-uncased) is very
large, our GPU could not handle a batch size of more
than 16. This means that the training is slow and the
updates are very irregular as the gradients are averaged
over a small batch. To overcome this issue, we imple-
mented two optimizations: Automatic Mixed Precision
Micikevicius et al. (2017) and Gradient Accumulations.
The former enables us to use nearly half the memory
by using half-precision, while the latter only updates
the model every x batches which permits us to simulate
larger batches and accelerates the training process.

4 Experiments

4.1 Data and Preprocessing

We are using the provided datasets for the default
projects with the following splits :

Datasets Labels Size: Task

Quora
Dataset

Question pairs
with paraphrase

labels

Train: 141,506
Dev: 20,215
Test: 40,431

Paraphrase
detection

SemEval STS
Benchmark

Dataset

Sentence pairs
labeled 0 (unrelated)

to 5 (equivalent)

Train: 6,041
Dev: 864
Test: 1,726

Sentence
similarity

Stanford
Sentiment
Treebank

(SST)

Movie reviews
with 5 categorical

labels from neg to pos

Train: 8,544
Dev: 1,101
Test: 2,210

Sentiment
analysis

Figure 3: Sentiment Class Repartition

Figure 4: Paraphrase Class Repartition

We filtered out the top (2%) of the longest inputs: the
longest sentences for the sentiment analysis and the
longest sums of sentence pairs for the paraphrase and
the similarity since we use this concatenation in our
model.
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Furthermore, we observed class imbalance in the train-
ing sets of the SST dataset (Sentiment) and the SemEval
dataset (Similarity). Thus, we generated an augmented
dataset using Easy Data Augmentation (ESA) (Wei and
Zou, 2019). For each underrepresented class in the Sen-
timent and Paraphrase training sets, we augment them
to be as present as the most represented class.

For each training sentence to augment, we perform
the following 4 simple operations. During syn-
onym replacement, we randomly choose some words–
excluding stop words–from the sentence and replace
each of those with one of its synonyms chosen at ran-
dom. During random insertion, we find and insert a syn-
onym of a random word–excluding stop words–into an
arbitrary position in the sentence. During the random
swap, we randomly choose two words in the sentence
and swap their positions. During random deletion, we
randomly remove words with probability p.

4.2 Evaluation method

Since sentiment analysis and paraphrase detection are
classification tasks, we use a simple accuracy metric,

calculated by dividing percent correctly classified ex-
amples by total examples. As for semantic textual sim-
ilarity, we use Pearson correlation of the true similarity
values against the predicted similarity values for the Se-
mEval STS Benchmark Dataset.

4.3 Experimental details

For all of our experiments we first pretrained our clas-
sification head with a leaning rate of 10−3 ad then fine-
tuned the model (BERT + Classifiers) with a learning
rate of 10−5. The batch size varied depending on the
methods and the task (we can have different batch sizes
for each task with gradient accumulations). Generally,
the batch size was 16 for Paraphrase detection and 32
for SST and STS. For some methods such as gradient
treatments, we went as low as 8 for Paraphrase and 16
for SST and STS. Generally, we always used the high-
est batch size possible that would fit in memory (24GB
GPU), and simulated a large batch size of 128 with gra-
dient accumulations (except for gradient treatments, for
which we used 32). The hidden dimension (if relevant)
was always 768 (same dimension as our BERT embed-
dings).

4.4 Results

Method Dev. SST Dev. Paraphase Dev. STS Dev. Mean
Random predictor 0.197 0.528 0.021 0.249
BERT + concat embed. 0.378 0.693 0.174 0.415
BERT + concat embed. + Pal schedule 0.492 0.764 0.337 0.531
BaseModel: BERT + concat sentences 0.465 0.731 0.749 0.648
BaseModel + Pal schedule 0.499 0.869 0.856 0.741
BaseModel + Pal schedule + 1 hidden 0.504 0.876 0.862 0.747
BaseModel + Pal schedule + 1 hidden + data augment. 0.513 0.879 0.868 0.753
AdvancedModel: BaseModel + Pal schedule
+ 1 hidden + indiv. pretrain + data augment. 0.520 0.882 0.872 0.758

BaseModel + 1 hidden + PCGrad 0.484 0.871 0.832 0.729
BaseModel + 1 hidden + Vaccine 0.514 0.853 0.845 0.737
BaseModel + 1 hidden + Vaccine + SMART 0.509 0.864 0.846 0.740
BaseModel + 1 hidden + Grad. compromise (ours) 0.516 0.834 0.848 0.733
BaseModel + 1 hidden + RNN 128 0.428 0.841 0.812 0.694
BaseModel + 1 hidden + RNN 128 + [CLS] embed. 0.482 0.849 0.865 0.732
BaseModel + 1 hidden + LSTM 128 + [CLS] embed. 0.491 0.827 0.858 0.725
BaseModel + 1 hidden + LSTM 256 + [CLS] embed. 0.500 0.842 0.872 0.738
BaseModel + 1 hidden + LSTM 256 (STS only) + [CLS] 0.517 0.860 0.876 0.751
AdvancedModel + PAL 0.247 0.64 0.523 0.470
AdvancedModel + PAL (only during finetuning) 0.524 0.882 0.876 0.761
AdvancedModel + PAL + SST adjustment Matrix 0.521 0.882 0.876 0.760

Table 2: Dev accuracy results in function of the different experiments. The first section groups simple addition to
handle multitasking (Fully connected classifiers). The second section dives into gradient treatment methods. The third
section shows results for more advances classifiers using the BaseModel and the Pal schedule. Finally, the last section
give results with some Projected Attention Layers (PAL), first added during pretraining (bad performance) and then
added during a last pass of fine-tuning (our best result).
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The table above attempts to summarize the most signif-
icant results we obtained. Some experiments were left
out for the sake of clarity (SST as regression, cosine
similarity for Paraphrase, Various hidden sizes for hid-
den layers, more hidden layers, ...). If a result is not
present, it is because it did not have a relevant impact
on the Dev accuracy.

The best model obtained consisted of: a BERT-
backbone with some added Projected attention Lay-
ers (12 attention heads of dimension 11 each) with a
Pal scheduling, one hidden layer of hidden size 768
for each classifier. The model was trained with the
augmented dataset, first individually pretrained for 25
epochs with a learning rate of 10−3 with a patience of
3, then finetuned with a learning rate of 10−5 for 10
epochs. We then manually changed the learning rate
to 5.10−6 and 10−6 to gain 0.06% on the Dev. Mean
accuracy. Here are our results on the Test Set:

Model Dev. SST Dev. Quora Dev. STS Dev. Mean
Best 0.533 0.883 0.885 0.767

Let us recap some major changes. First, we introduced
the pal scheduling which massively improved the ac-
curacy for SST and STS. This makes sense as prior
to scheduling we used round robin sampling, which
resulted in poor performance due to the significantly
larger size of the Quora dataset. Our most significant
improvement was switching from embedding concate-
nation (for Paraphrase and Semantic Similarity) to sen-
tence concatenation. This bumped the accuracy of
STS from 0.337 to 0.749. Instead of just comparing
the embeddings of both sentences, by concatenating
them, BERT was able to use the context of the previ-
ous sentence to encode the next (by concatenating the
sentences with a [SEP] token in between). Finally the
last major improvement was to individually pretrain on
each task. By realizing that each pretraining was inde-
pendent, we were able to pretrain each task and keep
the best verison for each instead of pretraining all of
them together and keeping the overall best. This solved
the problem of the model overfitting on SST and STS
while it was still learning on Quora.

We also had some progress that were not as significant.
The first one, was to play with the number of hidden
layers for the classifiers. After some experiments we
figured that one single hidden layer with a hidden size
of 768 was giving us the best results. Then, we studied
our datasets and after augmenting our data to balance
the classes we were able to gain overal 0.6% in accu-
racy. Finally, the last small improvement we had was to
take a model already finetuned and add Projected atten-
tion layers. After only training the projected attention
layers, we were able to gain an additional 0.3%.

Eventhough many techniques improved our accuracy,
most of them did not improve our results as signifi-
cantly as we expected. We were first surprised by the
performance of gradient treatment methods (PCGrad
and Vaccine). While they did improve our ability to
multitask, the accuracy was lower than the Pal schedul-
ing which was way simpler to implement and also way
faster to train (as gradient treatment methods require
small batch sizes due to the projections of the gradi-
ents). This is why we came up with our new method:
Gradient compromise. While it did not perform bet-
ter than the Pal schedule of Gradient Vaccine (the two
methods it tries to compromise), we will see that it was
much faster at learning.
Another surprising result was that every single architec-
ture that we tried for our classifiers performed worse
than our fully connected heads. Our first approach was
to feed all the embeddings (including the [CLS] token)
to an RNN (one per task) followed by a fully connected
layer. This performed quite poorly, especially for Senti-
ment prediction. We then separated the [CLS] token so
that the RNN only got fed the embeddings of the tokens
in the sentences and then the fully connected layers got
fed the [CLS] embedding as well as the last hidden
state of the RNN. This means that this classifier head
had access to the same features as our best model with-
out PAL, and had in addition the output of the RNN. So
we were expecting to improve our accuracy but it was
the opposite. While our accuracy after pretraining was
as expected way higher, our finetuning did not reach the
same results. This could be due to not enough training,
but is more likely due to some overfitting in the RNN
that then caused some detrimental updates in the BERT
layers. In fact with a LSTM of 512, we reached a loss
of near 0 for SST with an accuracy of 0.25 : the model
had overfitted. We then tried to change the RNN to
a LSTM, use different sizes, apply the LSTM only to
Semantic Similarity, all without great results.
Finally, our last major surprise was the Projected Atten-
tion Layers. We tried to add them in many stages of
the learning process (at the beginning, in between pre-
training and fine-tuning, after finetuning) and various
methods to train them (freeze everything except PAL,
freeze only BERT, freeze nothing) with various initial-
ization (Xavier, no-influence, ...). The only setting that
worked for us was to add them after fine-tuning, by
freezing everything and initializing them so that they
would have no influence (this way we kept our results
from our previous fine-tuning). This was done by set-
ting V D and V E to 0, while having Q, K and V equal
to identity matrices.

We also had some methods that did not really influence
our results suchs as SMART, the SST Adjustment Ma-
trix, Performing a second finetuning on top of the pal
schedule with gradient surgery, ...
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4.5 Gradient compromise results

Our method Gradient compromise that tries to conciliate a scheduling (here a pal scheduling) with a gradient treat-
ment method (here gradient vaccine) did not perform better overall than other techniques as we only reached 0.733
accuracy on the dev set. However, we noticed, that even though it was not reaching a better accuracy, the training was
much faster. Below, are the curves of the training accuracy for a PAL scheduler (truncated for visibility), the Gradient
compromise method, and the gradient compromise method with SMART regularization.

Figure 5: Gradient Compromise finetuning accuracy on the dev set versus Pal scheduling

The figure here clearly shows our improvement in training speed. While it might seem like a problem that it does
not learn up to an accuracy as good as the pal schedule, it is not as we can first start the finetuning with the gradient
compromise and then finish the training with a pal scheduling.

5 Analysis

Task Example Ground
Truth Prediction Analysis

Sentiment
analysis

If The Count of Monte Cristo
doesn’t transform Caviezel into
a movie star , then the game is
even more rigged than it was

two centuries ago.

2 0
This example features the idiom ’the game

is rigged’ that the model might not have
seen, leading to impaired prediction accuracy

Paraphrase
detection

What are the best and profitable
ways for saving money?

What are your best ways to
save money?

0 1

While similar, the two sentences differ in
that only one requests the approaches be

profitable. The model likely attended more
heavily to the term ’best’ since it often drives

the sentence’s meaning. Additionally, it failed to
interpret the pronoun ’your’ which changes

the meaning (some parsing could help)

Sentence
similarity

Work into it slowly

It seems to work
0 2.8

The classifier failed because despite the similarity
between both sentence’s constituent words and their

connotations, the first sentence has a hidden idiomatic
meaning that is challenging for our classifier to detect,

since it wasn’t common in the training data.

As we can see above, our multitask model fails primar-
ily when the text problem requires complex, high level
reasoning to resolve. Idioms, which have significance
beyond their literal meaning, often lead to these failures
(as was the case for the sentiment analysis and similar-
ity task examples). The model may also choose to at-
tend to some words in the sentence at the cost of others,
especially when those words are incredibly common or

significantly impact the sentence meaning (meaning the
model learns to attend to them more than others). ’Best’
is a great example of this, having both high frequency
and also serving as a strong indicator of positive conno-
tation. Approaches like increasing the number of atten-
tion heads may improve the model’s ability to attend to
various parts of the sentence simultaneously, resulting
in improved performance in these cases.

8



6 Conclusion

During this project, we tried many methods to handle
multitasking. We learned how to handle several inputs
(by concatenating the sentences), how important it was
to adopt a proper schedule (PAL), and that adding more
parameters to a classifier does not always lead to an im-
provement in accuracy. We also learned that gradient
treatment methods do not work well with very imbal-
anced datasets, but were still able to come up with a new
method–Gradient Compromise–that takes inspiration
from PAL scheduling and gradient vaccine in order to

more rapidly finetune a multitask classifier during the
first epochs. One main limitation of our work is the
variance as we did not perform any hyperparameter tun-
ing (except by hand) and so our results depend heavily
on our random seed.

Future improvements include training larger PAL layers
from scratch, pre-training the LSTM and initializing its
weight correctly to leverage all sentence embeddings,
and finetuning the hyperparameters. Additionally, we
could implement specific approaches that are known to
perform well on our datasets, such as Heisen routing for
SST Heinsen (2022).
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