
Novel Genre-Based Story Summary Generation

Stanford CS224N Custom Project

Alexis Echano
Department of Computer Science

Stanford University
aechano@stanford.edu

Jenny Mai
Department of Computer Science

Stanford University
mcmai@stanford.edu

Abstract

Our project focuses on leveraging Generative Pre-trained Transformers (GPT Models) to generate diverse
book summaries prompted a genre/list of genres. To measure the effectiveness of augmenting GPT models
for the purpose of generating story summaries, we implement two baselines: the LSTM model and a vanilla
GPT-2 model without fine-tuning. Then, we implement two more GPT-2 models and augment both of them
by (1) using better decoding strategies, (2) GPU optimizations, and (3) fine-tuning on story summary dataset.
Using both automatic and qualitative evaluation of each model, we ultimately find that the fine-tuned GPT-2
model with 5 epochs performs best in consideration of semantic value of the book summary. By focusing on
short book summaries, we develop a supplemental natural language processing tool that has the potential to
efficiently prototype unique and novel story ideas for the creative literature field.

1 Key Information to include

• Mentor: Heidi Zhang

• External Collaborators (if you have any): None

• Sharing project: None

2 Introduction

With the advent of large language models, text generation
has been a hot topic within the natural language processing
community. However, many natural language processing
text generation research focuses on generating coherent and
goal-directed texts through training on large bodies of homo-
geneous text, such as large movie scripts or full stories. As
a result, this sacrifices diversity of data and text fluency. In
our project, we focus on generating coherent, genre-focused
story summaries through the use of a diverse dataset of short
book summaries and cutting-edge natural language process-
ing models such as Generative Pretrained Transformers, or
GPT models. By expanding to smaller but more heteroge-
neous datasets, we hope to progress the use of text generative
models as a creative tool for diverse ideation of future ideas.
In the case of generating short book summaries, we hope to
aid authors in formulating unique ideas for their own novels.

3 Related Work

Fatima et al. (2022) explores a wide variety of natural lan-
guage processing models used or currently being researched

in text generation. In our work, we focus on two models from
the paper: the Long Short-Term Memory and the Generative
Pre-trained Transformer model.

Long Short-Term Memory: The first model we introduce
is the Long Short-Term Memory (LSTM) model. LSTMs are
an extended version of recurrent neural networks (RNN) that
can encode information over longer text and solves the van-
ishing gradient problem Hochreiter and Schmidhuber (1997).
Because LSTMs hold information over many iterations well,
we use LSTMs as a baseline to compare GPT models to.

Research done by Santhanam (2020) explores the potential
of using context in LSTM models to generate both syntac-
tically and semantically correct sentences. Given a set of
context input text, the output text should be related to the
context given to the model. We use this idea in our models
by providing prompts with specified genre(s) that correspond
with specific book summaries during training, such that the
model can theoretically draw relations between the context
and the book summary. Using LSTMs as a text generation
model is now widely explored through many internet web-
pages and blogs. For guidance on implementing a simple

Stanford CS224N Natural Language Processing with Deep Learning

LSTM using Pytorch, we turned to a public Kaggle notebook
named "Text generation via RNN and LSTMs (PyTorch)" by
Purva Singh..

Generative Pre-Trained Transformers: Generative Pre-
Trained Transformers are highly researched and utilized mod-
els within NLP. OpenAI’s GPT model has gone through mul-
tiple iterations and in this project, we focus on GPT-2. The
original paper behind GPT’s creation by Radford et al. (2018)
aimed to used unlabeled corpus text, which makes up many
documents and articles on the Internet, in discriminative fine-
tuning to complete specific tasks like commonsense reading.
Since GPT-2 was comprehensively trained on 40 GB of In-
ternet text, it has outperformed other language models while
not needing to be trained on specific tasks or data (though
has the capability to do so in fine-tuning processes). GPT-2
has also made large strides in producing large human-like
articles from a variety of human-generated prompts and even
being able to answer questions about historical events and
creative storytelling (OpenAI).

Focusing more on creative text generation for both models,
Alabdulkarim et al. (2021) experimented with goal-directed
story generation using LSTMs and GPT-2. The researchers
used a corpus of science fiction stories and a reward system
to encourage the model to create stories with goal verbs like
mentioning "discover" in the story. They also incorporated
both quantitative and qualitative analysis to evaluate their
final model, which used GPT-2 architecture to generate goal-
directed stories and found success in generated text with the
goal achieved. However, they discovered pitfalls in repetition
and other grammar related errors within the outputs.

Lastly, another research team studied genre-controlled full
story generation using contrastive learning methods and GPT-
2 through training on a movie synopsis dataset. They im-
proved upon the GPT-2 model by manipulating the loss func-
tion and incorporating supervised learning to learn different
genre features of a story. Their conclusions found that it was
possible to generate meaningful stories with genre controls,
though at the loss of text fluency and overall coherence (Cho
et al., 2022).

4 Approach

4.1 Baseline

4.1.1 LSTM Model

We implement a simple LSTM model with 30M parameters
as a baseline. LSTM models implement long "short-term"
memory using layers with forget gates, input gates, output
gates, and cells to determine what information to retain and
to drop. The forget gate looks at the previous cell state to
determine what information to retain and what information
to discard. Input gates control what new information keep in
the cell state. The output gate controls how important that
information is for the next cell. The hidden layers and cell
states are updated to continually determine how to deal with
information Hochreiter and Schmidhuber (1997).

Figure 1. Simple LSTM architecture from Colah (2015)

4.1.2 Vanilla Pre-Trained GPT-2 Model

We use an unmodified version of HuggingFace’s smallest
GPT-2 model, originally created by OpenAI, with 124M pa-
rameters as a baseline. In our research, we did not modify the
underlying structure of GPT-2 and instead, used the original
GPT architecture put forth by Radford et al. (2018) as a foun-
dation. The unsupervised pre-training for the transformer
model attempts to maximize the following likelihood:

L(U) =
∑
n=i

logP (ui|ui−k, ..., ui−1; Θ)

where U represents an unsupervised corpus of tokens,
{u1, u2, ..., un}. Unlike a complete transformer that has
both an encoder stack and decoder stack, the generative
pre-training model uses a multi-layer Transformer decoder
that uses multi-headed self-attention over input context to-
kens and feedforward layers to output a distribution of tokens
(Alammar, 2019; Radford et al., 2018).

To further improve the original GPT model, research con-
ducted by Radford et al. (2019) formulated the next iteration
called GPT-2. In this model, researchers included layer nor-
malization at each sub-block’s input and scaled residual layer
weights by 1/N where N is the number of residual layers.
They additionally increased the context size from 512 to
1024 tokens, increased the batch size to 512 and expanded
the vocabulary to 50,257. While this model achieved a good
perplexity value of 8.6 and an F1 score of 89 which nears
human performance, it is not perfect (Radford et al., 2019).

Figure 2. Small GPT-2 architecture from Alammar (2019)

There exist prompts where the GPT-2 model cannot gen-
erate relevant and coherent outputs due to a lack of task-

2

https://www.kaggle.com/code/purvasingh/text-generation-via-rnn-and-lstms-pytorch
https://www.kaggle.com/code/purvasingh/text-generation-via-rnn-and-lstms-pytorch

specific training. Therefore, to solve this shortfall, we aim
to fine-tune the GPT-2 model using our book summary data
and additionally implement GPU memory optimizations for
training and add different decoding methods in GPT-2’s final
decoder block.

4.2 Improving the GPT-2 Model

To further build upon the base GPT-2 model, we employed
three different ways to improve the model which includes
(1) using better decoding strategies for text generation, (2)
adding optimizations to reduce GPU memory usage during
training and (3) finally, fine-tuning the model on our book
summary data.

4.2.1 Decoding Strategies

In the final decoder layer of the GPT-2 model, the output vec-
tor is multiplied by the embedding matrix to get probabilities
for different tokens of the vocabulary. From this, the model
can choose the next token based on its calculated probabil-
ity, like just selecting the word or token in the vocabulary
with the highest value (Alammar, 2019). HuggingFace’s pro-
cess for language generation enables customization for this
text generation through their pre-built generate() method,
which capitalizes on GPT-2’s autoregressive language genera-
tion. This means that generating text is based on probabilities
of possible word sequences that are dependent on given con-
text (von Platen, 2020). Below are three strategies we used
to generate relevant story summaries.

Beam Search: This decoding strategy keeps a given num-
ber of hypotheses at each time step as possible paths of text
generation. This method mitigates any earlier tokens from
being ignored in the output sequence, as they may have lower
probabilities but do end up contributing to the overall gener-
ated text sequence (HuggingFace, c). The 2 beam hypothesis
is illustrated with a sample output in the figure below, created
by von Platen (2020).

Figure 3. Beam search with 2 beams to generate output

"Generate a book summary with genre science fiction:
\n\nThe story is a story about a group of people who are"

Figure 4. Sample output of the vanilla GPT-2 model with 2 beams

N-Gram Penalties: One issue that arises with beam search
is that generated text contains repeated word sequences, as
seen in Figure 3. This is because the process aims to find
the entire word sequence with the highest probability. To
prevent this issue, we included n-gram penalties where an
existing sequence of n tokens are deliberately not included in
the output sequence to prevent repetition (von Platen, 2020).

Multinomial Sampling: Lastly, we implemented multino-
mial sampling with the previous beam search and n-gram
penalty methods through enabling the do_sample parameter
in the text generation process. This means that the chosen
word is instead determined by its conditional probability
distribution below (von Platen, 2020).

wt ∼ P (w|w1:t−1)

where wt represents the next chosen word.

"Generate a book summary with genre science fiction:\n\nA
collection of tales from the 1980s, including "The Last"

Figure 5. Sample output of the vanilla GPT-2 model with all three strategies

The figure above shows the result of applying all of the
above decoding strategies with GPT-2 and HuggingFace’s
generation method, which will be developed further in the
fine-tuning process.

4.2.2 GPU Optimization

In order to actually fine-tune the large language model while
saving memory space on the GPU, we utilized methods out-
lined by HuggingFace (b). The three methods we used are
further explained below and were implemented within the
training arguments of the HuggingFace Trainer object.

Gradient Accumulation: Instead of calculating gradients
for each batch at once, this process calculates the gradients
in smaller steps. By accumulating the gradients after a for-
ward and backward pass through the model, we then run the
optimization step to be able to run larger batches using less
GPU memory but resulting in a slower training time.

Gradient Checkpointing: Enabling this in the training
arguments resulted in further declines in memory usage by
saving certain activations throughout the backward and for-
ward passes. In doing so, only a fraction of the activations
need to be re-calculated for gradients.

Mixed Precision Training: Finally, mixed precision or
FP16 training describes a way to reduce the precision of
the variables to make their computations faster and take up
less GPU memory. Instead of holding the values in 32-bits,
they are instead saved in half the precision as 16-bit values.
However, gradients are still computed at full 32-bit precision
to not lose any robustness in the optimization step.

4.3 Fine-tuning with Book Summary Data

Our main text generation process relies on the fine-tuned ver-
sion of GPT-2 along with the aforementioned decoding and
optimization strategies. We adapted foundational code from

3

official documentation from HuggingFace (a) and from an ar-
ticle regarding fine-tuning GPT-2 for song lyrics generation
by St-Amant. Through using HuggingFace’s infrastructure
and our train and validation datasets, we fine-tuned the model
using 3 epochs and 5 epochs and validated the model after
every epoch. We then tested our improved GPT-2 on the test
set for quantitative scores and a separate set of genre prompts
for human evaluation, which will be further discussed in the
experiments section.

5 Experiments

5.1 Data

The dataset we are using in this project is Carnegie Mellon
University’s book summary and genre dataset (Jasminyas,
2018). It contains 16,559 books from Wikipedia with data
about each book’s IDs, title, author, publication date, gen-
res, and book summary. It contains 43.5 MB of data in a
tab-separated text file.

After doing some data exploration, we found that the most
common genres in the dataset are Novel, Science Fiction,
Speculative Fiction, and Children’s Literature.

Figure 6. Top 15 most common genres

To integrate relationships between the book summaries and
the genres to train our LSTM and GPT-2 models, we pre-
fixed a prompt in front of each summary text – "Generate a
book summary with genres [list of genres]:\n". In order to
optimize training, we conducted our training, validation and
testing on a subset using 5,000 elements of the dataset above.
We split the data into 80% training, 10% validation and 10%
testing. This is what the data looked like after prefixing the
prompt in front of each summary text:

Text

0 ’Generate a book summary with genres Science Fi...
1 ’Generate a book summary with genres Fantasy:\n...
2 ’Generate a book summary with genres Crime Fict...
3 ’Generate a book summary with genres Fiction, N...
4 ’Generate a book summary with genres War novel,...

Table 1: Prompt-appended Summaries

After prepending the prompt to the book-summary, the last
step to finish preprocessing was to tokenize and create a
vocabulary for the data. For the LSTM model, we used
the Pytorch tokenizer and vocab builder to easily convert
tokens into their token ID’s and vice versa. Similarly, to
preprocess for the GPT-2 models, we used the HuggingFace
GPT-2 specific tokenizers, which conduct a similar process
as above.

5.2 Evaluation method

Because we are evaluating the quality of text, we use both
machine-centric and human-centric measures.

5.2.1 Perplexity

The first quantitative metric we use to compare our models
is the perplexity metric. Perplexity is a measurement of how
confident or unconfident the models are in generating text
based on the distribution of texts they were trained on. One
way to calculate perplexity is through the normalized inverse
probability of the test set:

PP (W) = n

√
1

P (w1, · · · , wn)

Another way to calculate this is as the exponential of the
cross-entropy loss:

PP (W) = exp{− 1

n
lnP (w1, · · · , wn)}

The lower the perplexity score is on the test set given the
model, the better the model is at predicting a target input text
sequence.

5.2.2 BERTScores

The second metric we use is the BERTScore precision, recall,
and F1-score. To generate these metrics, BERTScore com-
pares the cosine similarity between words of the generated
text to the target text. The BERTScore precision, recall, and
F1-score are defined as follows:

RBERT =
1

|x|
∑
xi∈x

max
x̂j∈x̂

x⊤
i x̂j

PBERT =
1

|x̂|
∑
x̂i∈x̂

max
xj∈x

x⊤
i x̂j

FBERT = 2
PBERT ·RBERT

PBERT +RBERT

The BERTScore is correlated with human judgement on both
sequence evaluations and system evaluations (Zhang* et al.,
2020). We only compare BERTScores for our transformer
models as BERTScores leverage pre-trained contextual em-
beddings from HuggingFace transformer models and our
LSTM model is not transformers-based.

5.2.3 Human-Evaluation Metrics

For our qualitative evaluation method, we chose to rate text
generated by each of our models given the same prompt. This
is because human-centric analysis would capture important
metrics such as semantic value, or the meaning of the se-
quences generated. As a result, the rubric we rated by are the
metrics (1) grammatical correctness/syntax, (2) coherence,
and (3) adherence to book summary genre(s). For our rubric,
we operationally define grammatical correctness/syntax as

4

correct punctuation, capitalization, and human-like text gen-
eration. Similarly, we define coherence as maintaining mean-
ing or semantics over sequences of words, with little to no
irrelevant or random words and phrases. Adherence to the
genre is how correlated the words and phrases generated are
to the input genre(s). To measure these values, we surveyed
14 volunteers to rate 3 text-generated book summaries with
varying genres from each of the 4 models. Scores were lim-
ited to a range from 1 to 5, 1 representing low levels of the
metric in the generated text to 5, high levels of the metric.

5.3 Experimental details

5.3.1 LSTM Model

To generate the best parameters for text-generation on book
summaries, we did hyperparameter tuning on the LSTM
model. We applied the AdamW optimizer with beta value
0.9 and epsilon value 10−8 as well as a learning rate sched-
uler such that the learning rate would be divided by 2 per
epoch with no improvement. The best text-generation param-
eters for the LSTM model included:

• Epochs: 18

• Sequence Size: 50

• Batch Size: 124

• Embedding Size: 128

• Hidden Size (LSTM): 512

• Dropout rate: 0.5

• Learning Rate: 0.000125

To evaluate how well our model is doing each epoch, we
use the cross-entropy loss function. We trained the LSTM
by calculating the validation loss and comparing this to the
training loss every epoch until the validation loss became
stagnant. Training the LSTM on the dataset took around 2.5
hours.

5.3.2 GPT-2 Models

As part of HuggingFace’s default generate() method, we
included the decoding strategies discussed earlier which in-
cluded 2 beams for beam search, penalties for 2-gram repeti-
tion, early stopping, and inclusion of multinomial sampling.

Next, our fine-tuning process with 3 and 5 epochs utilized
default training arguments and GPU optimization techniques.
We applied the AdamW optimizer with beta value 0.9 and
epsilon value 10−8. These training arguments also include
enabling gradient checkpoint and mixed precision training,
along with gradient accumulation happening every 4 steps.

Using the HuggingFace Trainer object, we trained the GPT-2
model for the desired number of epochs (3 or 5) at which
the model halted training and saved its fine-tuned model
configurations for later use. We were able to fine-tune our
GPT-2 model using only 8 GB of GPU memory, but having
the trade-off of slightly longer training times. Training the

GPT-2 model on the book summary dataset took about 40
minutes using 3 epochs and 1.25 hours using 5 epochs.

5.4 Results

First, we compare the test loss and perplexity scores of each
model.

Test Loss and Perplexity Scores
Model Test Loss Test Perplexity
LSTM 4.953 141.550
GPT-2 (Vanilla) 2.299 9.961
GPT-2 (3 Epochs) 1.803 6.073
GPT-2 (5 Epochs) 1.816 6.149

Table 2: Test Loss and Perplexity Scores

We find that the baseline LSTM model does not do as well
as any of the GPT-2 models as the test loss and perplexity
scores are much higher than any of the GPT models. Overall,
the GPT-2 models perform similarly to each other, but the
fine-tuned GPT-2 models achieve better loss and perplexity
values than the pretrained GPT-2 model.

Next, we compare the BERTScore for each of the GPT-2
models.

BERTScore
Model Precision Recall F1-Score
GPT-2 (Vanilla) 0.822 0.796 0.808
GPT-2 (3 Epochs) 0.854 0.819 0.836
GPT-2 (5 Epochs) 0.849 0.818 0.833

Table 3: GPT-2 BERTScores

The vanilla GPT-2 model trails behind both fine-tuned GPT-2
models. However, surprisingly, the GPT-2 model fine-tuned
on 3 epochs has higher BERTScore precision, recall, and
F1 scores compared to the GPT-2 model fine-tuned on 5
epochs. However, these differences are minute compared to
the difference with the vanilla GPT-2 model.

Finally, let us compare the human evaluations for each model
regarding their text generation.

Human Evaluation Metrics
Model Syntax Semantics Genre Adhered
LSTM 1.769 ± 0.788 1.564 ± 0.729 2.077 ± 0.881
GPT-2 (Vanilla) 4.590 ± 0.679 4.179 ± 0.937 2.564 ± 1.485
GPT-2 (3 Epochs) 4.641 ± 0.519 4.205 ± 0.778 3.923 ± 1.227
GPT-2 (5 Epochs) 4.718 ± 0.536 4.538 ± 0.577 4.461 ± 0.895

Table 4: Human Evaluation Metrics

We find that the GPT-2 model fine-tuned on 5 epochs does
the best when compared with all other models.This result is
thought-provoking as it conflicts with the machine-centric
metrics. Otherwise, we find that, once again, the LSTM
model does the worst in all categories, but interestingly, it
almost scores as well as vanilla GPT-2 in adhering to the
genre given. In addition, there seems to be more variability
in rating the "adherence to genre" for the all GPT-2 models.
We explore this further in our analysis.

5

6 Analysis

Regarding the results of the baseline LSTM model: from our
data, LSTM scores much higher in perplexity than the GPT-2
models. This is also inline with the human evaluation metrics
of "Coherence" and "Grammatically correct/Syntax" as the
story summary outputs from the GPT-2 models resulted in
higher human evaluation ratings. However, the human evalu-
ations for "Adherence to Genre" for LSTMs were decently
higher than scores for "Coherence" and "Grammatically cor-
rect/Syntax". This result may indicate that the words gener-
ated are seemingly correlated with the input genre, even if
syntax or semantics are not well captured in the final output.
This result is similar to the findings in Santhanam (2020)
such that the embedded context is adhered to but much of the
semantic value is lost. In comparison with the GPT models,
we find that the LSTM is a less robust model with regard to
retaining various features of textual information.

The GPT-2 models fared slightly better than LSTMs in both
the machine-generated metrics and human evaluation. With
losses between 1.8 to 2.3 and perplexity values under 10,
the vanilla GPT-2 model along with the fine-tuned versions
performed better than the LSTM. As for BERTScores, the
GPT-2 fine-tuned for only 3 epochs performed well, although
only marginally better than the model fine-tuned for 5 epochs.
Precision across LSTMs and the GPT-2 models were all
above 0.8 which shows high model performance in this text
generation task.

Regarding human evaluation of the GPT-2 models, we saw
a greater difference between the models than the machine-
computed metrics outputted. Though helpful in model evalu-
ation in comparison to other deep learning techniques, met-
rics like loss and BERTScore do not provide the whole story
of model performance. Human evaluation in creative text
generation tasks such as this one is the most important mea-
sures, as humans are the end readers of the generated text
summaries.

As mentioned earlier, LSTMs scored worse than GPT-2 mod-
els in "Coherence", "Grammatically correct/Syntax", and
"Adherence to Genre". The vanilla GPT-2 model scored sim-
ilarly to the fine-tuned models in the metric for "Grammati-
cally correct/Syntax" however, failed to adhere to prompted
genres as well. This is the opposite finding from our LSTM
model as in this case, not many generated words related to
the genres but were well-written, which is validated by the
fact that pre-trained GPT models uses human written text
that does not have particular genre constraints on them. Ob-
serving example (A.2), we notice that the generated text from
the vanilla, pretrained model does indeed have human-like
fluency and summarize cohesive ideas relating to literature
and children however, it is unrelated to genre prompt and the
task of generating a book summary.

Because the GPT-2 models can produce generated text that
is coherent and straightforward to read, it is much easier to
determine the adherence of genre for evaluators. However,
this metric is harder to measure as it is more subjectve to
rate than the other two measures. As a result, it would make

sense for evaluation ratings to be more variable and have
a higher standard deviation. For the LSTM model and the
GPT-2 model fine-tuned with 5 epochs, these standard devi-
ations are much lower as they are on the ends of the range
that could be scored.

In contrast, examples (A.3), (A.4) and (A.5) retain human-
like fluency and coherence while also providing an actual
story summary that adheres to the genre prompts. This im-
provement over the LSTM and vanilla GPT-2 model is at-
tributed to the fine-tuning process but additionally, the de-
coding methods used in the text generation process. Unlike
previous work that did not dedicate research to other de-
coder techniques, we included a discussion and exploration
of beam search and other methods to properly produce text
that succeeds in the task of genre prompted summarization. It
achieves the goal of this project while simultaneously main-
taining high levels of grammatical correctness and coherence,
evidenced by the higher scores in human evaluation in all
three metrics for the fine-tuned, optimized GPT-2 models.

As for possible errors in text generation, especially among
the high performing GPT-2 model trained for 5 epochs, exam-
ple (A.5) shows a weak adherence to the children’s literature
genre. While on average, this model scored 4.461 out of 5
for genre adherence across the three prompts with different
genre constraints, it performed better on the science fiction
and speculative fiction prompt as shown in (A.4) compared
to (A.5). This could be due to our dataset used for fine-tuning
having more book summaries in that particular genre group-
ing, as shown by Figure 6. This unbalanced dataset exposed
the model to more examples of science fiction and specula-
tive fiction book summaries in the fine-tuning process, hence
the improved output text for this prompt.

Additionally, since we only focused on genre prompts, some
details like character or plot events were overlooked by our
model. For example, in (A.4), the first sentence generated
mentions a human colony, although this subject is unrelated
to the rest of the summary about a ship and alien groups.
While holistically, the text generated by the GPT-2 models
score high on human evaluation metrics, taking a closer look
at the connections between subjects, verbs, and story events
show that the model is not aware of particular linguistic re-
lationships and is unable to stick to details like the original
premise of a human colony. We can make the preliminary
conclusion that our GPT-2 models are able to learn genre
features of a story and master the fine-tuned task at hand, but
cannot conduct any other higher-order story organization.

7 Conclusion

In completing this project, we aimed to develop a model,
such that when inputted with a genre-specific story summary
generation prompt, the model would be able to generate a
passage that adheres to the genres, retains coherence of story
points, and maintain human-like levels of fluency and gram-
matical correctness. To achieve this goal, we evaluated the
performance of four different model setups: LSTMs, vanilla
pretrained GPT-2, optimized GPT-2 fine-tuned on 3 epochs

6

and optimized GPT-2 fine-tuned on 5 epochs. The fine-tuned,
optimized versions of GPT-2 included a combination of opti-
mal generation strategies for the final decoder block along
with memory usage minimization.

Using a dataset of book summaries along with their gen-
res from Carnegie Mellon University to train and evaluate
our models, we discovered that the optimized GPT-2 model
fine-tuned with 3 epochs performed the best in quantitative
measures of perplexity, BERTScores, and loss, though only
trivially better than the 5 epoch version. However, the model
fine-tuned for 5 epochs scored the highest among human
evaluation metrics, which is arguably the most important
evaluation in creative text generation tasks such as this one.
The combination of these quantitative and qualitative metrics
provide a comprehensive look at this goal of creative text
generation, which could be implemented in future research
to evaluate output text.

Moreover, using basic genre prompts and shorter book sum-
maries to fine-tune a large language model for natural lan-
guage generation was not studied in-depth before this project,
as many other related works used large corpus of movie data
to fine-tune GPT-2 to generate story text. All of our models
achieved varying levels of success with outputting novel,
genre-specific book summaries training on only shorter story
summaries, which was the motivating goal behind this re-
search. Building upon the work in this project, some future
avenues to explore include attempting to improve our model
by modifying the architecture of transformers themselves
and further experimentation with other complex language
generation models like Facebook’s OPT and GPT-3.

7

References
Amal Alabdulkarim, Winston Li, Lara J. Martin, and Mark O.

Riedl. 2021. Goal-directed story generation: Augmenting
generative language models with reinforcement learning.

Jay Alammar. 2019. The illustrated gpt-2 (visualizing trans-
former language models).

JinUk Cho, MinSu Jeong, JinYeong Bak, and Yun-Gyung
Cheong. 2022. Genre-controllable story generation via
supervised contrastive learning. ACM, page 2839–284.

Colah. 2015. Understanding lstm networks.

Noureen Fatima, Ali Shariq Imran, Zenun Kastrati,
Sher Muhammad Daudpota, and Abdullah Soomro. 2022.
A systematic literature review on text generation using
deep neural network models. IEEE Access, 10:53490–
53503.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-
term memory. Neural Computation, 9(8):1735–1780.

HuggingFace. a. Fine-tune a pretrained model.

HuggingFace. b. Performance and scalability: How to fit a
bigger model and train it faster.

HuggingFace. c. Text generation strategies.

Jasminyas. 2018. Cmu book summary dataset.
https://www.kaggle.com/datasets/ymaricar/
cmu-book-summary-dataset.

OpenAI. Better language models and their implications.

Patrick von Platen. 2020. How to generate text: using dif-
ferent decoding methods for language generation with
transformers.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Illya
Sutskever. 2018. Improving language understanding by
generative pre-training.

Alec Radford, Jeffrey Wu, rewon Child, David Luan, Dario
Amodeii**, and Illya Sutskever**. 2019. Language mod-
els are unsupervised multitask learners.

Sivasurya Santhanam. 2020. Context based text-generation
using lstm networks.

François St-Amant. How to fine-tune gpt-2 for text genera-
tion.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Wein-
berger, and Yoav Artzi. 2020. Bertscore: Evaluating
text generation with bert. In International Conference
on Learning Representations.

A Appendix

A.1 LSTM Sample Output

Generate a book summary with genre children’s litera-
ture:

due the third central life , nobles introduces into a appar-
ent shopping shop and his dismal brother , describing death
back across their way with a girlish desert . his wife , math
wakefield , is his experiences . when in the other world ,
rincewind has that jeremy had a contest , and commands the
splendid , the rules . it also becomes apparent in the garden ,
and ends . as an fortified , molly tongue has here his essence
to become advance of the gantry and became able to live to
the seaside during the department .

A.2 Vanilla GPT-2 Sample Output

Generate a book summary with genre children’s litera-
ture:

This is the first of a series of posts on the topic of genre
kids’ literature. This post first appeared in the March 2016
issue of the American Library Association’s journal Science.
The first post was titled "The Science of Science Fiction and
Fantasy." The second post is titled Science and the Arts of
Sci-Fi."

A.3 3 Epoch GPT-2 Sample Output

Generate a book summary with genre novel:

The novel is set in the life of a young woman in London.
The story begins with her husband, who is in a car accident,
and her mother, whom she does not know at the time. She is
pregnant with their second child, but she cannot bear to leave
them. After a long journey to London, she meets and falls in
love with a man who lives nearby. He is a talented painter
and painter’s son. At first, he refuses to let her go because
of her age. But when he is invited to join her at his home,
the two become friends. They become lovers and eventually
have a child together. Later, as she is leaving for work, they
meet again

A.4 5 Epoch GPT-2 Sample Output 1

Generate a book summary with genre science fiction,
speculative fiction:

The novel opens with the arrival of the first human colony
on the planet. The ship, which has been in orbit for over two
thousand years, is able to detect the presence of a mysterious
alien race, the "Unseen Ones". They are a race of intelligent,
intelligent beings that live in the solar system. In this novel,
they are described as humanoid, bipedal, and have a distinct
personality. They have long since disappeared from the sur-
face world of Earth and are thought to have been wiped out
by a violent alien invasion. However, their presence on Earth
has left them in an uneasy truce with humanity. Humanity
has not yet fully recovered from its isolation and has decided

8

http://arxiv.org/abs/2112.08593
http://arxiv.org/abs/2112.08593
http://jalammar.github.io/illustrated-gpt2/
http://jalammar.github.io/illustrated-gpt2/
https://doi.org/10.1145/3485447.3512004
https://doi.org/10.1145/3485447.3512004
https://doi.org/10.1109/ACCESS.2022.3174108
https://doi.org/10.1109/ACCESS.2022.3174108
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://huggingface.co/docs/transformers/training
https://huggingface.co/docs/transformers/v4.18.0/en/performance
https://huggingface.co/docs/transformers/v4.18.0/en/performance
https://huggingface.co/docs/transformers/generation_strategies
https://www.kaggle.com/datasets/ymaricar/cmu-book-summary-dataset
https://www.kaggle.com/datasets/ymaricar/cmu-book-summary-dataset
https://openai.com/research/better-language-models
https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://arxiv.org/abs/2005.00048
http://arxiv.org/abs/2005.00048
https://towardsdatascience.com/how-to-fine-tune-gpt-2-for-text-generation-ae2ea53bc272
https://towardsdatascience.com/how-to-fine-tune-gpt-2-for-text-generation-ae2ea53bc272
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

A.5 5 Epoch GPT-2 Sample Output 2

Generate a book summary with genre children’s litera-
ture:

The novel is set in the fictional town of Waverly, Maine,
where the narrator is a young man who lives in a small town.
The townspeople, including the town council, believe that

there is no better place to live than the woods, which they call
"Waverleys". However, the villagers are not so sure. They
are convinced that the village is haunted by ghosts, and that
they must find a way to solve the mystery of the hauntings.
At the same time, there are rumors of a supernatural being
called "The Witch", who is responsible for the haunting. This
mysterious figure is referred to as the "White Witch" by the
locals, who believe

9

	Key Information to include
	Introduction
	Related Work
	Approach
	Baseline
	LSTM Model
	Vanilla Pre-Trained GPT-2 Model

	Improving the GPT-2 Model
	Decoding Strategies
	GPU Optimization

	Fine-tuning with Book Summary Data

	Experiments
	Data
	Evaluation method
	Perplexity
	BERTScores
	Human-Evaluation Metrics

	Experimental details
	LSTM Model
	GPT-2 Models

	Results

	Analysis
	Conclusion
	Appendix
	LSTM Sample Output
	Vanilla GPT-2 Sample Output
	3 Epoch GPT-2 Sample Output
	5 Epoch GPT-2 Sample Output 1
	5 Epoch GPT-2 Sample Output 2

