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Abstract

When training a decoder, teacher forcing method will often lead to exposure bias
when generating new text. By training with the teacher forcing method, the model
will only minimize a maximum-likelihood loss at each individual decoding step
given the golden context from real human generated text. In this work, we use
Reinforcement Learning (deep Q network) to fine tune the decoder. Instead of
selecting the next token with highest probability, we train reinforcement learning
decoder to select from three actions–adding word, removing word, and replacing
words. The proposed approach incorporates a classifier to provide a state vector
encapsulating information from both the input sentence and the currently generated
sentence, allowing for more controlled text generation. Additionally, the concept
of backtracking for sentence generation is introduced through delete word and
replace word, enabling agents to backtrack and generate words. This approach is a
departure from traditional decoding methods, and we argue that our framework can
be applied to other text generation tasks with minor modifications. Results show
that the proposed approach generates more coherent and grammatically accurate
sentences, although it may have slightly lower performance metrics than traditional
approaches.

1 Introduction

We discovered that the approach described in the previous papers, which involved treating every
word in the vocabulary as a possible action for the reinforcement learning problem, was not feasible.
The sheer number of possible actions and the sparsity of rewards along the action space made it nearly
impossible for the model to converge. Even if only the top 40 words were considered for a reasonable
reward, the probability of the model choosing one of these actions would be extremely low. The
probability of choosing the 40 actions will just be 40

|V | ≈ 0.0007, making it impossible for the agent
to learn a meaningful policy during training. In addition, it’ll be hard to reward the agent even if they
have chosen the correct action. As a result, we revised our approach and developed a new framework
for the Reinforcement Learning Decoder that limits the action space. We also focused specifically
on text summarization, rather than other text generation tasks due to time constraints. However, we
argue that our approach and architecture can be applied to other text generation tasks by just making
small modifications in our constraint. Our method goes beyond the traditional approach of simply
considering the previous sentence and calculating its probability. Instead, we incorporate a classifier
that provides a state vector encapsulating information from both the input sentence and the currently
generated sentence. This innovative approach allows for more controlled text generation by enabling
the definition of specific criteria such as sentiment and topic, which the agent can use to guide its
decisions. Furthermore, our method introduces the concept of backtracking for sentence generation.
This means that our agents can now regret their previous decisions and backtrack to generate new,
more appropriate sentences. This is a departure from traditional decoding methods like beam search,
top-k, or top-p sampling, which do not allow for such flexibility. By incorporating backtracking,
we can ensure that our agents are constantly exploring different possibilities and making the most
optimal decisions based on the current state of the environment.

Stanford CS224N Natural Language Processing with Deep Learning



Figure 1: Overall architecture of modi-
fied transformer model Figure 2: Deep Q Learning Framework

2 Related Work

We are unaware of any prior works that has used Deep Q Neural Network as a decoder like our
proposed method. However, there are some literature that explore similar problems. For example,
QUARK model[1] uses reward and penalty functions to fine-tune the model on what not to do.
This technique enables the model to remove toxic language or offensive texts from its generated
output while staying close to the original language model. Quark model is similar to our proposed
method since it uses reward function to fine-tune the model. Our proposed method, however, is more
complicated since, in addition to rewards and penalties, our model also uses Deep Q Neural Network
to select the best next token through three variable actions (add word, replace word, and remove
word).

Furthermore, reinforcement learning has also been used for text generation[2]; this cited work
proposes reward-shaping strategies to address the challenges of sparse rewards and large action
spaces. This method will provide dense rewards to each generated toke and allow the model to
converge easier. Narrowing the number of actions and making the rewards more compact have been
the approach that we use to improve our model throughout the project.

In order to limit overestimation of Deep Q Networks and overcome poor policy estimation, we
also adopt the technique that utilizes two Deep Q Networks and take the one with lower value[3].
Inspired by this approach, we created two architectures of Deep Q Neural Networks to learn the
optimal policy from given states.

3 Approach

3.1 Reinforcement Learning Problem Formation

To provide a comprehensive understanding of the reinforcement learning problem, we will first
present an overview, and then divide the subsequent sections into environment and agent to provide a
more detailed description.

• Environment- Our environment comprises four neural networks that are fine-tuned for
specific tasks: fluency classification, sentiment classification, grammatical classification,
and topic classification. Additionally, we have fine-tuned a BART Seq2Seq model for text
summarization with the gigaword dataset, although we can swap it out with other models as
needed for different tasks. We’ll use the vector states from the classifiers to evaluate reward
and generate next state. The BART Seq2Seq model will provide the top 50 candidate words
when the action add word and remove word are called.

• State- The state will be the input sentence, generated sentence and the vector states from
the reward evaluator.
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• Action- The actions space will simply be 3, which includes add words, remove words and
replace words. We’ll query the fine-tuned model to generate text and sample its top 50
candidates word. Then we’ll use the chosen word as the word to add.

• Reward- The reward will be divided into two components. If a complete sentence has not
yet been generated, we will simulate a sentence using the simulator. We will then pass
the simulated sentence and input sentence through our classifiers model, which will output
corresponding scores. The reward will be calculated as the dot product between the cross
entropy score and a scalar vector (The scalar vector can be tuned by the user depending on
the task that focus on). Once a complete sentence is generated, we will evaluate the cross
entropy loss between the vector state of the generated sentence and the output sentence.
We will also calculate the sentence mover distance between the generated sentence and the
output sentence to determine the reward.

• Policy - Since there are infinite possible states for this problem, we will not be able to store
all the Q(s,a) values. Therefore, we proposed to use Deep Q Neural Network which serves
as a surrogate to approximate the Q(s,a) value. Given a state, the Deep Q Neural network
will output v ∈ R3 that corresponds to the 3 actions score.

3.2 Environment

3.2.1 Rewards From Classifiers

The reward is computed using the outputs of the classifiers. These classifiers will take in the
generated sentence sr from the RL agent and the input sentence si and output raw score vectors.
These row score vectors will then be used to compute a reward for some given action state pair. For
fluency F and Grammatical Classifiers G, the outputs will be two probabilities corresponding to
positive and negative fluency or grammar of the generated sentence. We want to incur punishment
for actions that lead to incoherent or grammatically incorrect sentences. For the sentiment S and
topic T classifier, we want the outputs of these two classifiers to be similar on both si and sr. I.e.
the generated sentence should have similar sentiments and topic as the input sentence. Therefore we
design our raw reward vector to be:

r =

 − log(F (sr)negative)
− log(G(sr)negative)

CrossEntropy(T (sr), T (si))
CrossEntropy(S(sr), S(si))


The final reward is defined as:

r = αT r +m(st, sr)

where α is a hyperparameter we can adjust to specify how much the agent should care about, say, the
topic of the generated sentence should match the topic of the input sentence. m is some metric we
can use to compare the generated sentence sr and the ground truth st

3.2.2 Rollout Simulator

To address the limitation of the classifiers only taking in a complete sentence as input, we have
implemented a rollout simulator inspired by reinforcement learning. This simulator utilizes the GPT2
model to auto-fill a sentence once a subset of the sequence is generated. By using this method, we
can estimate the future trajectory of taking an action and evaluate the scores and rewards with respect
to the simulated full sentence. This allows us to measure rewards even when adding tokens to an
incomplete sentence. Choosing the top k simulations is a crucial aspect of implementing the Rollout
Simulator. If we always choose the best k words from the GPT2 decoder, then the agent will never
choose to add word as the trajectories are already optimal. On the other hand, if we choose a large
value of k, such as 1000, the agent will only choose to add word because adding a word will always
yield better reward then removing a word. Therefore, finding the optimal value of k is essential to
achieving good performance. After several experiments, we determined that choosing the top 100
simulations strikes a good balance between add word and remove word, which allows the agent to
learn meaningful policies.
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3.3 Agent

3.3.1 Q Learning

To begin, we have instantiated a Q neural network that takes both a sentence and a vector state
as inputs and outputs a 3-dimensional vector. Our Q network architecture consists of a Transformer
with an attention mechanism and a fully connected neural network. To combine the two outputs,
we concatenate them and input them into another linear layer. To save training time, we initialized
the Transformer using the weights and architecture from the BART Encoder. This network will be
trained using the Clipped Double Q Learning that we’ll describe later. We’ve also defined the loss as
Huber Loss, which is a combination of the L1 loss and L2 loss, meaning that it behaves like L1 loss
when the error is small, and like L2 loss when the error is large to prevent the model from getting
stuck in local minima.

3.3.2 Clipped Double Q Learning

Initially, we used traditional Q-learning as the baseline approach for our deep reinforcement
learning framework. However, we observed that during the training process, the learning was unstable
and the loss fluctuated to values that were close to 1000. This motivated us to explore alternative
algorithms that could improve convergence and stability. We turned to Double Clipped Q-learning,
which is a variant of the standard Q-learning algorithm that has shown promise in reinforcement
learning tasks. With Double Clipped Q-learning, we instantiated two Deep Q Networks and took the
minimum value between the pair of networks to limit overestimation.[4] This approach helped to
reduce the variance of the Q-value estimates and improved the stability and speed of learning, s the
Huber loss only fluctuated between values 0 to 30 most of the time. Attached is the psuedocode for
the described approach. In addition, we also applied experience replay by defining a replay buffer
that is a First in First Out Deque, we’ll store the transition set of (states, actions, rewards, next states,
terminations) into the Deque. During training, the agent samples a batch of experiences randomly
from the replay buffer and uses them to update the Q-value function. By using a random sample of
experiences, the agent can avoid learning from correlated experiences, which can lead to unstable and
inefficient learning.[4] Experience replay also allows for more efficient use of experience by reusing
it multiple times for learning.

Algorithm 1 Pseudocode For Updating Agent
Require: DQN1← DQN(*Parameters,Learning Rate)
Require: DQN2← DQN(*Parameters,Learning Rate)

1: States,Actions,Rewards,Next_States,Terminations= ReadFromReplayBuffer(batch_size)
2: Curr_Q1= DQN1(States)[Actions]
3: Curr_Q2= DQN2(States)[Actions]
4: Next_Q1=DQN1(Next_States)
5: Next_Q2=DQN2(Next_States)
6: Next_Q = Rewards + γmini=1,2 Next_Qi maxa(s

′, a)
7: Loss1 = HuberLoss(Curr_Q1,Next_Q)
8: Loss2 = HuberLoss(Curr_Q2,Next_Q)
9: Perform Gradient Descent on Both Models

3.4 Training the Decoder Agent

Before discussing about the detailed training process, we’ll first provide an overview of our
pipeline.

1. Fine-tune an autoencoder-decoder model such as BART on a large text corpus, then freeze
the model and use it to query for the top 50 candidates for each generated token.

2. Create a double Q agent with attention mechanism that takes in a state and can perform one
of three actions: add a word from the top 50 candidates, remove a word, or replace a word.

3. Add experience replay to the deep Q network to stabalize learning process.
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4. Use a transformer layer to process the current sequence and a linear layer to process a vector
of different classifiers such as coherence, fluency, grammar, and sentiment. Concatenate the
outputs and use them as input to the Q network, which has an output action space of 3.

5. Use top k from GPT2 as a rollout method for the chosen action and evaluate the scores
compared to the target sentence.

To train our reinforcement learning (RL) agent, we will first initialize several key components,
including the environment, replay memory, agent, classifier, and deep Q network. Our chosen batch
size will be 128, with a maximum action limit of 50 for sentence generation and a maximum replay
memory size of 1000. The learning rate for the deep Q network will be set at 5e-5. For each input
sentence and output sentence pair, we will initiate a corresponding environment. To choose the next
action, our agent will use a decaying epsilon-greedy exploration strategy, beginning with a random
action selection with ϵ = 0.5. The epsilon decay rate will be set to 0.01, gradually reducing the value
of ϵ to a minimum of ϵmin = 0.01. To select an action, our model will take the average of the output
from the two deep Q networks, and output the argmax of the average. This approach allows us to
balance exploration and exploitation during the learning process, while enabling our agent to make
informed decisions based on its previous experiences stored in replay memory.

After selecting the appropriate action, our agent will feed it into the environment, which will
in turn produce a new state, reward, and termination status for the updated action. We will evaluate
the termination condition by checking whether an end-of-sentence (eos) token is produced. The new
state will consist of the action applied to the previously generated sentence, as well as the new vector
state obtained from the classifier. This updated state will provide our agent with a more accurate
representation of the current state of the environment. The reward will be calculated according to the
method outlined in section 3.2.1, taking into account various factors such as the fluency, coherence,
and relevance of the generated sentence to the desired output. By using this reward structure, we
can incentivize our agent to generate sentences that are both grammatically correct and semantically
meaningful, while also ensuring that they are relevant to the desired output.

To update our neural networks during the reinforcement learning process, we will first evaluate
the Q value for both the current and next state batches using the two neural networks. We will then
calculate the expected Q value, which will be defined as the batch of rewards plus the minimum of
the maximum action of the next Q value from both models. Once we have obtained the expected Q
value, we will evaluate the Huber loss between the two neural networks and backpropagate the loss
to update their parameters. This approach allows us to learn from the previous experiences stored
in replay memory and adjust our models accordingly. By minimizing the difference between the
predicted and expected Q values, we can ensure that our agent is making optimal decisions based on
the current state of the environment. Alg 2 is a Pseudocode of the training process.

Algorithm 2 Pseudocode For Training RL Agent
Require: Initialize Environment, ReplayMemory, Agent, Classifier, DeepQNetwork

1: Replay_Memory← Replay_Memory(Capacity)
2: DQN← DQN(*Parameters,Learning Rate)
3: Classifier← Classifier( FineTuned_Classifier_Models)
4: Agent← Agent(Fine_Tuned_Model,DQN,Replay_Memory)
5: batch_size← 128
6: for (Input,Target) in Data do
7: Environment← Env(pretrained model,input,target,classifier)
8: state← Env.initial_state()
9: for epoch in Max Action Length do

10: action← Agent.action(state)
11: next_state,reward,termination← Env.step(action)
12: state← next_state
13: agent.replay_buffer.push(state,action,next_state,reward,termination)
14: if len(agent.replay_buffer)> batch_size then
15: agent.update(batch_size)
16: end if
17: end for
18: end for
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4 Experiments

4.1 Data

We use Gigaword dataset throughout this project[5]. This dataset contains the document and
corresponding summary collected from around 4 million articles. Both of the baseline and our
modified transformer models are trained to generate the headline (summary) given the full document
from the dataset. We replaced all the numbers with "#" and replaced all the unknown words with
unknown tokenizer "UNK". An example of input and output pair looks like this:

• Input:scottish power plc said tuesday it agreed to be bought by spain ’s iberdrola sa in a
deal that values the british utility at ##.# billion pounds -lrb- UNK .# billion.

• Output: scottish power accepts takeover bid from spain’s iberdrola

4.2 Evaluation method

When evaluating the model, we use two evaluation matrices– sentence mover distance and
Rouge score (F1). These matrices measure the similarity of generated sentences from models
(baseline and our model) and the actual labels. The Rouge score we use will measure the number of
matching ‘1-grams’ between our model-generated text and a true label. We’ll compare our generated
sentence with the greedily decoded baseline method, where the decoder always chooses the word
with the highest probability.

4.3 Experimental details

We evaluate and compare the performance of the baseline and our model on a hold-out test set
with 100 data points.

Figure 3: Scatter plot of Rouge scores of base-
line and our model on the test set

Figure 4: Scatter plot of mover distances of
baseline and our model on the test set

Metric Baseline Our model
Rouge Scores 0.3655 0.2705

Mover Distance 0.8469 0.8844
Table 1: Summary of mean of Rogue scores and mover distances in test set
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4.4 Results

After training our modified model on the training set, we monitor the Huber Backward Loss
of the two models during the last 19,000 epochs in Fig. 6. The Huber Backward Loss is fluctuating
a lot less compared to using the traditional Deep Q learning approach which fluctuates to 1000.
Furthermore, we also evaluate the performance of our model on the test set and record the sentence
mover distances of the generated sentences and baseline sentences to the actual labels. The scatter
plot of these distances is shown in Fig. 4. We also calculate the difference in sentence mover distances
between baseline and generated sentences to the actual labels and plot the distribution in Fig. 5. We
also monitor the rogue scores from the baseline and our model and plot them in Fig. 3.

Figure 5: Distribution of the difference in
mover distances between baseline and gener-
ated sentences to the actual labels

Figure 6: Huber Backward Loss from the last
19,000 epochs of training

The mover distances of baseline and generated sentences from Fig. 4 are what we expect.
According to Fig. 4, most of the points (sentences in the test set) are scattering along the diagonal.
Table. 1 also shows similar distances to true labels from baseline and our model. This shows that the
generated sentences from our model are on par with the sentences from the baseline. Additionally,
we also calculate the difference in mover distances between baseline and generated sentences to the
actual labels. The distribution of these differences is shown in Fig.5. We can see that these differences
are normally distributed and centered around zero. This again shows that our model is as effective as
the baseline.

Finally, we also monitor the Rouge scores (F1) of the baseline and our model as shown in
Fig. 3. This, however, does not align with our expectation since more than half of the scores are
below the diagonal. This means that the baseline model slightly outperforms our model. We believe
that this stems from the fact that our summaries usually use the new words outside of the document
when generating summaries while the baseline usually sticks to with the words from the original
document. Therefore, the number of overlapping words between generated summaries from baseline
and our model are usually low; this, in turn, results in higher Rouge scores of the baseline model.
Furthermore, due to limited computing resources, we can only train the model for a limited number
of epochs. With more resources, we should be able to improve the Rouge score of our model.

5 Analysis

Our first attempt to this problem is training the RL decoder to select from the entire vocabulary.
That is, we define the possible actions of our Deep Q Neural Networks to be the size of the entire
vocabulary. This approach, however, fails; the baseline model can outperform our model by a large
margin across all metrics. We therefore try to reduce the number of possible actions by allowing the
model to only choose from three actions–adding, replacing and removing words. Furthermore, we
also include information from other pre-trained classifiers, including grammatical rule and sentiment
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of the original sentence, in the states of the decoder. Together, these modifications considerably
improve the performance of our model. Our model can now generate summary sentences that make
sense grammatically and capture the meaning of the original document. This improvement can also
be seen through both of our evaluation matrices as described in the previous section.

input sentence baseline output RL decoder output

1

scottish power plc said tuesday it agreed to
be bought by spain ’s iberdrola sa in a deal
that values the british utility at ##.# billion
pounds -lrb- UNK .# billion ; euro## .#
billion -rrb- .

scottish power giant
agrees to buy iber-
drola sa

scottish power firm
buys iberdrola sa in
deal worth ##.# bln
dlrs

2

hong kong’s population will swell to #.##
million in ## years, according to the latest
projections by the city ’s census and statis-
tics department released thursday.

hong kong population
to swell to #.## mil-
lion in ## years

hong kong’s popula-
tion will swell to #.##
million in ## years

3

a businessman in the pacific port city of
vladivostok was blown to pieces monday
when a bomb ripped through the elevator
he was riding in what appeared to be an
organized crime killing , a news report said.

bomb blast kills vladi-
vostok man

automobile bomb
kills vladivostok man

After analyzing the areas in which our model is outperformed by the baseline, we found that our
approach often generates summaries using different words from the original document. This is
because our model selects candidate words from the top 50 words, while the baseline model typically
uses words directly from the document because it always chooses the word with the top probability.
Consequently, the baseline model often achieves higher scores in our evaluation metric. However,
upon reading the generated sequences, we discovered that our model tends to produce more coherent
and grammatically accurate sentences from a human’s perspective, despite scoring lower on the
evaluation metric as shown in the above examples 1,2. This highlights that our reward is incentivizing
the agent to generate sentences with better readability, grammatical accuracy, and coherency by
allowing it to backtrack and sample from more words. However, this expressiveness of the RL
decoder also leads to hallucination, i.e. generating seemingly correct sentences that are actually a
wrong interpretation of the input, as shown in example 3. Future work can be done to mitigate the
hallucination effect.

6 Conclusion

Our new approach has shown promising results in improving the performance of our model.
By limiting the action space to only three options and incorporating pre-trained classifiers such as
sentiment analysis and grammatical rules, we have seen a considerable improvement in the quality of
the generated summaries. Our model is now capable of generating summary sentences that make sense
grammatically and accurately capture the essence of the original document. These improvements
are reflected in both our evaluation metrics (still almost on par with the baseline model) and user
feedback. Despite these successes, we acknowledge that our model has limitations due to the limited
amount of training data and computing resources available. With more resources and training time,
we believe our model could potentially yield better result by careful choice of hyperparameter and
exposure to more dataset. Additionally, we recognize that there are other external classifiers beyond
grammatical and sentiment analysis that could potentially aid our model in generating high-quality
summaries, and we believe that our model will have a more significant improvement if it is exposed to
more information from a given sentence. In conclusion, our approach presents a promising direction
for enhancing the performance of text generation models in diverse applications. Moving forward,
we plan to further investigate this area of research by applying our model to more open-ended text
generation tasks, such as creative writing. Additionally, we see many opportunities for exploring
different reward evaluation techniques beyond the simple dot product between the vector state and
a scalar vector that we are currently using. We are interested in studying the impact of varying
the scalar vector on the output of the generated sentence, which could potentially lead to further
improvements in our model. Ultimately, we believe that our approach has the potential to contribute
to the development of more advanced and effective natural language generation systems.
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