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Abstract

We studied the application of diffusion model in helping auto-encoder better capture
the latent space distribution in dialogue generation tasks. Specifically, a model
including both an auto-encoder and a diffuser is constructed, and a 3-step training
procedure is proposed to adapt the diffusion model in tackling conditional dialogue
generation tasks. The responses generated by DialogDiffAE are shown to be
more stable and concise responses compared to baseline methods. Such results
demonstrate the capability of diffusion model in capturing potentially complex
textual latent space distribution.

• Mentor: Yuan Gao

1 Introduction

Variational autoencoder (VAE) [1] is a generative model which has long been widely applied in
broader areas, including the natural language processing [2, 3, 4]. VAE [1] encodes data into a
latent space and then decodes for the output generation. By training the encoder-decoder networks
and approximating the latent variables by a normal distribution meanwhile, it enables the model
for generative sampling. However, no matter how one modifies the structures of encoder and
decoder, a significant limitation of VAE lies in its simple assumption that word embedding latent
variable distribution is close to standard Gaussian. While the true latent space might be much more
complex and diverse, VAE model suffers from posterior collapse problem [5]. Prior work such as
DialogWAE[6] tries to solve this problem by employing a generative adversarial network (GAN)
to model the potentially complex textual latent space, and has achieved superior performance in
conditional dialogue generation task. Though the latent space distribution is no longer required to
be close to Gaussian for DialogWAE to take effect, the introduction of GAN brings new drawbacks
such as the instability introduced by GAN’s inherent adversarial training procedure. The problem
remains to find a better method to tackle the potential complexity of the autoencoder latent variable
distribution, and in this case, diffusion model [7], with its outstanding performance in learning
unknown distributions, comes as a remedy.

In this work, we studied the application of diffusion model in aiding auto-encoder in dialogue
generation tasks. Specifically, we exploit a diffusion model to learn the potentially complex textual
latent space distribution, which is trained together with the classic auto-encoder models. Our
simulation results shows that diffusion-equipped auto-encoder can generate more stable and concise
responses compared to baseline methods such as DialogWAE. This demonstrates the capability of
diffusion model in capturing potentially complex textual latent space distribution.

Stanford CS224N Natural Language Processing with Deep Learning



2 Related Work

Diffusion model [7], as a newly emerged generative model, has gone through its dramatic growth
during the past two years and is widely applied in conditional and unconditional generative tasks,
especially in computer vision realm. Unlike traditional generative models, diffusion model is inspired
by the Markov process in thermodynamics and uses an autoencoder network to learn the latent
distributions in every backward Markov step to generate new outputs [7]. Diffusion model used to be
incapable of generating high quality images, but after introducing certain pasteurization techniques
[7] and using the non-markovian forward processes[8], the training process of diffusion models are
largely expedited, which makes diffusion models performing increasingly excellent in generating
high quality images. However, diffusion models’ advantage is in learning continuous data distribution,
which cannot be used directly to process discrete nature language data. Many attempts have been
conducted to make diffusion models useful for nature language processing tasks, either by transferring
the discrete word/sentence embeddings to a continuous domain [9, 10], or developing new diffusion
models for discrete word embeddings [11]. Diffusion-LM and Diffuseq models [9, 10] use a map
function to project discrete words into continuous embeddings and has achieved equal or even higher
performance than traditional language models in many sequence to sequence tasks, especially in
text diversity scores. However, its superior achievements tends to restrict in more intuitive tasks
like paraphrasing and simplification [10]. DiffusionBERT [11], instead, relies on discrete diffusion
models and gets a better performance than existing continuous diffusion models on uncontrolled
generative tasks. Such result shows a better adaptation of discrete diffusion method in processing
discrete text embeddings. Thereby, a promising way to introduce diffusion models into language
processing must be finding a task within the process that the diffusion model may perform better than
other algorithms.

Variational autoencoder (VAE) is a commonly used tool in text/image generation tasks. It was first
intruduced in [1], and is used in text generation tasks including but not limited to [12, 13, 14].An
intuitive example of applying VAE into generative language model is by setting the encoder and
decoder networks to be both LSTMs, but it turns out to perform not as good as simple LSTMs,
until redesigning the decoder with a dilated CNN [2]. As BERT and transformers become the trend
in NLP field, new attempts of combining VAE with different types of state-of-the-art methods are
subsequently conducted [3, 4]. The generation capability of VAE comes from that it penalizes
the embedded latent space distribution and a simple known distribution one can sample from, i.e.,
standard Gaussian distribution. However, this only works well when the latent space distribution is
indeed close to the simple known distribution, which is usually false because latent space distribution
can be arbitrarily complex in most tasks. Thus, to alleviate this drawback of VAE, tools for learning
arbitrary distribution from a simple known distribution has been introduced to learn the latent space
distribution. With this trick, one can model the latent space distribution much better even if the
distribution is complex and hard to sample from. Different tools such as GAN ([15]) has been used to
model such latent space distribution, see [6].

With the recent advancement in generative networks, it has been shown that diffusion model is
capable of modeling complex data distribution by sampling from random white noise and carrying
out a denoising procedure. Diffusion model has achieved great success in image generation tasks,
see [7]. Given diffusion model’s great ability to model complex distribution from white noise, our
work focuses on studying the use of diffusion model in capturing latent space distribution in text
generation tasks.

3 Approach

3.1 Model Structure

Inspired by DialogWAE model[6], we introduced double encoder lines for context-response pairs and
context-only processings respectively. Our DialogDiffAE model consists of RNN language encoders
& decoders, AE-like downsizing and up-sizing encoders (latent encoders & decoders), and a diffusion
network, shown in Fig. 1.

The response and context sentences will first be processed with the RNN encoders which maps the
discrete words into continuous domain. After going through the latent encoders & diffuser & latent
decoder, an RNN response decoder is then applied to transform the continuous embeddings back to

2



Figure 1: DialogDiffAE model structure

language sentences. Here we use the same encoder and decoder structures applied in DialogWAE [6]
model, which uses gated recurrent units (GRU) [16] as the RNN elements and the glove vector model
(twitter pre-trained) [17] is used as the word-vector embeddings.

Latent encoders and decoders are applied to downsize the embeddings into a lower-dimensional
latent space. They are consist of fully connected linear layers with LeakyReLU activations. Latent
encoders A and B process the context-response pairs and context-only information separately, in
which A is expected to extract the basic dialog features embedded in the context-response pairs
that feed into the diffusion model, while B is expected to transform the context information into a
suitable latent space for diffuser output to be concatenated with. The latent decoder processes the
concatenated information which includes a combination of diffuser generated "dialog rules" and
encoder processed context information. This output will form a concatenation with the pre-downsized
context embeddings for the final RNN decoding.

The Diffusion model applied in our network is the DDIM model [8]. This network propagates the
input (context-response pairs) towards the uniform normal distribution N(0, I). This diffusion network
is expected to learn and generate the generalized dialogue rules from the processed context-response
pairs from encoder A.

3.2 Diffusion Model

Follow the classic diffusion model setup, assume data is distributed according to x0 ∼ q(x0). Con-
sider the procedure of gradually diffusing the data to obtain latent variables x1, . . . ,xT , where
xt ∼ N(

√
1−βtxt−1,βt I) ({βt} is a sequence of hyperparameters increasing from 0 to 1, and is

referred to as noise scheduling.) The stochastic process from x0 to xT forms a Markov process that is
referred as the forward procedure.

To generate data from pure noise, we need to reverse the above forward procedure and form the
backward procedure that allows us to get to x0 from xT . In [7], the authors models the backward
process again as Markovnian, and employs the transition probability

pθ (xt−1|xt)∼N(µθ (xt , t),σ2
t I)

where σ2
t = βt and µθ is chosen with reparametrization trick as

µθ (xt , t) =
1

√
αt

(
xt −

βt√
1−α t

εθ (xt , t)
)
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where αt = 1−βt and αt = Πt
s=1αs. With this specific modeling of backward process, the training

procedure is simplified to penalize square loss

Et∼U(1,2,...,T ),ε∼N(0,I),x0∼q∥ε − εθ (
√

α tx0 +
√

1−α tε, t)∥2 (1)

The sampling process first samples xT ∼N(0, I), and then from t = T to t = 1 iteratively.

xt−1 =
1
αt

(
xt −

1−αt√
1−α t

εθ (xt , t)
)
+σtz

where z ∼ N(0, I). Note the model is connected to score matching since the backward process
resembles Langevin dynamics with εθ as a learned score function. See [18] for a deeper discussion
of connection between DDPM model and score-based model.

In our model, the diffusion model is applied to learn the distribution of output of latent encoder A,
and is in aid for latent encoder B and latent decoder to learn the conditional probability P(x|c).

3.3 Training and Generation

To achieve efficient training which allows different networks to learn different tasks, we separate a
full training epoch into three steps as listed below, where (c,x) represents a pair of context-response
data in the training set:

1. AE Training Phase 1: Train the latent encoder A for the context-response pairs only, while
fixing all the other networks. This step aims to let the encoder learn extracting general dialog
rules for diffusion model to train on. This time we are using the same loss function as in
step 1, with one modification of replacing diffuser output with encoder A’s output:

L1 = E(x,c)∈training set logPθ (x|c,A(x,c))

2. Diffusion Training: Train the diffusion network only, and fixing the other networks. This
step let the diffuser learn generating sample "dialog rules" produced by the latent encoder A.
Here we use the same loss function in equation (1).

3. AE Training Phase 2: With randomly sampled diffusion output, fixing the diffusion network
and update all the networks remained (Latent encoder B, Latent decoder, and RNN encoder
& decoders). This step helps training the encoder in processing context-only embeddings
and at the same time training the decoder in getting outputs without the knowledge of
response. This time, the loss function used for the gradient descent is (note that Pθ is the
RNN decoder output):

L1 = E(x,c)∈training setEε∼N(0,I) logPθ (x|c,Diffuser(ε))

In the generation procedure, we generate random sample from distribution N(0, III) and run the
backward denoising procedure with learned diffusion model. The concatenation of diffuser output
and the encoder-B-processed context embeddings will then be passed to the latent decoder and the
latent decoder output will then be combined with the raw context to form the input of the RNN
response decoder, the output of which will be our final output sentence.

4 Experiments

4.1 Data

We use DailyDial [19], a dataset containing over 10 thousands examples of english daily dialogue
sequences, and split it to 11,118 examples & 200 examples for the training and test of our dialogue
generation model. We use GLOVE as our word to vec embeddings (glove.twitter.27B.200d.txt [20]).
We borrowed code from DialogWAE [6] and used the context decoder and response decoder parts of
it. We made modifications to it for the construction of our own DiaalogDiffAE model.

4.2 Evaluation method

To evaluate our generation results, we introduce the BLEU score [21], the BOW Embedding [22], and
the distinct scores [23] as our metrics, which are also used in DialogWAE’s evaluation [6]. BLEU

4



score evaluates the overlapping extent between the generated and reference responses. BOW measures
the cosine similarity of the word embeddings between the generated and reference responses. Dist
evaluates the response diversity, in which intra-dist evaluates the diversity in a single response and
inter-dist evaluate the diversity for different response samples under the same context.

4.3 Experimental details and results

In our model, We set the diffusion network to be 10 layer u-net with 200 sample steps for every
sampling. We trained our network with 80 global epochs, and in each global epoch we perform 10
times of training phase 1, 10 times of diffusion training, and 1 time of training phase 2 (training
phases described in section 3). We evaluate our models on the test set with each test example sampling
3 responses for the calculation of precise and recall metrics. The change of loss functions on the
training set, the evaluation matrices, and the output examples on the testing sets with regard to
different epochs in the training processes are shown in Fig. 2, Fig. 3, and Table. 1, respectively.
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Figure 2: Loss function changes in a training process

Table 1: Response examples from our DialogDiffAE model after different training epochs.

Context & Reference Response Response (epoch 5)
how much is it ? -

this one sells for $ 39. 99 . it’s a bit of the <unk> .
can i test it out ? that’s right . i’m sorry . i’ll take it .

of course . yes , it’s a bit of the <unk> .
it sounds great . i ’ ll take it . i’m sorry . i’ll take it .

Response (epoch 40) Response (epoch 80)
- -

$ 200 per month . $ 200 . 50 .
that’s very good . i’ll take it . that’s a lot of money .

yes , you can . but you’ll have to ... sure , you can have a few minutes . i ...
is it the only thing i’ve got to pay for it ? i’ll have them for my own .

During the training process, the diffusion loss decreases to its bottom after only 20 epochs while the
AE losses continuously decrease until about epoch 50. However, although the metrics may show that
the model is working good enough after 40 epochs of training, human check of the actual outputs
suggest that the later model do perform better than the previous ones in generating logically accepted
responses.
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Figure 3: BLEU, BOW, response length, and distinct score changes with regard to different epochs

We then compare the result, including the metrics scores and some response examples generated by
the 80-epoch DialogDiffAE model with the baseline, DialogWAE model [6], with the results shown
in Table. 2 and Table. 3.

Table 2: Metrics comparison between DialogWAE [6] and our DialogDiffAE.

Model BLEU recall BLEU precise BOW Average Length* Inter-dist Intra-dist

DialogWAE 0.195224 0.157977 0.941461 22.681210 0.519404 0.744020
DialogDiffAE 0.187251 0.182571 0.925465 10.860384 0.334369 0.924270

*note that because we noticed that the average lengths of the DailyDialog sentences seldom exceed 20, we would
prefer smaller response lengths.

As shown in Table. 2 and Table. 3, the responses generated by DialogDiffAE are more stable and
concise, while the responses generated by DialogWAE are longer and have more diversity. Such
differences result in the higher precise BLEU scores, lower recall BLEU scores, and lower inter-dist
scores for our DialogDiffAE compared to the scores of DialogWAE. When checking the exact
examples (Table. 3), we noticed that DialogDiffAE’s output fits the logical sequence better based on
human evaluation, although the output may have no phrase or meaning overlap with the reference
responses.

5 Analysis

Although our DialogDiffAE has shown advantages in giving logically expected responses, one
limitation of this model is the identical responses it generates for most of the test examples under
different random diffusion samples (see example 2). Such phenomenon means either the diffusion
model always somehow generates the similar response strategy, or the diffusion model didn’t really
learn the general language relation between the context and responses, so that the decoder downplays
the weight assigned for the diffusion output. We propose that the second case has more probability.
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Table 3: Comparison of example responses between the DialogWAE [6] and our DialogDiffAE

Responses Example1 Example2

Context A: oh , it ’ s almost eleven twenty
.
B: thank you .
A: you ’ re welcome . the rain is
quite heavy , isn ’ t it ?
B: yeah . i was in a hurry and i
forgot my umbrella today .
A: i have one . we could share it
. which way are you going ?
B: (to be generated)

A: hello ?
B: hi , mr . smith . this is
mary . is jenny there ?
A: no , i ’ m afraid not , mary .
may i take a message for her ?
B: yes , please tell her that band
practice has been moved to tuesday
night at eight thirty .
A: o . k . no problem .
anything else ?
B: (to be generated)

DialogWAE s1: yes , please . i am a little
bit of a bit of a bit of a bit
of a bit of a few days . i ’ m
afraid i ’ m not sure i ’ ll get a
...
s2: no , not at all . i ’ m
going to be able to get a new one -
bedroom apartment . i ’ m afraid
i can ’ t find it . i ’ m going
to have to ...
s3: no , i ’ ll take a look at the
moment . i ’ ll take a look at
the <unk> . i ’ ll take the right
bus to get the right ...

s1: can ’ t be a call , please
. i ’ ll call you back to the
airport and see if you ’ ll have
to wait for a few minutes .
s2: this one . the only one is at
the moment of the next week .
s3: it ’ s a bit , but i ’ m not
sure .

DialogDiffAE s1: i would like to take a taxi .
s2: i would like to go to the
airport .
s3: oh , that ’ s great . i ’ ll
be glad to do that .

s1: yes , i ’ ll be there at 6 :
30 . that ’ s fine . i ’ ll call
you later .
s2: yes , i ’ ll be there at 6 :
30 . is that all right ?
s3: yes , i ’ ll be there at 6 :
30 . is that all right ?

We tried to examine the influence of training parameters (update times in each training phases) on
the diffusion model significance and the outputs’ diversity. We changed the training times in every
training phases (10, 5, 2 and 10, 4, 4 for training diffusion model, training phase 1, and training phase
2) and compared their metrics in Table. 4.

Table 4: Metrics comparison of different tarining parameters for DialogDiffAE.

training cases* BLEU recall BLEU precise BOW Inter-dist Intra-dist

10, 10, 1 0.187251 0.182571 0.925465 0.334369 0.924270
10, 5, 2 0.191873 0.182305 0.928594 0.357239 0.920639
10, 4, 4 0.214381 0.204169 0.929632 0.365636 0.935918

*numbers represents the training times in AE training phase 1, diffusion training, and AE training phase 2.

The (10, 4, 4) training case shows all scores superior than the other cases, which not only generates
more expected responses but also give responses with slightly higher diversity. Such exploration
suggests that placing more weights on training the context encoder B does not downplay the perfor-
mance of the diffusion, and can help the whole model learn better dialogue skills through the better
trained context encoder B. The optimal training process in our model is still waiting to be explored.

However, training case (10, 4, 4)’s improvement on the response sampling diversity is still minor.
Most of the outputs it generates for the same context under different sampling is still identical. We
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also tried to increase the diffusion model’s influence by start with 10 epochs of pre-training or finish
with 10 epochs of post-training on the diffusion network and encoder A. We compare the evaluation
metrics in Table. 5.

Table 5: Metrics comparison of whether to pre-train the encoder A & diffusion part for DialogDiffAE.

training strategy BLEU recall BLEU precise BOW Inter-dist Intra-dist

Original 0.187251 0.182571 0.925465 0.334369 0.924270
Pre-train 0.174980 0.164200 0.923884 0.362123 0.897216
Post-train 0.187492 0.176687 0.924400 0.380557 0.935400

The pre-training of the encoder A and diffusion network will not make the diffusion output perform
better in generating expected outputs. We propose that it is because without the training of encoder B,
although the diffusion model can get large weight in the decoder for the first 10 epochs of training, it
will not learn generating suitable result for the concatenation with well trained encoder B outputs after
the whole 80 training epochs. In the end, the weight of the diffusion network may still be decreased
during the following training steps. The post-training of the encoder A and diffusion network will
generate more diversified responses, as shown by increased difference between BLEU recall and
BLEU precise, and increased Inter-dist. But this training strategy pays for the lower performance in
every single sampling (decreased BLEU precise). A trade-off exists between the response diversity
and the response accuracy.

Combining the analysis above, we propose that our model has achieved a better performance than the
baseline DialogWAE [6] model. We suspect that this improvement comes from a combination of a
suitable encoder-decoder network structure and a limited contribution from the diffusion model. The
encoder B-decoder path may have tackled most of the response generation direction like a seq2seq
model, and the random sampling of the diffusion model adjust the exact output in a minor way. We
suggest that this limitation might be an inevitable result from our training process and the limited
dataset. DailyDial [19] is a sequence to sequence dataset that doesn’t offer multiple responses under
the same contexts. Therefore, in the training process it’s hard for the network to see the possibilities
of multiple responses and increase the importance of the diffusion part.

6 Conclusion

In this project, we studied the application of diffusion model in capturing textual latent space
distribution in auto-encoder models. The problem with VAE is that it works well only when the latent
space distribution is close to standard normal. We hope the injection of diffusion model can help
capturing arbitrarily complex latent space distribution and thus relax VAE’s distribution assumption.

Our model consists of classic auto-encoder model and an additional diffusion model. We divided the
training procedure into three phases to alternatively train the auto-encoder model and the diffusion
model, see Section 3.3 for more details on the training procedure. We evaluated our model on
BLEU recall score, BLEU precise score, BOW score, Average Length, Inter-dist score, and Intra-dist
score for dialogue generation task. The results show that our DialogDiffAE model generates more
stable and concise content while DialogWAE generates more diverse results (see Table 2). With
best-tuned training epoch numbers, our DialogDiffAE has superior performance according to most of
the evaluation matrics (see Table 4). Human evaluation reveals that DialogDiffAE’s output has better
logical flow than DialogWAE’s. A deeper investigation suggests that the contribution of the injected
diffusion model is limited compared to the contribution of encoder-decoder model, see Section 5 for
more discussion on this. One likely reason is that the dataset offers single response under the same
context and thus has constrained diffusion model’s generation ability.

Briefly speaking, we have successfully implemented and evaluated our proposed model 1, which is
able to generate sensible response for given context content and has better performance compared to
the baseline DialogWAE model under most of the evaluation metrics. The main limitation of our work
is that the actual diffusion model doesn’t count much for the output compared to the auto-encoder
model. We investigated this phenomenon in depth (see Section 5) and proposed some potential
reasons. Verification of these reasons is left for future work.
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