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Abstract

In this project, we aim to implement the minBert model and improve the gen-
eralization ability of the model and increase prediction accuracy by integrating
two important optimization methods: 1) the Smoothness- inducing Adversarial
Regularization technique, which effectively manages the complexity of the model;
2) Bregman proximal point optimization, which is an instance of trust-region meth-
ods and can prevent aggressive updating. Our experiments show that both the
Smoothness-Inducing Adversarial Regularization and Bregman Proximal Point
Optimization improve the model performance with proper hyperparameters. The
trade-off between performance improvements and training efficiency require further
exploration.

1 Key Information to include
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2 Introduction

In many NLP applications, the efficacy of machine learning techniques is contingent upon access
to large quantities of labeled data. However, obtaining such data can be prohibitively expensive or
time-consuming (Pan & Yang, 2009) [1]. To mitigate this issue, researchers have turned to transfer
learning.

Transfer learning is a technique employed in the field of natural language processing (NLP) to address
the challenge of limited labeled data availability. This technique involves leveraging knowledge from
high-resource domains, characterized by an abundance of data, and applying it to low-resource target
domains where labeled data is scarce. This process typically involves two stages: pre-training and
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fine-tuning. In pre-training, a high-capacity model is trained on out-of-domain data from relevant
tasks. In fine-tuning, this model is adapted to the low-resource task in the target domain (Pan & Yang,
2009)[1].

During pre-training, transformer models, such as ELMo (Peters et al., 2018)[2], GPT (Radford
et al., 2019)[3], and BERT (Devlin et al., 2019)[4], can capture general semantic and syntactic
information for use in downstream NLP tasks. These models are trained in an unsupervised manner
using large amounts of unlabeled data. During fine-tuning, the pre-trained model is adapted to the
target task/domain by replacing the top layer with a task/domain-specific sub-network and training on
limited target data. This approach has achieved state-of-the-art performance in many NLP benchmarks
(Liu et al., 2019)[5].

Due to the data limitation from the target task/domain and the extremely high complexity of the
pre-trained model, aggressive fine-tuning frequently results in the adapted model overfitting the
training data of the target task/domain and does not generalize well to unseen data. To solve this
problem, many methods are implemented relying on hyper-parameter tuning heuristics, and require
significant tuning efforts.

To mitigate the reliance on hyper-parameter tuning heuristics, Jiang et al.(2019)[6] proposed a fine-
tuning framework through regularization optimization techniques. This framework includes two
parts:

• Use the Smoothness Inducing Adversarial Regularization technique to improve the smooth-
ness of the model prediction. By adding small and random perturbations to the inputs,
Jiang et al.(2019)[6] adjust the hyperparameter to ensure the model outputs a probability
distribution as consistent as possible within a certain perturbation range. This ingredient can
effectively control the extremely high complexity of the model.

• Apply the Bregman Proximal Point Optimization methods to the fine-tuning of model
parameters in order to prevent aggressive updating. By adjusting another hyperparameter
and imposing a strong penalty at each iteration, the learning rate of the model parameter
maintains steady.

In this project, we aim to implement minBert based on the base Bert model. To mitigate the overfitting
problem, we apply the Smoothness Inducing Adversarial Regularization technique. Additionally, we
utilize Bregman Proximal Point Optimization to prevent aggressive updating. Our goal is to confirm
the improvement described in Jiang et al. (2019)[6] by combining these two techniques. We will
analyze the effectiveness of each component of our proposed method and examine how performance
varies with the removal of either component.

3 Related Work

The baseline minBERT model is from base Bert model by Devlin et al. (2018)[4], a multi-layer
bidirectional Transformer encoder based on the original implementation in Vaswani et al. (2017)[7].
Devlin et al. (2018)[4] pre-trained the model on large amounts of text data from diverse sources,
including Wikipedia and the BookCorpus. And the model learns to generate contextually sensitive
representations of words in text by predicting masked words and next sentence prediction. The
pre-trained model parameters will be first initialized and then fine-tuned using labeled data from the
downstream tasks. These tasks have separate fine-tuned models. The Bert model has the ability to
capture deep contextual relationships between words, which allows it to effectively handle a wide
range of NLP tasks. It’s reported that the Bert model outperforms existing state-of-the-art models
on a variety of NLP tasks, including sentiment analysis, question answering, and natural language
inference. The success of BERT has led to a plethora of subsequent research endeavors aimed at
improving pre-training performance. These efforts included the introduction of novel unsupervised
learning tasks by Yang et al.(2019)[8], and multi-tasking Liu et al. (2019)[9].

The pre-trained Bert model is then adapted in downstream tasks and fine-tuned. To prevent overfitting
caused by limitation of data, Jiang et al. (2019)[6] proposed a new learning framework for robust
and efficient fine-tuning for pre-trained models through regularized optimization techniques. This
SMART framework consists of Smoothness-Inducing Adversarial Regularization and Bregman
Proximal Point Optimization. The regularization method can effectively control the model complexity
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and the optimization methods can impose a strong penalty at each iteration to prevent the model from
aggressive update. After implementing SMART on BERT, the proposed model outperform the BERT
baseline model demonstrating the effectiveness of two ingredients.

Our regularization implementation is also inspired by Miyato et al., (2018)[10]. Miyato et al. proposes
a new regularization method for neural networks called Virtual Adversarial Training (VAT). This
method improves the robustness of neural networks by adding small perturbations to the input data and
encouraging the neural network to output similar predictions for the original and perturbed data. They
introduce two versions of VAT, one for supervised learning and another for semi-supervised learning.
And they demonstrate that VAT can effectively leverage unlabeled data in the semi-supervised setting
to improve the accuracy of the neural network.

Our Bregman Optimization techniques is inspired by previous methods, including Bregman proximal
methods, Accelerated Bregman proximal gradient (ABPG) by (Gutman-P 2018)[11], momentum
Bregman proximal point (MBPP) by (Tarvainen and Valpola, 2017)[12]. MBPP method accelerates
the Bregman proximal point method by introducing an additional momentum to the update. This
method is called “Mean Teacher” method in Tarvainen and Valpola, (2017)[12].

4 Approach

We took the minBERT model as the baseline model, which is a multi-layer bidirectional Transformer
encoder based on the original implementation. To improve the model generalization ability and
solve the overfitting problem, we want to use the Smoothness Inducing Adversarial Regularization
technique to improve the smoothness of the model prediction and apply the Bregman Proximal Point
Optimization methods to the fine-tuning of model hyperparameters in order to prevent aggressive
updating. We will go through the details of the approaches we utilized including the minBERT
model, Smoothness-Inducing Adversarial Regularization, and Bregman Proximal Point Optimization
methods.

4.1 Baseline Model: minBERT

We implemented a transformer-based model, minBERT model, as our baseline model. The model
includes a Multihead Attention mechanism that allows it to attend to different parts of the input text.
Specifically, it joints scaled-dot product attention from different heads. Scaled-dot product consists
of queries, keys of dimension dk, and values of dimension dv. This product could be calculated as
follows: after computing the dot products of the query with keys, the product is divided by

√
dk, and

applied with a softmax function to get the weights on values. We get:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V

Then we concat multi-heads to get the multihead attention:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

where:
headi = Attention(QWQ

i ,KWK
i , V WV

i )

Parameter matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv ,

WO ∈ Rhdv×dmodel

The base BERT model has 12 identical Encoder Transformer layers and each layer consists of
multi-head attention, followed by an additive and normalization layer, a feed-forward layer, and a
final additive and normalization layer. The minBERT model is trained using the Adam optimizer,
which is a stochastic gradient descent method that computes an adaptive learning rate for each weight
parameter. This method updates exponentially decaying moving averages of past gradients and
squared gradients at each step and uses hyperparameters to control the rate of exponential decay of
the averages. With moving averages initialized at 0, the algorithm performs bias correction to get the
two gradients.
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4.2 Smoothness-Inducing Adversarial Regularization

We add regularization into the loss function, thus we should solve the optimization for fine-tuning
below:

minθF (θ) = L(θ) + λsRs(θ)

L(θ) is loss function:

L(θ) =
1

n
Σn

i=1l(f(xi; θ), yi)

Rθ is the smoothness-inducing adversarial regularizer, we should keep ∥x̄i − xi∥p ≤ ϵ:

Rs(θ) =
1

n
Σn

i=1maxls(f(x̄i; θ), f(xi; θ))

ls is chosen as the symmetrized KL divergence.

Figure 1: Decision boundaries learned without(a)and with(b)smoothness-inducing adversarial regu-
larization, respectively. The red dotted line in (b) represents the decision boundary in (a). As can be
seen, the output f in (b) does not change much within the neighborhood of training data points.[6]

4.3 Bregman

This model imposes a strong penalty at each iteration to prevent the model from aggressive updates.
At the (t+ 1)th iteration, the vanilla Bregman proximal point takes:

θt+1 = argminθF (θ) + µDBreg(θ, θt)

µ is a tuning parameter, and DBreg is Bregman divergence:

DBreg(θ, θt) =
1

n
σn
i=1ls(f(xi; θ), f(xi; θt))

5 Experiments

5.1 Data

We mainly utilized four datasets:

• Stanford Sentiment Treebank (SST) dataset. It contains of 11,855 single sentences from
movie reviews.

• Quora Dataset. It consists of 400,000 question pairs with labels indicating whether particular
instances are paraphrases of one another.

• SemEval STS Benchmark Dataset. It consists of 8,628 different sentence pairs of varying
similarity on a scale from 0 (unrelated) to 5 (equivalent meaning).
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5.2 Evaluation method

To determine if our modified model is effective in improving the model performance, we employ
the EM score and the F1 score as our evaluation metrics. The EM score measures the percentage of
cases where the model predicts the exact answer. And the F1 score is the harmonic mean of precision
and recall, which measures the balance between the model’s ability to correctly identify positive
and negative cases. By comparing the EM score and the F1 score of train data and dev data, we
could determine whether our model is overfitting and whether our modification has improved the
generalization performance of the model. And we could determine if our modification improves the
performance over the baseline model and assess the effectiveness of our modification By comparing
the EM score and F1 score of each model.

5.3 Experimental details

We trained the minBERT model to simultaneously perform sentiment analysis, paraphrase detection,
and semantic textual similarity tasks, which is implemented by the Round-Robin method. Experiments
are performed with two techniques: the Smoothness Inducing Adversarial Regularization technique
and the Bregman Proximal Point Optimization method. To improve the performance on all three
downstream tasks, we adopted a batch training strategy with three datasets in each batch, and the
batch sizes are set to 2 for the SST and STS dataset and 24 for the Quora dataset. The epoch is
10, the learning rate is 1e-5, hidden size is 768 and the hidden layer dropout probability is 0.1. All
experiments utilize the Adam optimizer with learning rate = 1e-5, eps = 1e-6, β1 = 0.9, β2 = 0.999.

• Baseline model. The pretrained minBERT model. The training loss is calculated by the
cross-entropy between the predictions on the input and the true labels of the input.

• Smoothness-inducing adversarial regularized model. Finetuned baseline model with ad-
versarial training. We add additional perturbation to the input and introduce this adversarial
training loss into the total loss. Tuning parameters in the experiments are: the learning rate
in the adversarial training = 1e-3, the iteration variable iter_var ∈ (1, 3), the noise scale of
the perturbation ϵ = 1e-5, and λs ∈ (1, 0.1).

• Bregman proximal point optimized model. Finetuned baseline model with Bregman proxi-
mal point optimization. During training, the model parameters are updated depends on all its
predecessors, which are recorded by the Bregman momentum. The tuning hyperparameters
are β ∈ (0.1, 0.2) and µ ∈ (0.999, 0.9).

5.4 Results

Table 1: Summary of Prediction Accuracy on Dev Examples.

Model Sentiment Paraphrase Similarity
Baseline 0.515 0.849 0.874

Baseline + Adv(ϵ = 1e-5, iter = 1, λ = 1) 0.510 0.867 0.872
Baseline + Adv(ϵ = 1e-5, iter = 3, λ = 1) 0.520 0.865 0.869
Baseline + Adv(ϵ = 1e-5, iter = 3, λ = 0.1) 0.491 0.869 0.879

Baseline + Bregman(µ = 0.2,β = 0.9) 0.508 0.864 0.869
Baseline + Bregman(µ = 0.1,β = 0.999) 0.518 0.868 0.871
Baseline + Adv (ϵ = 1e-5, iter = 1, λ = 1)
+Bregman(µ = 0.2,β = 0.9) 0.498 0.870 0.873

∗ F1 score is only evaluated on the classification tasks, i.e., sentiment analysis and paraphrase
detection, and not applied on the regression task, i.e., semantic textual similarity.
∗ Due to the limit of three predictions test set, only two of the finetuned models with overall better
performance are evaluated.
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Table 2: EM and F1 Scores on Dev/Test Examples.

Model dev EM dev F1∗ test EM∗
Baseline 0.746 0.862 N/A

Baseline + Adv(ϵ = 1e-5, iter = 1, λ = 1) 0.750 0.857
Baseline + Adv(ϵ = 1e-5, iter = 3, λ = 1) 0.751 0.857 N/A
Baseline + Adv(ϵ = 1e-5, iter = 3, λ = 0.1) 0.746 0.859

Baseline + Bregman(µ = 0.2,β = 0.9) 0.747 0.856 N/A
Baseline + Bregman(µ = 0.1,β = 0.999) 0.752 0.860 0.759
Baseline + Adv (ϵ = 1e-5, iter = 1, λ = 1)
+Bregman(µ = 0.2,β = 0.9) 0.747 0.861 0.750

According to the results, the overall model performance can be improved by the two techniques, which
aligns with our expectations. The best result we have achieved is to improve 0.9% accuracy in the
sentiment analysis with applying adversarial training, and 2.5% accuracy in the paraphrase detection
with both adversarial training and Bregman optimization, and 1.7% correlation in the semantic textual
similarity task with adversarial training. The average EM score on the three downstream tasks is best
improved by 0.8% on the dev set, and achieved 0.759 on the test set, with SST test accuracy 0.540,
paraphrase test accuracy 0.865 and STS test correlation 0.872. As for the F1 score, it suggests that,
the model made close but not exact predictions, so it has lower EM score but still has higher F1 score.
We noticed that both of the two methods show stronger improvements on the paraphrase detecting
task, which also aligns with our expectations. For the smoothness inducing adversarial regularization
method, the larger dataset may have more variability and noise in the data, making it more challenging
for the model to learn a good representation. Adding perturbations to the input during training can help
the model learn to be more robust to this variability, which can improve the model’s generalization
performance on the larger dataset. And for the Bregman proximal point optimization method, since it
updates the model parameters depends on all the predecessors recorded by the Bregman momentum,
it has a strong ability to capture more information in the larger dataset and allows the model to
incorporate more information from the data during training and to make more informed decisions
about how to update the model parameters. When training on larger datasets, the amount of available
information is significantly higher than in smaller datasets, and the Bregman momentum can capture
and leverage this information to improve the convergence rate and the quality of the final solution.
However, the performance of the model on each downstream task also shows some unexpected
variations when using the smoothness inducing adversarial training, which leads the model to
different directions at different tasks. In the experiments, this method leads the model in different
directions for different tasks, resulting in mixed performance outcomes. It can improve the EM
accuracy on paraphrase detection, while it leads to unexpected effects for sentiment analysis and
semantic textual similarity, which depends on the specific hyperparameters chosen for the tasks.
This behavior is not aligned with our initial expectations, given that the SST dataset (∼8,500) for
sentiment analysis and the STS dataset (∼6,000) for semantic textual similarity are smaller than the
Quora dataset (∼140,000) for paraphrase detection. We expected that this regularization technique
would demonstrate a stronger influence on tasks that suffer from overfitting drawbacks due to limited
data, which is typical in NLP applications.

6 Analysis

Our system applied the SMART learning framework through regularized optimization techniques to
achieve more robust and efficient fine-tuning and better generalization performance of our model.
We use the smoothness inducing adversarial regularization to improve the smoothness of the model
prediction and apply the Bregman proximal point optimization to the fine-tuning of model parameters
in order to prevent aggressive updating.

• The smoothness inducing adversarial regularization adds additional perturbation to the input,
and uses gradient ascent to determine a training direction with the maximum adversarial
training loss. As this part of loss is added into the original training loss, the regularization
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method turns the learning direction of the model to improve its generalization ability and
robustness. Our experiments show that this method is more effective on the paraphrase
detection task with a larger dataset, and may fail on the sentiment analysis and the semantic
textual similarity tasks with smaller datasets due to the chosen hyperparameters.

• The Bregman proximal point optimization works through introducing all the predecessors to
update the model parameters, which are recorded by the Bregman momentum. During the
training process, the Bregman momentum is used to determine the divergence between the
current model parameters and all their previous values. By adding this part of training loss to
the original loss, this method imposes a strong penalty at each iteration to maintain a steady
learning rate of the model parameters. According to our results, this method can success
on the sentiment analysis and the paraphrase detection tasks with proper hyperparamter
configurations.

• The SMART framework with both of these two methods gains success on the paraphrase
detection task in our experiments, but may not perform well on the sentiment analysis and
the semantic textual similarity tasks.

Overall, the SMART system can be useful for preventing overfitting and aggressive updating and
improving generalization performance, but its effectiveness may depends on not only the dataset size
and the type of the downstream task, but also the hyperparameters and the quality of the dataset.

7 Conclusion

In this project, we present the SMART framework for three individual tasks, sentiment analysis,
paraphrase detection, and semantic textual similarity. Based on the default minBERT in the starter
code, we implement a multitask classifier on the top-level layer to simultaneously perform tasks. To
finetune the minBERT model, we implement the smoothness inducing adversarial regularization to
improve the smoothness of the model prediction and apply the Bregman proximal point optimization
to the fine-tuning of model parameters in order to prevent aggressive updating. With proper hyper-
parameters chosen, our model shows a good performance on both dev and test datasets, especially
for the paraphrase detection task. In our experiments, we also notice that the Bregman proximal
point optimization requires more time-consuming computation, so we need to trade off between the
performance improvements and the training efficiency, which can be further studied in the future
explorations.
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