Making the Most of Your Data: Few Shot Learning for
Automated Essay Scoring

Stanford CS224N Custom Project MIGHT RESUBMIT BEFORE THE LATE DEADLINE

Samarth Kadaba Abel John
Department of Computer Science Department of Computer Science
Stanford University Stanford University
skadaba@stanford.edu abel john@stanford.edu
Abstract

Developing content-based, classroom-oriented automated essay scoring systems
gives teachers the ability to bias large scale score estimation models with their own
preferences for essay writing. This preserves the personal nature of student-teacher
relationships however poses an algorithmic challenge due to the inherent scarcity
of teacher-provided reference essays. Here, we aim to tackle this problem through
learning context-dense embeddings which more closely reflect teacher-provided
scores from limited training samples. To this end, we 1) demonstrate novel methods
of augmenting reference samples using semantic substitution, 2) analyze perfor-
mance trade-offs using different pairwise loss functions and 3) investigate recurrent
architectures for constructing second-order document embeddings. We show that in
classifying essay samples according to a non-binary rubric, our method outperforms
baseline models evaluated with the same data scarcity constraints. Furthermore,
our learned embeddings perform well in clustering reflecting their applicability
towards Semantic Textual Similarity tasks and giving instructors the ability to
quickly identify groups of students in need of greater support. We simultaneously
investigate ensemble methods for dealing with data scarcity in automated essay
scoring, providing a combinatorial analysis of the above-mentioned approaches.
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2 Introduction

Motivation In domain-specific, data-sparse contexts it is more relevant for students to be evaluated
against peer examples and instructor-provided references than it is to be measured against large
corpuses’ of score-annotated essays from potentially different domains. However, multi-class classi-
fication is notoriously difficult with sparse data from out-of-domain sources (Roal 2018)). Limited
instructor examples make traditional methods for automated essay scoring (AES) via classification
infeasible due to inherent complexity of document embeddings and poor reflection of semantic
textual similarity (STS) in the latent space. To develop small-scale predictive models for use within
classroom, we require the ability to generalize from few training examples.

Primer on Approach Therefore we look to few-shot learning as a method for classifying student
essays within specific domains. To achieve this, we employ Siamese networks - a contrastive
architecture in which loss is computed pair-wise relative to both the distance between two samples in
the embedding space and their respective differences in class labels (Bertinetto, 2016). Using Siamese
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Networks, we explore methods for learning with limited data to predict multi-class rubric scores for
a range of student essays across different domains. Our ensemble approach is threefold. First, we
introduce a multicriterion objective to simultaneously learn useful embeddings (for downstream tasks)
and classification scores of student essays. Second, we experiment with data augmentation methods,
using semantic-substitution weighted based on differential gradients. Third, we increase model
complexity by introducing recurrent and convolutional architectures for constructing higher-order
embeddings.

Rational Design An intuitive justification of the above methods follows. We implicitly infer
that embeddings of documents with the same score have textual similarity that can be represented
in their latent space. By optimizing for the simultaneous representation of this similarity and the
prediction of rubric scores via a classification head, we introduce two complementary loss terms
that help our optimizer move off of plateaus in the loss landscape (similar to momentum). Our
data augmentation process computes gradients of the model’s embedding input layer with respect to
class predictions. Finally, in many cases, contextual sentence embeddings are insufficient to capture
underlying meaning. Second-order embeddings more accurately reflect properties of text and thus
are relevant in assessing essay content and characteristics including argumentation, persuasiveness,
and cohesion.

3 Related Work

Sentence-level Encoding with Transformers |Bertinetto|(2016) shows that BERT contexts can be
made more meaningful via fine-tuning with Siamese Networks (S-BERT). The authors train BERT
architectures using Triplet loss, exploring pooling layers for the contextual output and show that
semantic textual similarity is better reflected in S-BERT embeddings. We specifically focus on
utilizing document embeddings for the task of essay scoring in which semantic textual similarity is
not necessarily reflective of identical rubric scores. While we follow a similar training procedure
to that implemented by Reimers and Gurevych|(2019), for S-BERT, empirically we observe better
results fine-tuning from BERT context embeddings directly rather than those from S-BERT. For that
reason, below we consider an analysis of finetuning only the original BERT architecture.

Data Augmentation with Semantic Substitution Perturbations either in the latent space of doc-
ument embeddings (via sampling of a convex hull) or at the word-level of the input text can help
models train robustly (Jin et al.| [2020). Adversarial training in few-shot settings are known to prevent
over-fitting Mondal et al| (2018) and boost generalizability. Whereas previous work focuses on
arbitrary perturbation of words/phrases for replacement, deletion, and/or modification, here we look
to gradient-based methods for explainability of predictions with respect to individual words from the
input. We use these as heuristics for identifying candidates for synonym substitution.

Higher-order Embeddings with Recurrent Architectures and Transfer Learning Transformer-
derived embeddings for long-sentence documents often lack critical context. In the case of BERT,
bidirectional context stored at the hidden-state of the start token is used as heuristic for the embedding
of the whole document. However, in lengthy documents, context from the periphery are not included
in this vector representation (Oniani et al., | 2022) Hence, we explore the use of recurrent layers on
the hidden state outputs of transformers to investigate the utility of higher-order embeddings for
downstream essay scoring classification tasks.

4 Approach

We implement an ensemble approach, evaluating methods independently in terms of their contribution
towards increasing test accuracy and average f1 score for class predictions under various data sparsity
constraints. The task is given by estimating the average rater score for student essays provided by
the Hewlett [Foundation| (2012) dataset. We first describe stand alone modules then explain their
integration in a few-shot method for essay score prediction.



4.1 Siamese Networks
4.1.1 Multicriterion optimization

Caruana) (1997) first demonstrated the success of multi-task learning (MLT) in broad domains,
showing the ability of MLT system to generalize better across a range of modalities including text and
image classification. Towards the development of embeddings that more accurately reflect semantic
similarity between similarly-scoring essays we implement a variant of multi-task learning here.
Coupling cross-entropy loss with pair-wise distance metrics between samples helps the optimizer
move off of plateaus in the loss landscape and promotes faster and more reliable convergence. Our
loss (I} [2) is a combination of three terms: the classification cross-entropy loss (3)) and the contrastive
(@) or triplet loss (3) between two samples scalarized to reflect optimization priority of classification
versus embedding accuracy. Drawn from Mnih et al.|(2016)), we introduce an entropy-regularization
term which is essentially Cross-Entropy loss (3) over post-softmax logits, with constant parameter
weighting 0.3. This regularizer helps widen the distribution over predicted class scores to prevent the
model from fitting to a single essay score.
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The former (5) uses a anchor, positive, and negative sample to simultaneously drive euclidean distance
of similar samples closer and dissimilar samples further. The latter (#) minimizes pairwise euclidean
distance between samples with with the same label and penalizes euclidean closeness of samples with
unequal labels. Our training procedure employees a shared-weight architecture to update weights
according to the cumulative gradient of these loss terms (Figure 3).
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4.1.2 Semantic Substitution for Data Augmentation

Training with sparse datasets often results in overfitting [Luo et al.| (2014)). In the context of few-
shot learning, this means learned weights will be unable to generalize to potentially out-of-domain
examples. To mitigate for this, we introduce a form of adversarial training in which robustness is
introduced by adding noise to our training samples. Here we present a rationale design of such noise
based on gradient explanations of class predictions with respect to individual tokens of the inputted
document. We compute the differential sensitivity of class predictions to each token, using these as a
heuristic for probabilistically weighting semantic substitution of the given word (Figure 1). While
directly observing the Attenion layers of a finetuned BERT model may also yield information about
token importance to model predictions, this information is often far removed from the token itself. To
preserve class labels under random word substitution, we use part-of-speech tagging of the inputted
essay and match lemmatization of candidates for substitution to ensure that inserted words maintain
the expected participle form and part of speech. We generate additional samples from an initial
training set by performing semantic substitution and analyze the effects of this data augmentation on
model performance.
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Figure 1: Two excerpts from sample essays showing the weights of each token with respect to
model outputs (class predictions). The magnitude of the gradient sheds light on how perturbation of
high-weight words may affect training. Namely, we hope to maximize variance between samples
and their augments (counterparts) such that the model derives some benefit from robust exposure to
adversarial data.The weights also shed light on where the model gives attention. We observe words

intrinsic to the prompt such as "computer” or "society" to be weighted highly as expected.
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Figure 2: Diagram representing our BERT-
LSTM architecture. Note that our siamese net-
work implementation works by feeding one to
three distinct embeddings into the model above
(depending on selection of contrastive, triplet,
or just CE loss), and then classifying each and
applying the corresponding loss function to the

Cross-
/— Entropy Loss

1l

Contrastive
Loss

Loss

Cross-
Entropy Loss

Figure 3: Shared-weight architecture for pair-
wise loss. Pairwise architectures feed tuples of
length 2 (Contrastive) or 3 (Triplet). Loss is
computed with respect to a flag that signifies
whether a pair of samples originated from the
same class or not. Our modified architecture
update weights with respect to both pairwise

output. loss and classification (cross entropy) loss.

4.2 Recurrent Architectures

4.2.1 Higher-order embeddings

Higher-order embeddings introduce a number of benefits for text classification, including the capture
of contextual meaning, better performance on downstream tasks, and a robustness to noise - especially
important in few shot learning and preventing the overfitting on irrelevant features. We produced
second-order embeddings to BERT’s output by incorporating a bi-directional LSTM layer (Figure 2).
LSTMs are especially well suited for the dataset considered here due to the shorter nature of essay
responses. Additional layers (Dependency Sensitive Convolutional Neural Networks, C-LSTMs, etc.)
were intentionally excluded due to literature (Luj|2022) indicating severely diminishing returns in
testing improvements and the exaggerated overhead when training a much more complex model.
Thus, the final hidden states can adequately capture the context and dependencies present in the
sample. We also attempt to show that higher-order embeddings improve the performance of semantic
substitution, as the embeddings are more finely attuned to sequential data across the sample.

4.2.2 Transfer Learning

Few shot learning across varying domains makes model training a difficult task. With limited samples,
it can be difficult for a model to identify the general characterizations of what makes a good essay.
This goes beyond randomly initialized layers and includes the pretrained BERT architecture, which
isn’t optimized for essay evaluation. To augment our limited dataset we used the LDC dataset of
TOEFL scores, which employed a similar classification standard to our own (see 5.1). We trained
DistilBERT on this dataset with a bi-directional LSTM layer. Training occurred in a prompt-agnostic
fashion, with the intent to capture the abstract representations of essay mechanics as opposed to any



one factoid. To ensure learning on TOEFL scores resulted in less-context dependent weights, we
saved only the weights from BERT’s fourth and fifth layers and transferred them for training-time
to our Siamese network. [Ethayarajh| (2019) showed that the upper layers of models produce more
context-specific representations. For this reason we decided against using the weights from the
uppermost LSTM layer as this would likely lead to overfitting on characteristics specific to TOEFL
data.

5 Experiments

5.1 Data

5.1.1 Hewlett Foundation: Automated Scoring Essay Competition

We utilized data from the “Hewlett Foundation: Automated Scoring Essay Competition” released by
Kaggle (Foundation|(2012)). The data is divided into eight essay prompts, each of which is answered
in a 150-450 word response by students from grades 7 through 10. Across the 7 essay topics, there
are a total of 13,000 training, 4,000 validation, and 4,000 test samples.Most essays are evaluated
by two annotators across 1 domain, with the exception of prompt 2 having two evaluation domains.
Because different prompts were scored using varying rubrics, for simplicity, we decided to normalize
scores according to percentile distribution of labels across essay prompts. In this report we consider a
range of scores for a single prompt (prompt "1") to evaluate model performance. The average length
of the essay was 350 words. Additional data, for validation, is provided for prompt "7" (A.3). We also
modify the training data such that every score class has a set number of examples to avoid overfitting
on an imbalanced dataset. When validating and testing, we also randomly select an equal number
of samples from each class, ensuring that our evaluation metrics are not biased by an unabalanced
validation/test set.

5.1.2 ETS Corpus of Non-Native Written English

To finetune our recurrent neural network, prior to training it on the intentionally limited number of
responses from the Hewlett Foundation dataset, we utilize data comprised of essay responses from
the TOEFL exam (Shparberg, 2023). We chose to use this dataset for transfer learning for the larger
number of samples and its evaluation standards. With 9,899 samples classified in three tiers (low,
medium, and high), this format of evaluation closely mirrors our own objective of less-granular, more
holistic essay scoring. Furthermore, the short essay samples mirror the Hewlett Foundation dataset
we train on after finetuning, with response length and prompts of similar nature.

5.2 Evaluation method

Our model was evaluated using F1, accuracy, and semantic clustering. F1 is a measure of the
model’s performance in terms of confusion that takes into account class imbalance, calculated
using the harmonic mean of the model’s precision and recall. We compute class-dependent F1 and
average over all labels to produce a class-agnostic score. Because our validation and testing sets are
rigged to contain equal amounts of data from each class label, we also consider accuracy as a high-
fidelity metric below. We further plot confusion on a per-class basis to help identify generalization
or overfittting to certain scores. We project 768-dimensional embeddings to 2-D using Principal
Component Analysis. Our derived clusters help qualitatively confirm euclidean separation between
samples from various classes. Since our loss function incorporates either contrastive loss or triplet
loss, we expect to see a hyperplane (or nonlinear equivalent) separating classes in the cartesian space.

5.3 Experimental details

We trained all models for 40 epochs with a 10~* learning rate using both a linear-rate scheduler and
L2 regularization implemented via a weight decay of 0.01. These parameters were empirically chosen
to minimize the average number of epochs until validation loss converged. Our three-term scalarized
objective re-weighted pair-wise distance losses (either contrastive or triplet loss) by 0.1 (to prioritize
optimization for classification accuracy). We trained on 1 sample of each class, varying the number of
augments/class (see A.2 for more on generating robust samples for training). The remaining data was
divided into validation and testing with a 30:70 split. Our model was adapted from DistillBert, Sanh



et al.[(2020), due to its low-latency, condensed architecture which better facilitated high-frequency
training. For experiments discussed below, we freeze the intermediate layers of BERT, allowing for
only the last 2 hidden layers to be updated via backpropagation. This was to preserve the semantic
structure and textual meaning that is represented in the latent space of BERT’s robust, pretrained
model. We add a classification head which produced unnormalized scores for each class. Because
overfitting is an inherent issue with few-shot learning, we introduce dropout of 0.1 both after the
classification head and within the pretrained BERT model. A softmax over these logits gave label
predictions. Entropy regularization, weighted by 0.1, was computed from the softmaxed logits.

5.4 Results

5.4.1 Multicriteron Loss and Siamese Networks

We show that Siamese networks with both contrastive and triplet loss have marginal improvements
compared to baseline models in few-shot settings (Table. 1). In fact, exlcuding methods for dealing
with sparse data, baseline models seem to outperform pairwise methods in multi-class settings. We
interpret these results as an inability to generalize pairwise comparisons from just one example of
each class. The resulting overfitting is reflected by non-convergence of validation loss. Semantic
textual similarity, however, is marginally reflected in down-projected clusters by the spatial separation
of samples from different classes (A.5). There remains occlusion between classes in these down-
projected clusters suggesting that under one-shot constraints, neither classification loss nor euclidean
comparison of embeddings is optimized. Little distinction is explicit between accuracy/fl and
clustering for triplet and contrastive methods although triplet seems to outperform both baseline and
contrastive methods by a wide margin. Under limited data constraints, pairwise methods seem to
under-perform baseline and random chance.

Average Accuracy with and without Data Augmentation
2 2,+1 3 3,+1 5 5,+1
Baseline 0.59 0.65 0.42 0.48 0.31 0.24
Contrastive Loss 0.5 0.73 0.45 0.51 0.30 0.30
Triplet Loss 0.79 0.80 0.39 0.64 0.09 0.34

Table 1: Performance without versus with 1 augmented sample (columns labeled "+1"). Note that
accuracy declined across all architectures as number of classes increased, and that accuracy for our
custom loss functions generally fell short of the baseline without data augmentation. 1 additional
(from augmentation) sample per class helped pairwise architectures outperform the baseline models
and score far above random chance. Triplet loss yielded the highest accuracy evaluated on all amounts
of target classes.

Average F1 with and without Data Augmentation
2 2,+1 3 3,+1 5 5,+1
Baseline 0.26 0.32 0.18 0.23 0.11 0.07
Contrastive Loss 0.24 0.43 0.18 0.25 0.09 0.11
Triplet Loss 0.47 0.48 0.12 0.35 0.01 0.13

Table 2: Performance without data augmentation versus with (columns labeled "+1"). All models
showed increases in average F1 with one augmented sample. Triplet and Siamese networks, for the
most part, outperformed baseline models when data augmentation was present.

5.4.2 Data Augmentation

Interestingly, we observe differential effects of data augmentation on baseline versus pairwise models.
From an information theoretic perspective, there are different utilization efficiencies of augmented
data based on the parameters of the objective and model. Specifically, when the augmented samples
equal or outnumber the desired number of predicted classes, we empirically observe declining
performance (Table 1). This can be understood in the context of Signal to Noise (SNR) ratio. When
the signal of ground-truth data is made obscure by a greater proportion of augmented, noisy data we



Figure 4: From left to right: baseline, Con-
trastive, and Triplet confusion matrices for 3-
class prediction with 1 "true" and 1 augmented
sample per class. Lighter colors along the diag-
onal and a darker off-diagonal indicates lower
confusion. Pairwise architectures trade off high
confusion at intermediate classes (column 2) for
decreased confusion at the boundaries (column
1, 3) compared with baselines models. Color
intensity (increasing in terms of lightness) of
(i,j) entry signifies the number of predictions of
type j made for class i.
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Figure 5: From left to right: Baseline, Con-
trastive, Triplet architectures. Note that in none
of our trials did we see the absence of data aug-
mentation outperform its inclusion. In general,
data augmentation benefited F1 with diminish-
ing returns after the addition of 1 sample per
class.

see less accurate predictions from the model. We also note that augmented data seems better utilized
by pairwise-learning (either Contrastive or Triplet loss) than by the baseline model (Table 1). We
reason that for the method of augmentation selected here, pairwise distances (made robust through
noisy augmentation) are more informative than the additional training examples by themselves. In all
cases, we see that augmenting the dataset by at least one sample results in significant performance
improvements both in terms of F1 (Table 2, Figure 3) and confusion (Figure 4). These results extend
to more complex classification tasks, namely 5-class prediction (A.4).

5.4.3 Recurrent Architectures

Irrespective of loss function, our results (Table 3) demonstrate a significant improvement in
BERT+LSTM+Siamese accuracy over the baseline of random chance, as well as prior results
obtained for our BERT and Siamese model. Averaged across classes and loss functions, we see that
inclusion of the recurrent architecture leads to an 6% improvement compared to using only BERT
and Siamese networks. This result underscores the importance of LSTMs in capturing sequential
dependencies that span the essay which BERT may not be adequately identifying. It is also notable
that a bigger model performs better in the data-sparse context of training. Rather than overfitting, we
see that the mapping of long-term dependencies does help with the STS objective.

RNNs Average Accuracy with and without Transfer Learning
2 2,+Tr | 3 3,+Tr | 5 5,+Tr
Baseline 0.84 0.83 0.60 0.60 0.35 0.33
Contrastive Loss 0.56 0.5 0.57 0.66 0.37 0.38
Triplet Loss 0.54 0.51 0.42 0.52 0.21 0.30

Table 3: Performance without transfer learning versus with transfer learning (columns labeled "+Tr").
Observe the general improvement in accuracy across all loss functions (compared with Table 1,
no data augmentation). We observe, even without transfer learning, higher accuracy compared to
standard baseline, Contrastive, and Triplet models trained with O data augmentation. We observe
increased average accuracy by incorporating transfer learning with recurrent networks, especially for
Triplet models.

5.4.4 Transfer Learning

When loading the frozen weights trained with the LDC dataset into our model (and keeping
the RNN architecture), we see marked improvement over both the baseline BERT+Siamese and
BERT+LSTM+Siamese (Table 3). Compared to BERT and the Siamese Network, we see an 8%
improvement in accuracy. With respect to the prior model (which didn’t incorporate transfer learning,



but held all else constant) there is a 2% improvement. These results demonstrate that transfer learning
noticeably augments accuracy in data-sparse contexts. Regardless, it is clear that transfer learning
has a positive effect on model weights being closer to their ideal parameter space from the onset of
training.

6 Analysis

6.1 Rationalizing multicriterion objectives

Here, we discuss ensemble methods for learning textual representations and assessing similarity in
data-sparse contexts. We show pairwise distance metrics better capture semantic textual similarity that
is beneficial towards downstream tasks such as classification. A multicriteron loss was empirically
observed to perform better than individually optimizing for pairwise distances or classification. We
reason that this phenomenon occurs uniquely when the losses are complementary in nature with
respect to properties of the text. Thus, they motivate optimizer steps in parallel directions contributing
to faster and more robust convergence.

6.2 Interpreting gradient-informed augmented data

Our experiments further reveal the presence of information tradeoffs associated with pairwise learning
methods. We reason that our model performs well with less data supplemented by an equivalent
amount of augmented samples because the additional samples incorporate noise that adversarially
updates weights. To this end, we avoid overfitting and help generalization. Interestingly, we note
different efficiencies of information utilization based on the architecture used. Namely, we observe
that pairwise losses such as Contrastive and Triplet loss were better suited to dealing with adversarial
training data and saw significant performance improvements from augmented samples compared
with the baseline model. This, we reason, is because pairwise architectures discriminate between
samples, having a sort of implicit "suspicion" that emerges from weighting loss terms based on the
euclidean distance of documents in their embedding-spaces. Baseline models on the other hand, must
assume the class labels of noisy data as ground truth without any context of how similar/different this
augmented data is from the actual training set.

6.3 RNNs and Transfer Learning

Our experiments denote a significant increase in accuracy with the inclusion of RNNs into the
few-shot model architecture. Since BERT’s transformer architecture processes input in parallel, it
struggles to capture the sequential relationships and long-term dependencies that define an essay. The
inclusion of an LSTM layer builds on the contextualized embeddings produced by BERT to capture
the sequential relationships between words. Additionally, we observe that transfer learning on the
TOEFL dataset also has an improvement in model classification. We reason that this dataset providing
a number of examples written by English learners helps train weights in earlier layers to represent the
more abstract, domain-agnostic aspects of essays. Thus, transfer learning presents a viable means of
improving model performance while still being useful in a data-sparse, context-specific domain.

7 Conclusion

7.1 Findings and Implications

In this paper we investigated the various avenues for automated essay scoring in data-sparse contexts
using Distill-BERT and Siamese networks. We found that for just a single sample per class (or in
the case of triplet loss, two per class), we were able to reach 84% accuracy in binary classification,
66% for three classes, and 38% for five classes. These results are superior to random classification,
and indicate our model learned to disambiguate classes to a significant degree. Our results indicate
high levels of success for samples at both ends of the scoring range, and middling to poor success
for intermediate samples. This could be seen as a potential downside to pairwise learning: since the
distance between samples of different classes are maximized, their embeddings are pushed more
closely to the other classes on the margins of their own, and the disambiguation of samples from their



class neighbors becomes difficult. In sum, our ensemble approach to essay classification serves as a
series of findings that establish how to optimize learning in domain-specific, data-sparse environment.

7.2 Future Work

We aim to experiment with rationale choice of training samples, adopting greedy strategies to
maximize the variance of those essays chosen for our few-shot training method. Determining the
success of ensembling higher-order embeddings (those produced by RNNs) with data augmentation
and pairwise loss functions could improve performance under current data scarcity constraints.
Additionally, our work used DistilBERT for rapid iteration and testing. Given that the latest Large
Language Models are orders of magnitude more powerful, it would be interesting to see if our results
still hold for the current state of the field, and to what degree classification can be improved further
by using a newer pretrained model.
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A Appendix

A.1 Sample training and validation convergence
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Figure 6: (A-C) shows training loss for baseline, Contrastive, and Triplet architectures respectively.
We observe that over a constant number of epochs with identical learning rates, pairwise architectures
converge faster and to a lower training loss value. Training is halted after 40 epochs to prevent
overfitting. (D-F) shows validation loss for baseline, Contrastive and Triplet architectures respectively.
Contrastive networks converged the fastest with all three showing validation loss converge around
20-40 epochs thereby validating are empirical choices for hyperparameters as detailed above.

A.2 Pairwise batching for training

A benefit of pairwise learning for data-sparse contexts is the ability to train on several combinations of
samples from same limited dataset - doing more with less. For instance, with contrastive loss we train
on every possible combination of samples in the dataset. Since the objective is to maximize distance
between samples of different classes and minimize distance between samples of the same class, we
must evaluate every sample with respect to every other sample. This results in training on significantly
more pairings than just the number of samples in the dataset. As an example, when training on five
samples per class, for six classes, we see the total number of pairs trained on comes out to (320) =435
samples. For triplet loss, the order of samples in the triplet does matter, so we instead determine all
permutations of the dataset into groups of three, and exclude any redundancies where the anchor and
positive samples are the same. In either case, pairwise learning leads to significantly more training
samples than the limited number of samples necessary for few-shot learning.

A.3 Auxiliary prompt dataset
A.3.1 Discussing data and possible reasons for discrepancies in results

We also evaluate our methods on prompt "7". This prompt asks students to produce a narrative essay
about a time they or someone they know exhibited patience. The average essay length on average
was about 250 words, nearly 100 words shorter than those analyzed above from "prompt 1". In the
context of scoring essays from few samples, this means our embeddings are naturally less dense
and there are fewer contextual options for inclusion. More feature-sparse essays means that similar
scoring samples would then be indistinguishable from each other in the representational space, thus
rendering the utility of pairwise architectures diminished. Furthermore, whereas prompt "1" required
an argument, a narrative essay is inherently more subjective and thus conserved elements (such as
specific tokens) may not be readily indicative of score. This largely explains the decreased average
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accuracy and F1 we observe on this prompt. However, our general observations about information
utilization efficiency and effect of augmentation remain.

A.3.2 Accuracy

Loss Architecture vs Number of Classes for Prompt '7"
2 2,+1 3 3,+1 5 5,+1
Baseline (CE Loss Only) 0.51 0.50 0.33 0.33 0.19 0.18
Contrastive Loss 0.5 0.73 0.30 0.5 0.16 0.20
Triplet Loss 0.73 0.74 0.38 0.42 0.27 0.23

Table 4: Accuracy (with varying data augmentation) on prompt "7". We observe that with no data
augmentation, baseline models and pairwise networks perform comparably, each producing random
chance accuracy on class prediction. However upon augmenting the training samples by one (columns
with "+1"), we observe dramatic increased in the performance of Contrastive and Triplet networks.
We see the best utilization of the added data by Contrastive architectures in the prediction of 2 and 3
classes.

A.3.3 Attention via gradient weights

n in Ife - )
. . - - -

Figure 7: Two excerpts from sample essays taken from prompt "7." As expected there is less
interpretability to the heavily-weighted words based on gradients with respect to model outputs. This
seems inherently because the essays are narrative in nature and thus there are not set of conserved
words that would be indicative of a score - as there may be be for persuasive or argumentative
essays. However, we can see some differential weighting is placed on words directly relevant to the
prompt such as "patient." Furthermore, we can also observe the importance of indications of narrative
elements such as "when" suggesting that the model explicitly observes aspects of story (of course we
are anthropomorphizing the model here).
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A.4 Multi-class Generalization

A

Figure 8: (A-C) Confusion matrices for 5-class classification with baseline, Contrastive, and Triplet
models (from left to right), respectively. (D-C) is the same as above but with 1 augmented data
sample in the training set. We clearly observe that with data augmentation, false classification severely
decreases for pairwise models while there is little effect on the baseline. Overall, highest performing
confusion for each model shows that pairwise architectures do a better job of learning to make diverse
sets of predictions instead of overfitting to a single class.
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A.5 Semantic Textual Similarity expressed through down-projected clustering
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Figure 9: From left to right, Baseline, Contrastive, and Triplet clusters for 3 classes with one-shot
learning. (A-C) show down-projected embeddings after training on one sample. While there is
inherent ambiguity in the separating hyperplanes, it is clear that contrastive and triplet networks
better identify distinction between classes compared with the baseline models. (B-F) Clusters for
respective architectures shown with a single augmented sample. We observe that Triplet loss networks
better adapt euclidean representations of document embeddings from added data compared with
Contrastive and Baseline models. Notice the pink cluster (representing one class of rubric scores) is
condensed after the addition of an augmented sample hence showing a greater sensitivity to added
data in the representational space. For all architectures there exists an intermediate class that is hard
to distinguish from the others (above shown in purple).Unfreezing a greater number of layers in our
DistilBERT model may result in greater magnitude changes to representations, in the embedding

space, of documents.
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