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Abstract

Our motivation is to address the limitation of Projected Attention Layers (PALs).
Our goal is to improve the performance of PALs with minBERT as the baseline
model by experimenting with training methods, adding regularization and hyperpa-
rameter optimization. During on our experiments, we saw an increase in accuracy
and correlation with both PALs and low rank layers. We found that using weight
decay and annealed sampling could ameliorate overfitting induced by increased
model complexity, but more approaches could be explored to further improve
model performance.

1 Key Information to include

• TA Mentor: Drew Kaul

2 Introduction

Improving the performance of sentence-level tasks is an essential part of Natural Language Processing.
Such tasks, such as sentiment analysis, are widely deployed in the industry due to their applicability
in various scenarios. For example, companies would like to predict the users’ sentiment based on
their reviews so that they can learn from the reviews and produce better products. They may also
wish to analyze the semantic similarity between reviews to detect bots. Therefore, we need a robust
model to perform task predictions accurately and in a timely manner.

Our approach to performing sentence-level tasks simultaneously is to use multi-task learning, which
involves the development of training models based on a pre-trained model named Bidirectional
Encoder Representations from Transformers (BERT). Previous works on multi-task learning include
adaption parameters, fine-tuning approaches, and adapting self-attention.

In this project, we want to improve the multi-task learning performance by drawing inspiration on
previous works and building a robust adaptation for multi-task learning over minBERT on 3 NLU
(Natural Language Understanding) tasks. Specifically, we introduce the Project Attention Layer
(PAL) with parameter sharing which learns task-specific parameters; we deploy different training
methods and use regularizations to reduce overfitting.

3 Related Work

Stickland and Murray [4] present a more efficient and effective approach to multi-task learning by
sharing most parameters and incorporating a smaller number of task-specific parameters. Their
contributions include task-specific functions TS(·) and scheduling training. In the BERT model,
a task-specific function is added in each BERT layer. The task-specific function could either be
a "Low-rank Layer", containing an identity function resulting in a low-rank linear transformation,
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or a "Projected Attention Layer" (PAL), containing a multi-head attention with shared parameters
across layers. In addition, the paper introduces a new method for schedule training using "annealed
sampling".

In order to simultaneously perform three natural language tasks with the BERT embeddings, we need
to find methods that can build more robust embeddings that generalize well to different language
tasks. Among many valid options, our team is interested in exploring how to modify the model
architecture of minBERT to adapt to multi-task learning. Specifically, we are aware of the potential
increase in model parameters if we fine-tune a separate model for each task, and want to explore
methods that can balance sharing some parameters across the tasks and adding task-specific units.

Therefore, we chose to base our research on this paper since it proposed the “Projected Attention
Layer” (PAL) that could fulfill our goal. By adding a task-specific function in parallel with each
self-attention layer, this method only requires 1.13x original parameters to match the state-of-the-art
performance for different GLUE tasks. Also, since the paper compares different choices of the
function g(·) within the adaptation layer, we believe that following the paper’s approach would
grant us the freedom to design and experiment with new ways of transformations. In addition, the
model has its limitation: the model does not use various training methods or any methods to limit
the interference from training on separate tasks, so we do not know the performance after adapting
different training methods on PAL and BERT. Then, we would explore and evaluate the model
performance by adapting different training methods on PAL and BERT.

4 Approach

Our approach to building this adaptation for multi-task learning over minBERT is that we first use
minBERT as the baseline model and experiment with two extensions, PAL and Lowrank. Then, we
utilized the pretrained minBERT model weights and fed the outputted embeddings to three prediction
heads to perform sentiment analysis, paraphrase detection, and semantic textual similarity on the
Stanford Sentiment Treebank dataset (SST), Quora dataset, and SemEval Benchmark Dataset (STS).
To perform these tasks, we trained the model on all datasets and further develop three training
methods as well as regularization.

4.1 Baseline: minBERT

We implemented minBERT [2] as our baseline model, a classifier that utilizes the output of minBERT
on Sentiment Analysis with Adam Optimizer as the Stochastic Optimization method, and a module
that performs multitask predictions.

To tokenize input sentences, we used a ‘WordPiece‘ tokenizer, which split sentences into word
pieces, and then we converted the word pieces into ids. Following tokenization, we applied a
trainable embedding layer to each token. The minBERT model then utilized 12 Encoder Transformer
layers, consisting of multi-head attention, followed by an additive and normalization layer with a
residual connection, a feed-forward layer, and a final additive and normalization layer with a residual
connection. The minBERT model outputted the BERT encoder as well as the [CLS] token embedding.

Figure 1: Encoder Layer of Transformer used in BERT. Figure from [3]
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4.2 Prediction heads and loss functions

We passed the output embeddings of minBERT to different prediction heads for each task. Based on
the prediction heads and evaluation metrics, we chose three different loss functions

For sentiment classification, the embeddings went through a dropout layer and a linear layer. The
linear layer has an output size equal to the number of classes (0 to 4). The class with the maximum
output value (logit) is predicted to be the sentiment class. Since this is a classic classification setting,
we used cross entropy (CE) as the loss.

For paraphrase detection, the embeddings went through a dropout layer and a linear layer. Then we
computed the dot products between each pair of sentences and applied a sigmoid function to produce
the probability that the sentence pair is a paraphrase of each other. Under such a binary classification
scenario, we chose binary cross entropy (BCE) with logits as the loss.

For semantic similarity prediction, we used the same treatment for the embeddings as for paraphrase
detection: a dropout layer, a linear layer and the computation of dot products for each sentence pair.
No sigmoid function is applied as the prediction is not binary. Considering that the evaluation metric
is Pearson’s correlation, we selected mean squared error (MSE) as the loss.

4.3 Task-specific Parameters: Low-rank Layers and Projected Attention Layers

We implemented a task-specific transformation of the hidden states on the minBERT architecture by
adding a task-specific function TS(·) in parallel to the minBERT layers. In each layer l, the hidden
vector for a particular sequence element h is updated as h(l+1) = LN(h(l) + SA(h(l) + TS(h(l))),
where LN(·) is layer normalization, SA(·) is self-attention and TS(·) is a task-specific function of
the form TS(h) = V Dg(V Eh) with V E and V D as encoder and decoder matrices. Taking g(·) as
the identity function gives Low-rank Layers; taking g(·) as multi-head attention with shared V E

and V D across layers gives PALs. We implemented and integrated Low-rank and PAL layers to each
layer in the minBERT model.

Figure 2: Schematic diagram with task-specific function

4.4 Training Methods

We experimented with the following different training methods to effectively adapt the model
parameters to multi-task learning.

• Sequential Training For every epoch, we trained tasks sequentially. To be specific, we go
through the batches of one dataset before proceeding to another.

• Additive Loss The purpose of using additive loss [1] is similar to sequential training.
Specifically, we interweave the batches of three datasets and sum their losses using Ltotal =
Ltask1 + Ltask2 + Ltask3.

• Gradient Surgery Gradient directions of different tasks might result in conflicting gradient.
Gradient Surgery [5] can solve this issue by projecting the tasks’s gradient of the i-th task gi
onto the normal plane of any other task that has a conflicting gradient for each task. This
process can be written as: gi = gi − gi·gj

||gj ||2 · gj .

• Annealed Sampling The BERT&PALs paper [4] introduces a new method for scheduling
training using "annealed sampling" to deal with differences in dataset sizes for multi-task
training. Data examples are sampled with probability pi proportional to their training set
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Figure 3: Gradient surgery

size Ni at first, and the influence of Ni is de-emphasized as training proceeds. This is
formulated as pi ∝ Nα

i and α = 1− 0.8 e−1
E−1 , where E is the total number of epochs. The

method trains on tasks more equally towards the end of the training phase and guards against
interference. We implemented sequential training, additive loss, and gradient surgery as
three separate training methods.

4.5 Optimizer: AdamW + regularization

We implemented AdamW as the optimizer using weight decay as a form of regularization. Weight
decay is a technique used to prevent overfitting in the model by incorporating a weight decay update.

5 Experiments

5.1 Data

We will use the following provided datasets to test our model on three natural language tasks.

1. Stanford Sentiment Treebank (SST) dataset: This dataset consists of 11,855 single
sentences from movie reviews extracted from movie reviews and includes a total of 215,154
unique phrases. Each phrase has a label of negative, somewhat negative, neutral, somewhat
positive, or positive.

2. CFIMDB dataset: This dataset consists of 2,434 highly polar movie reviews. In this project,
we will predict each movie review to be negative or positive.

3. Quora Dataset: This dataset consists of 400,000 question pairs with labels indicating
whether particular instances are paraphrases of one another. We will be given a subset of
this dataset and use it to perform the task of paraphrase detection.

4. SemEval STS Benchmark Dataset: This dataset consists of 8,628 different sentence pairs
of varying similarity on a scale from 0 (unrelated) to 5 (equivalent meaning). We will use
this dataset to perform the task of semantic textual similarity.

Since all datasets are included in the provided CS224N guideline, we believe that we can have easy
access to the resources.

5.2 Evaluation method

To evaluate the model’s multi-task performance on sentiment analysis, paraphrase detection, and
semantic textual similarity, we fine-tuned the embeddings and evaluated the model’s performance on
three datasets.

During training, we reported the average training loss of three tasks for every epoch. According to
the nature of tasks, we chose to use cross entropy loss for sentiment analysis, binary cross entropy
loss for paraphrase detection, and mean squared error (MSE) loss for semantic textual similarity as it
is a regression problem in nature.

To evaluate the model’s performance, we reported the sentiment classification accuracy on the
SST development dataset. For paraphrase detection, we predicted binary labels and reported the
classification accuracy of labels on the Quora development dataset. For semantic textual similarity,
we calculated the Pearson correlation of the true similarity values against the predicted similarity
values across the SemEval STS development dataset.
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5.3 Experimental details and analysis

Our baseline is a minBERT model trained on the task of sentiment classification using the SST and
the CFIMDB dataset. Without the finetuning, the model achieved a classification accuracy of 40.3%
on the SST development dataset and a classification accuracy of 76.3% on the CFIMDB development
dataset. With fine-tuning, the classification accuracy increased to 51.1% on the SST development
dataset, and increased to 97.1% on the CFIMDB development dataset.

To establish a robust adaptation of minBERT to multitask learning, we adopted the architecture of
adding task-specific parameters to each shared BERT layer. As described in the previous section, we
experimented with two choices of task-specific functions TS(·): low-rank layers with the identity
function and projected attention layers (PALs). We also experimented with different training methods
by sequentially training three tasks, adding the losses of three tasks, gradient surgery, and annealed
sampling method. Finally, we implemented weight decay on the AdamW optimizer as a regularization
method. The experimentation details are described below.

5.3.1 Experiment 1: Sequential and Additive Loss

Description. We trained the baseline minBERT model with both additive loss and sequential training.
For both experiments, we used the default parameters of a learning rate of 1e-5, a batch size of 8, and
a hidden dropout probability of 0.3.

Results. Sequential training achieved a development classification accuracy of 46.7% on the
SST dataset, a development accuracy of 76.0% on the Quora dataset, and a development Pearson
correlation coefficient of 0.519 on the STS dataset. Training with additive loss achieved a development
accuracy of 49.5% on the SST dataset, a development classification accuracy of 72.6% on the Quora
dataset, and a development Pearson correlation coefficient of 0.423 on the STS dataset.

Analysis. Despite the training efficiency of additive loss, sequential training achieved a better
performance on two of the three tasks, as well as a higher average development accuracy. We
hypothesize that when we add the losses from three tasks together in a training step, the losses are
not on the same scale and their gradients could interfere with each other when pointing in conflicting
directions. This could lead to degraded performance in the multi-task learning setting. We then
experimented with gradient surgery to alleviate the issue of conflicting gradients when simultaneously
training three tasks in one step.

5.3.2 Experiment 2: PALs with Sequential Training

Description. We implemented the projected attention layer (PALs) to add a task-specific layer to each
BERT layer. The projection matrices in the task-specific layer are shared across layers for each task.
The g(·) function is chosen to be the multi-head self-attention layer. We used the default parameters
of a learning rate of 1e-5, a batch size of 8, and a hidden dropout probability of 0.3.

Results. After implementing PALs and training the model with the sequential training method, we
achieved a development classification accuracy of 48.9% on the SST dataset, a development accuracy
of 79.0% on the Quora dataset, and a development Pearson correlation coefficient of 0.499 on the
STS dataset.

Analysis. We hypothesized that PALs should improve the performance of multi-task learning by
adapting task-specific parameters in each BERT layer. Our results mostly aligned with our hypothesis
that PALs with sequential training improved the classification accuracy of both sentiment analysis
and paraphrase detection, compared to the baseline model. However, the effect is not significant for
the semantic textual similarity task. We further observed that this configuration led to significant
overfitting. The training loss steadily decreased and the training performances improved significantly.
In particular, the model achieved > 0.9 on the training metrics for all three tasks (Table 1), but the dev
performance reached a plateau after the first few epochs (Figure 4).

5.3.3 Experiment 3: Low Rank with Sequential Training

Description. We implemented the low rank layers, which simply use the identify function as the g(·)
function in the task-specific layer. The projection matrices in the task-specific layer are not shared
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Figure 4: PALs + Sequential model performance

across layers for each task. We used the default parameters of a learning rate of 1e-5, a batch size of
8, and a hidden dropout probability of 0.3.

Results. After implementing low rank layers and training the model with the sequential training
method, we achieved a development classification accuracy of 50.6% on the SST dataset, a develop-
ment accuracy of 80.1% on the Quora dataset, and a development Pearson correlation coefficient of
0.481 on the STS dataset.

Analysis. Although the g(·) function is chosen to be the identity function, the projection matrices
are not shared in this setting, allowing the model to learn more robust adaptation to specific tasks.
Therefore, we hypothesized that low rank layers should achieve similar performance to PALs. Our
results mostly aligned with our hypothesis that low rank layers with sequential training furthered
improved the classification accuracy of both sentiment analysis and paraphrase detection, compared
to the baseline model. However, the effect is worse for the semantic textual similarity task than for
PALs. In addition, the model faced a similar overfitting problem as PALs.

5.3.4 Experiment 4: PALs with Gradient Surgery

Description. We implemented gradient surgery, which alters the gradients of tasks in a way that
allows for positive interactions between the task gradients. For the model architecture, we used
minBERT with PALs as it has shown promising performance in previous experiments. We used the
default parameters for the learning rate, batch size, and hidden dropout probability.

Results. After implementing PALs with gradient surgery, we achieved a development classification
accuracy of 49.6% on the SST dataset, a development accuracy of 75.3% on the Quora dataset, and a
development Pearson correlation coefficient of 0.409 on the STS dataset.

Analysis. At first, we hypothesized that adding gradient surgery should improve the performance
of multi-task learning by resolving conflicting gradients.[5] Our results show that gradient surgery
with PALs did outperform the baseline model with additive loss. However, gradient surgery failed to
perform better than sequential training for our datasets. One explanation is that since gradient surgery
adds gradients of three tasks in one step, the interference from other tasks still remains (despite not
conflicting). Secondly, the sizes of our datasets are very imbalanced: the Quora dataset has 141498
training data, while the STS dataset has only 6040 training samples. Since we had to limit the batch
size to at most 16 due to memory constraints, we could not iterate over the entire Quora training
dataset when training with additive loss. By comparison, sequential training trains every dataset
sequentially during each epoch, and therefore sees more training samples for the Quora dataset. This
provides a valid explanation of why the performance of gradient surgery on our paraphrase detection
task is worse than sequential training.

5.3.5 Experiment 5: Low Rank with Weight Decay

Description. Since both the PALs and low rank layers showed overfitting, we experimented with
different values of weight decay λ for the AdamW optimizer. We used the default parameters of a
learning rate of 1e-5, a batch size of 8, and a hidden dropout probability of 0.3. We trained the model
with λ = 0.01 and λ = 0.001
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Results. Using weight decay λ = 0.01, we achieved a development classification accuracy of 51.1%
on the SST dataset, a development accuracy of 81.6% on the Quora dataset, and a development
Pearson correlation coefficient of 0.409 on the STS dataset. A weight decay of λ = 0.001 gave
almost the same results as λ = 0.0.

Analysis. We hypothesized that weight decay as a form of regularization should reduce overfitting.
Our results mostly aligned with our hypothesis that λ = 0.01 improved the classification accuracy
of both sentiment analysis and paraphrase detection, compared to the model without regularization.
However, the performance on the semantic textual similarity task became worse, causing the overall
score to be lower than the baseline sequential model. We proposed that PALs and low rank layers
added considerable complexity to the model and thus were the main source of overfitting. Although
adjusting weight decay forced the model to learn "less" during training (Table 1), it did not reduce
model complexity, so overfitting persisted.

5.3.6 Experiment 6: PALs with Annealed Sampling

Description. We hypothesized that the difference in dataset sizes caused the model to fit the large
Quora dataset much more than the smaller STS and SST datasets. Our previous experiments often
obtained an accuracy of around 80% on the Quora dataset, compared to an accuracy of around 50%
on the SST dataset and a correlation of around 0.5 on the STS dataset. Therefore, we implemented
annealed sampling in combination with PALs. We used the default parameters of a learning rate of
1e-5, a batch size of 8, and a hidden dropout probability of 0.3.

Results. After training the PALs model with annealed sampling, we achieved a development
classification accuracy of 51.2% on the SST dataset, a development accuracy of 76.1% on the Quora
dataset, and a development Pearson correlation coefficient of 0.407 on the STS dataset.

Analysis. We hypothesized that annealed sampling was able to balance between datasets and guar
against interference between tasks. Our results did not align with our hypothesis as the model did not
outperform the baseline sequential model. We proposed that the reason might be our selected number
of training steps in each epoch is computed as the size of the STS dataset divided by the batch size
and times 3, which is small for the SST and the Quora dataset. One potential improvement would
be to allow for sampling with replacement and increase the step size, so that the model is able to fit
more portions of the datasets.

5.4 Overall Results

Report the quantitative results that you have found so far. Use a table or plot to compare results and
compare against baselines.

Train Train Train Dev Dev Dev Dev
SST Quora STS SST Quora STS Avg Score

Baseline+sequential 73.4% 94.2% .918 46.7% 76.0% .519 .582
Baseline+additive loss 64.9% 73.4% .911 49.5% 72.6% .423 .548

PAL+sequential 94.3% 98.8% .939 48.9% 79.0% .499 .593
PAL+grad surgery 76.7% 76.8% .922 49.6% 75.3% .409 .553

Lowrank+sequential 86.7% 98.5% .912 50.6% 80.1% .481 .596
Lowrank+sequential+λ=0.01 92.4% 99.1% .906 51.1% 81.6% .409 .579

PAL+annealed 63.1% 78.1% .666 51.2% 76.1% .407 .560
Table 1: Model performances on the development set (fine-tuned)

Test Test Test Test
SST Quora STS Avg Score

PAL+sequential 48.3% 79.4% .510 .596
Lowrank+sequential 51.4% 80.6% .476 .599

Table 2: Model performances on the test set
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The test results were what we expected based on the performances on the development set. Neverthe-
less, the performances of PALs or low rank layers were different from our expectations. The original
paper claimed that the PALs + annealed sampling configuration was able to achieve performances
close to finetuning the BERT model on each individual task. However, we found that the additional
layers in the BERT layers turned out to be adding much complexity to the model and caused the
model to overfit greatly during the training stage. We hypothesized that overfitting, along with the
difference in dataset sizes, were the main obstacles in our experiments. Our additional experiments
with weight decay and annealed sampling reduced overfitting but did not improve model performance.
We suggest that further approaches should be explored.

6 Conclusion

After experimenting with different model structures and training methods, we arrived at the following
conclusions.

1. Compared to the baseline model, adding task-specific parameters to each BERT layer
improved the model performance on multi-task learning. With sequential training, our im-
plementation of Low Rank Layers achieved the best performance on the tasks of sentiment
analysis and paraphrase detection, and has the highest development average score.

2. We experimented with different training methods, e.g. gradient surgery and annealed
sampling to improve the performance. However, their effects are not obvious as in the
original paper. We believe that the effects of training techniques would vary for different
model structures and tasks.

3. Despite the lower performance, we noticed that training with sampling greatly enhanced
the training speed compared to training all tasks in sequence. In practice, we need to
evaluate the trade-off between training efficiency and model performance when designing
large language models.

Potential future work could include experimenting different sampling methods to address the vast
difference in dataset sizes. For example, we could tweak annealed sampling to allow for sampling
with replacement and increase the step size in each epoch, so that more portions of the larger datasets
could be fit by the model. We could also experiment with uniform sampling with replacement or
square root sampling where pi ∝ Nα

i and α = 0.5. Given more time, we could further train the
models with different hyperparameters such as the number of epochs and learning rates and explore
other forms of regularization.
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