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Abstract

Models with multitask capabilities are a key area of focus in the NLP community,
this has been expanded by encoders such as BERT. In this paper we explored
the impacts of having task specific heads that function on the output of BERT
embeddings. We also used gradient surgery and data augmentation in an effort to
alleviate the issue of gradient interference. Which can often come as a result of
conflicting gradient vectors or a dataset being larger. We tested our implementation
on downstream tasks for BERT, specifically: semantic text similarity, paraphrasing,
and sentiment analysis.
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2 Introduction

Multitask models in the field of natural language processing have recently emerged due to the
success of pre-trained models such as BERT, which allow word embeddings to be developed
without labeled data. This has drastically changed the landscape due to their effectiveness
of capturing the semantic relationships between words. Nevertheless, these embeddings are
not sufficient to perform downstream tasks. Instead, the embeddings can be used as the input
into other task specifc model heads. We began with a simple approach, for the dual sentence
tasks concatenated the bert embeddings and fed it into a linear layer. For the sentiment
task we only used a linear layer to process the BERT embeddings. We realized that these
model heads were too general and could not capture the relationships between the sentences or
the labels. Thus, we opted to iterate on the heads and arrived at the final model that is described below.

Despite having task specific heads, training one model to complete different tasks well,
poses great challenges, especially when the datasets for each task are of different sizes. Data
augmentation as in Easy Data Augmentation (EDA) [4] offers a solution that when carefully
combined with gradient surgery has the potential to produce interesting results.

We used EDA to augment areas of data that we felt could be expanded upon and then used
gradient surgery to alleviate the effects of gradient interference. We used accuracy on three datasets
(STS, Quora, SST) to generate benchmarks results.
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3 Related Work

3.1 Task Specific Heads

There has been substantial work on the utilization of multiple heads with a shared base model both
in NLP[2][1] and computer vision [3]. These papers provided baseline ideas that we built upon
to develop our models. Additionally, [6] also gave important insight on approaching the semantic
text similarity and paraphrase tasks. Specifically, using concatenated sentences before passing them
in through Bert to generate a single embedding vector for both sentences. Convolutional neural
networks have showed effectiveness in sentiment classification [10]. For this reason we chose to
approach the Sentiment classification head with a CNN layer.

3.2 Gradient Surgery

Training a model to perform well on a multitude of tasks is more difficult than training for individual
tasks as shown in [9]. One of the reasons is gradient interference, which arises when gradients for
different tasks of the model have a cosine similarity less than 0. This prevents the model from properly
finding a minimum in the combination of both spaces. Gradient surgery, as described in [5], is an
answer to the issue of gradient interference. Gradient surgery functions by projecting the gradient of
one task to the null space of the gradient of each other tasks. Then subtracting this projection from
the original gradient as follows:

gPC
i = gPC

i − gPC
i ·gj
∥g2

j∥
gj

Figure 1: Gradient Projection Example

As seen in 1 this causes the gradients to converge to a point in between when they are conflicting.
This method increases the probability that the sum of the gradients can point into the direction of a
minimum for all three of the different tasks. In practice this method works by computing the loss and
gradients of the model for each specific task. Then iterating through each gradient and applying the
formula above as necessary, before summing them together.

3.3 Data Augmentation

Data augmentation is a method that is used to expand datasets that are lacking in quantity but not
quality. We based our work on EDA [4] that proposed universal methods of data augmentation for
NLP that randomly insert, replace, delete, and swap words within sentences. The proposed changes
allowed us to augment the datasets with less data and should help to prevent the model for overfitting
to a particular task while maintaining their expressive power.

4 Approach

MinBert was the foundational piece of our model and we added one head for each of the different
tasks: sentiment analysis, semantic text similarities, and paraphrase detection. For the sentiment
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analysis head, we took the BERT embeddings and fed them into a one dimensional convolution
layer with a kernel size of 3. We found that just the convolution outperformed the addition of any
linear layers as was done with the other heads. This outputs a batch size by num labels tensor that
is our output. For the paraphrase head, we take both sentences, concatenate them, and then pass
that into BERT. We then take this combined embedding and pass it into a linear layer, dropout,
relu, and another linear layer. We then apply the sigmoid activation function which gives us our output.

For the semantic similarity we do the same procedure except we scale the output vector by
five to ensure that the output is within the correct range. We began our baseline with concatenating
the two embeddings from BERT in both paraphrase and sentiment. We noticed that this resulted in
very low accuracy for both, but particularly for STS. We then scaled the output by five and noticed an
improvement so that PARA and STS were equivalent, but Sentiment was further ahead. We then
implemented cosine similarity for the sentiment head and this drastically improved performance.
Following this, we attempted the same for the paraphrase head but the accuracy fell significantly. We
then attempted to improve PARA and capture interactions by using the dot product of the BERT
embeddings. This resulted in better learning, but still significantly lower accuracy. Our next attempt
to capture interactions was to concatenate the two sentences and run them through a sequence of
layers. This improved our accuracy past that of cosine similarity. However, when implementing
this on both PARA and STS we ran into conflicting gradients that led to decreasing results for both.
Finally, we arrived at the model shown below 2 which boosted our accuracy significantly. We found
that varying either PARA or STS head from the other caused an imbalance in learning.

For data augmentation, we followed the guidelines outlined in EDA. Essentially, we would add, swap,
delete, and insert words randomly. We processed each sentence in the dual sentence tasks separately
and did not change the labels associated with the sentences. This approach allowed us to augment the
data substantially and generated nine entries for each one in the original dataset. We did this for the
STS and SST datasets to make their sizes more comparable to that of Quora. By doing so we were
able to train with the same batch sizes but larger pool of examples per epoch. One important caveat is
that this method does have the downside of generating potentially incorrect data. For example, "She
was not happy" becoming "She was happy". The sentiment of this sentence has drastically changed,
but the label did not. Nevertheless, in our experiments this did not seem to affect the robustness of
the model and it is unclear if examples like these were generated.

Initially, we utilized a round robin approach to training for the different tasks. After com-
puting the loss for each of the different tasks, we computed the backward gradient and then took
a step in the direction of the gradient. The loss functions that were utilized for each tasks were:
mean squared loss for sentiment classification, cross entropy loss for semantic text similarity, and
binary cross entropy for our paraphrase tasks. The gradient steps occurred in the order of sentiment
classification, paraphrase detection, and semantic text similarity classification.

After achieving baseline we results, we utilized a slightly modified version of PCGrad [7],
an existing implementation of gradient surgery based on [5]. We hoped that gradient surgery would
reduce the negative effects of gradient interference. After calculating the losses for each tasks
they were combined using the PCGrad optimizer before taking a step in the direction of the newly
calculated gradient.

5 Experiments

5.1 Data

The datasets that were used were: Quora dataset for paraphrase detection, Stanford Sentiment
Treebank dataset for sentiment classification, and the STS benchmark dataset for STS classification.
The paraphrase dataset provided quora questions and whether or not one was the paraphrase of
another. The SST dataset contained movie reviews and an associated score for sentiment, 1 being
negative and 5 being positive. Finally, the STS dataset contained pairs of sentences with a score
indicating how similar they were, 1, not similar at all, and 5, they contained the same meaning. These
datasets were provided by the course staff and the STS and SST datasets were augmented as described
in the approach section.
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Figure 2: Model Architecture

5.2 Evaluation method

Model performance was evaluated on the following metrics:

1. Paraphrase Accuracy on dev set

2. Sentiment Analysis Accuracy on dev set

3. Semantic Text Similarity Accuracy on dev set

The final metric that was used for overall model performance was the average of these three accuracies.
It is worth noting we did have access to a test set, but could only submit three times to see results.
Thus, we decided to use the dev set as our main evaluation metric.

5.3 Experimental details

In order to thoroughly test our hypotheses, we trained and tested our model: using the basic heads,
the task specific heads, and combinations of data augmentation and gradient surgery. Below are the
hyperparameters that were used for each:

• Epochs: 10
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• Drop out probability: 0.3

• Hidden Size: 768

• Batch sizes: 8 and 4

• Learning rate: 1 · 10−5 and 5 · 10−6

The batch size of our model when using gradient surgery was reduced to 4 due to computation
constraints. As a result the learning rate was changed to 5 · 10−6 as suggested by recent research [8].

5.4 Results

Table 1: Results
Results

SST Score Para Score STS Score Avg. Score
Baseline Heads

Normal 0.508 0.709 0.6 0.606
Aug 15% 0.484 0.726 0.478 0.56
Aug 20% 0.51 0.73 0.578 0.606
Aug 40% 0.478 0.747 0.587 0.604

Task Specific Heads and No Gradient Surgery
Normal 0.507 0.854 0.859 0.74

Aug 15% 0.499 0.819 0.849 0.72
Aug 20% 0.5 0.856 0.831 0.73
Aug 40% 0.494 0.816 0.856 0.72
Aug 80% 0.48 0.872 0.818 0.72

Gradient Surgery
Normal 0.498 0.825 0.857 0.72666667

Aug 15% 0.5 0.83 0.844 0.72466667
Aug 20% 0.518 0.834 0.776 0.73
Aug 40% 0.503 0.855 0.832 0.73

Our results show that our carefully designed heads perform much better than our baseline as expected.
This makes sense as they had more complex structures, which made use of the expressive power
of the BERT embeddings. However, unexpectedly gradient surgery and data augmentation did not
improve the performance of our model. This might be due to the limited amount of resources that
were available to us. In the case of gradient surgery, we were forced to train the model with a lower
batch size and learning rate. Which combined with a limited amount of epochs prevented the model
from training fully. In the case of data augmentation, the dataset was relatively well populated and
thus augmenting the data did not provide any new insights for the model to learn.

6 Analysis

The best model performance was achieved by modifying the task specific heads. We noticed the
largest improvements when we concatenated the inputs and fed those into the BERT model. We
believe that this is because BERT is able to form more complex embeddings by having access to both
sentences rather than just one. We believe that the concatenation itself did not capture the interactions
between sentences completely. Thus, our reasoning was that the additional linear layers, ReLU layer,
and dropout layer helped to bridge the gap between the individual sentences. Clearly, this is true at
least in part because our model outperformed the non-task specific baseline significantly.

Data augmentation did not significantly improve the model when using 15% and 20%. We
believe this is due to how the data is sampled as it is likely that augmented sentences from the same
original sentence were over sampled. Furthermore, it is possible that by providing more data that is
similar the model overfit, memorizing the data rather than the patterns. Overall, data augmentation,
by itself, did not improve or decrease our model significantly. We suspect that if we had limited
training data that this technique would have been useful by itself.
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In our gradient surgery trials, the train loss convergence was significantly slower than in tri-
als without gradient surgery. We believe that this is in part due to the lowered learning rate and batch
size, thus more epochs were necessary to achieve the best parameters.

7 Conclusion

This exploration highlighted the potential for multitask models and their promise for improvement.
Primarily, creating task specific model heads allow models to better train for downstream tasks.
Secondly, augmenting data on a complete dataset is not as effective as in [4]. This indicates that
it still may be useful for future work where data is limited as it did not hinder model performance.
Finally, gradient surgery, while an intuitive method for dealing with gradient interference, requires
more fine tuning and potentially compute power. All our gradient surgery runs required overnight
runs on powerful GPUs which led to a bottleneck of potential runs. Thus, in future work we would
like to test the model with more powerful GPUs and larger epoch sizes.
While we improved on our baseline results significantly, there is still room for improvement within
our model especially in the Sentiment task. The success of more specific heads for paraphrase and
STS suggests that there is a similarly effective technique for sentiment analysis. More complex heads
would be another aspect of the project that would be interesting to explore specifically, adding in
attention features. Overall, this project served to showcase the potential of multitask models based on
an encoder.

8 Individual Contributions

Esteban Cambronero Saba implemented the inital bert model, augmented the data, worked to-
gether with Jesus Meza to develop the heads for each of the different tasks, and wrote part of the report.

Jesus Meza worked on integrating gradient surgery, implementing the sentiment head, and
wrote part of the report.
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