
Multi-Task Learning for Robust Contextualized
Sentence Embedding Generation

Stanford CS224N Default Project

Santino Ramos
Department of Computer Science

Stanford University
santino@stanford.edu

Yash Dalmia
Department of Computer Science

Stanford University
ydalmia@stanford.edu

Abstract

Robust contextualized sentence embeddings are essential for natural language pro-
cessing (NLP) tasks because they enable machines to analyze and process human
language in a mathematical format. However, pre-trained language models that
generate embeddings optimized for specific language tasks in isolation tend to yield
weaker results when applied to multiple tasks simultaneously. Multi-task learning
aims to improve performance on multiple tasks by learning a shared representation
that can generalize to new tasks, but it is challenging because the model needs
to balance the objectives of multiple tasks and avoid interference between them.
In this project, we generated baseline results for a sentence classification task on
the Stanford Sentiment Treebank (SST) and CFIMDB dataset using pre-trained
weights loaded into a BERT architecture. We then examined different strategies for
fine-tuning and adjusting contextual BERT embeddings to simultaneously perform
well on multiple sentence-level tasks, including Sentiment Analysis, Paraphrase
Detection, and Semantic Textual Similarity. After evaluating several techniques
inspired by recent research papers for fine-tuning and extending the BERT model,
we introduced cosine-similarity fine-tuning, an additive loss function (of equally
weighted task-specific losses) for multi-task fine-tuning, and gradient surgery. In
addition, we experimented with custom prediction heads to better capture the
learnable nuances of each task. These contributions resulted in a significant im-
provement over baseline, yielding competitive leaderboard scores (top 30% of
submissions as of March 17th) of 0.501, 0.778, and 0.662 on the SST, Paraphrase
Detection, and STS tasks, respectively.

1 Key Information to include

• Mentor: Xiaoyuan Ni

• External Collaborators (if you have any): N/A

• Sharing project: N/A

2 Introduction

The pervasiveness of language models and natural language processing (NLP) across academic
research and industry highlights the significance of robust and generalizable sentence embeddings.
Sentence embeddings are mathematical representations of sentences that capture their semantic
meaning and are usually produced by pre-trained language models. These embeddings are critical for
NLP tasks as they enable machines to effectively and efficiently analyze and process human language.
However, although language models have improved at generating embeddings for specific tasks, their
performance deteriorates when applied to multiple tasks simultaneously.

Stanford CS224N Natural Language Processing with Deep Learning



Multi-task learning presents a solution to this challenge by training a single model to execute
multiple NLP tasks simultaneously, with the objective of enhancing performance on each task by
learning a shared representation that can generalize to new tasks. However, multi-task learning
is complicated due to the necessity of balancing the objectives of multiple tasks and preventing
interference between them. Multi-task learning diminishes the need for separate models for each task,
providing a framework through which language models can more effectively capture the underlying
structure of natural language, leading to improved performance on downstream NLP applications.

At present, multi-task learning methods in NLP typically entail modifying pre-trained language
models such as BERT [(Devlin et al., 2018)] and fine-tuning them on multiple tasks simultaneously.
Nevertheless, these methods can suffer from interference between tasks and can be computationally
expensive. Furthermore, the resulting models can be challenging to interpret.

Researchers have explored various techniques to address these challenges, including custom prediction
heads [(Reimers and Gurevych, 2019)], specialized layers added to the model for each task, and
multi-objective optimization [Bi et al. (2022)], which involves optimizing multiple loss functions
simultaneously. These approaches have shown potential in enhancing the performance of multi-task
NLP models, but further research is necessary to fully comprehend their potential and limitations.

To address these challenges, our empirical studies examine the base minBERT model’s performance
on the SST, STS, and Paraphrase Detection datasets. We discovered that the base minBERT trained
only on the SST dataset performs poorly on STS and achieves only random results on Paraphrase
Detection. These baseline findings motivated us to extend the minBERT architecture to better adapt it
to the multi-task objective.

To achieve this, we implemented prediction layers for all three tasks, experimented with various
numbers of learnable parameters, projection sizes, dropout probabilities, and so on. We also imple-
mented cosine similarity fine-tuning to improve the model’s comprehension of semantic "closeness"
for sentence pairs in the STS dataset, which had the worst baseline performance. In addition, we
implemented round-robin training on all datasets and gradient surgery. We ran the modified multi-task
model on the development and test datasets and thoroughly evaluated its performance and limitations.

We trained models with various hyperparameter configurations using the training data and evaluated
them on the development set. Our findings revealed that the default values of dropout probability and
learning rate from the original gpoesia minBERT1 implementation were already close to optimal.

3 Related Work

Our research is motivated by the MTRec model, proposed by Bi et al. (2022), which employs a
multi-task approach to learn robust sentence embeddings for Category Classification and Named
Entity Recognition tasks. The authors utilize BERT to encode news titles as news embeddings
and devise two auxiliary tasks on top of BERT, which are jointly trained with the primary news
recommendation task. This multi-task approach exhibits an improvement in the ability of BERT to
capture the semantics of news.

Moreover, we integrate certain concepts from the Gradient Surgery algorithm introduced by Yu
et al. (2020) to enhance our gradient updates during round-robin training across all three datasets.
The PCGrad technique addresses the issue of gradient conflicts between various tasks by utilizing
projection, thereby minimizing the interference that the different tasks have on each other while
learning a shared representation.

4 Approach

As previously described, our methodology entailed the integration of custom prediction heads in con-
junction with the implementation of three extensions to the baseline minBERT model. Our objective
was to enhance the model’s ability to incorporate multi-task learning of sentence embeddings.

1https://github.com/gpoesia/minbert-default-final-project

2

https://github.com/gpoesia/minbert-default-final-project


4.1 minBERT Baseline

The initial codebase upon which we built our BERT implementation was forked from Gabriel
Poesia’s minbert-default-final-project2repository on Github. We worked to implement the following
components of the minBERT architecture:

• Multi-head Self-Attention [(Vaswani et al., 2017)]: We used the following equation to guide
our vectorized solution in Pytorch:

Attention(K,Q, V ) = softmax(
QKT

√
dk

)V

• Transformer layer [(Vaswani et al., 2017)]: implemented the BertLayer.add_norm(), Bert-
Layer.forward() and Bert- Model.embed() functions

• AdamW Optimizer [(Loshchilov and Hutter, 2017)] implemented the first moment and
second moment updates, along with the "efficient version" of the parameter update with
weight decay.

We then proceeded to load pretrained weights into the BERT model and finetune using the SST
dataset in order to perform Sentiment Classification. We implemented functions in the BertSentiment-
Classifier.

4.2 Sentiment (SST) Prediction head

To enhance the performance of the model on the sentiment classification task, we implemented a
task-specific head consisting of a linear projection layer with dropout. The input_ids and atten-
tion_mask are first passed through the model to obtain the pooled output, which is then fed through a
dropout layer and a linear layer of size (hidden_size × n_sentiment_classes). This results in a vector
representing the model’s predicted probabilities for each of the 5 sentiment classes, from which the
class with the highest probability is selected as the final prediction. Although we explored more
complex configurations with additional layers and parameters, we observed significant overfitting on
the training set. Therefore, we decided to keep this setup and focus on improving the training process.

4.3 Paraphrase Detection Prediction Head

To improve performance on the Quora dataset, we implemented a task-specific head consisting of a
linear projection layer with dropout. We modified the input processing to account for the sentence pair
input. Specifically, we performed a forward pass on the input_ids and attention_masks to obtain the
pooled output representations for each sentence. We then applied dropout to each vector, concatenated
the resulting outputs, and applied a linear layer with dimensionality (2 × hidden_size) × 1. This
output layer is appropriate for the binary paraphrase detection task of the Quora dataset. Our approach
is similar to the BERT paper’s approach for "Sentence Pair Classification Tasks", except we omitted
the "SEP" token and concatenated the embeddings back-to-back. We found that more complex
configurations resulted in overfitting and therefore decided to keep this setup while focusing on
improving training steps.

4.4 Semantic Text Similarity Prediction Head

For this final task, we experimented with three different strategies. The performance differences
between these approaches will be compared later in the paper. The three strategies, outlined below,
were implemented in order to predict the similarity scores between pairs of sentences:

• Iteration 1 - Scaled Linear Layer: This approach uses the same implementation as the
paraphrase detection head. A dropout operation is applied to the concatenated tensor of
dimension 2 * hidden_size, which is then projected to a dimension of 1 using a linear
projection layer. The output of this layer is multiplied by 5 to maintain consistency with the
output labels being continuous similarity scores between 0 and 5.

2https://github.com/gpoesia/minbert-default-final-project

3

https://github.com/gpoesia/minbert-default-final-project


• Iteration 2 - Cosine Similarity: Instead of projecting the concatenated output vectors from
the forward pass, we compute the Cosine Similarity between the two vectors and use that as
the output of the prediction head.

• Iteration 3 - Scaled Cosine Similarity + ReLU: Since most of the cosine similarity scores
outputted during our experiments appeared to be in the [0,1] range, we instead added a ReLU
[(Agarap, 2018)] layer right after the cosine similarity computation, then scaled the output
by multiplying by 5 as done in the first iteration. This resulted in the best dev accuracy
scores after finetuning the minBERT embeddings.

4.5 Multi-Task Fine-Tuning

In the baseline model, fine-tuning is performed solely on the SST dataset, leading to poor accuracy
scores for the remaining two tasks for which we are seeking to train embeddings. To address
this limitation, we modified the training loop such that all three datasets and tasks are employed
for fine-tuning concurrently. Initially, new dataloaders were created for the Quora and SemEval
datasets, and subsequently, the three dataloaders were zipped together. We then implemented a
Round-Robin training approach, whereby a batch was processed from each dataloader for one epoch
of training. This strategy was chosen over training on one dataloader at a time to mitigate the potential
risk of the model "forgetting" what it learned about the SST task when processing the Paraphrase
Detection and STS tasks. By interleaving the batches, the objective was optimized for all tasks
simultaneously. However, the discrepancy in dataset sizes resulted in an issue of upweighted loss
for datasets with larger batch sizes. While reweighting the losses was considered, the multi-task
training was considerably slower than single-task training, and testing multiple weighting schemes
would have been excessively time-consuming. Thus, to address this issue, we artificially increased
the sizes of the SST and STS dataloaders to match the larger paraphrase dataloader. We achieved
this by creating cycle iterators out of the smaller dataloaders and using the length of the paraphrase
dataloader as the stopping criterion for the training loop. The cycle iterator stores a copy of all the
elements it returns, allowing for "resetting" of the dataloader and ensuring that the sizes of per-task
training examples remain uniform even after exhaustion of the smaller dataloaders during training.
Although the additional examples are simply repeats of the ones already encountered by the model,
this approach was expected to decrease the interference observed from training on the unbalanced
dataloaders, where one training objective "undoes" the learning from another after the corresponding
dataloader is depleted.

4.6 Gradient Surgery

Multi-task fine-tuning presents several challenges, including potential conflicts between training
objectives for each task and optimization difficulties that limit the efficiency gains compared to
single-task learning [(Yu et al., 2020)]. While the exact reasons for these challenges are not fully
understood, per-task loss curves can provide insight into the extent of task interference. To address
this problem, we employed the Gradient Surgery extension proposed by Yu et al. (2020). This
approach hypothesizes that conflicts between gradients are detrimental when they coincide with high
positive curvature and a large difference in gradient magnitudes, as conflicting gradient directions
from different tasks may interfere with each other. The Pytorch-PCGrad3 algorithm corrects this by
projecting the gradient of a conflicting task g onto the normal plane of the gradient of the i-th task gi.
Pseudocode for the algorithm is provided below:

3https://github.com/WeiChengTseng/Pytorch-PCGrad

4

https://github.com/WeiChengTseng/Pytorch-PCGrad


4.7 Hyperparameter Search

In order to optimize performance, a hyperparameter search was conducted on the model’s learning
rate and dropout probability values. However, due to the significant time required for training, an
extensive grid search over multiple candidate hyperparameter values was not feasible. Instead, a
limited search was performed, testing only three values for each variable and selecting the best
performing option. The search began by evaluating the fine-tuning option using learning rate values
of 1e-4, 1e-5, and 1e-6. From there, the best performing learning rate value was selected, and a search
was conducted over dropout probability values of 0.2, 0.3, and 0.4.

5 Experiments

5.1 Data

Stanford Sentiment Treebank
The Stanford Sentiment Treebank 4 consists of 11,855 single sentences extracted from movie reviews.
The dataset was parsed with the Stanford parser5 and includes a total of 215,154 unique phrases
from those parse trees, each annotated by 3 human judges. Each phrase has a label of negative,
somewhat negative, neutral, somewhat positive, or positive. For our model, we store this as a
SentenceClassificationDataset before creating the SST dataloader. The input to our task-specific
prediction head is a single sentence such as "Light, silly, photographed with colour and depth, and
rather a good time", and the output is a class label of 0-4 corresponding to the ’sentiment’ values
listed earlier. Our dataset split for evaluation and testing is as follows:

• train (8,544 examples)

• dev (1,101 examples)

• test (2,210 examples)

CFIMDB Dataset
While this one was only used for the first half of the project in which we implemented and tested
the minBERT baseline, we still include it because it helped us validate that our baseline model was
working correctly. The dataset consists of 2,434 highly polar movie reviews. Each movie review has
a binary label of negative or positive. The splits we used were as follows:

• train (1,701 examples)

• dev (245 examples)

• test (488 examples)

4https://nlp.stanford.edu/sentiment/treebank.html
5https://nlp.stanford.edu/software/lex-parser.shtml

5

https://nlp.stanford.edu/sentiment/treebank.html
https://nlp.stanford.edu/software/lex-parser.shtml


Quora Dataset
The Quora dataset6 consists of 400,000 question pairs with labels indicating whether particular
instances are paraphrases of one another. For our model, we store this as a SentencePairDataset
before creating the PD dataloader. The input to our task-specific prediction head is a pair of sentences
that could be paraphrases, and the output is a binary label corresponding to the yes or no. We are
using a subset of this dataset with the following splits:

• train (141,506 examples)
• dev (20,215 examples)
• test (40,431 examples)

SemEval Dataset
The SemEval STS Benchmark dataset [(Agirre et al., 2013)] consists of 8,628 different sentence pairs
of varying similarity on a scale from 0 (unrelated) to 5 (equivalent meaning). For our model, we
store this as a SentencePairDataset before creating the STS dataloader. The input to our task-specific
prediction head is a pair of sentences that could be semantically similar, and the output is a continous
float value between 0 and 5 indicating the similarity score. We use the following splits:

• train (6,041 examples)
• dev (864 examples)
• test (1,726 examples)

5.2 Evaluation method

To evaluate the effectiveness of our model, we utilized accuracy scores, which measure the percentage
of correctly predicted labels for the SST and PD tasks, and Pearson Correlation, which measures the
correlation coefficient between the model’s predicted scores and the true scores, for the STS task. We
compared our model’s performance to the minBERT baseline, which was implemented in the initial
phase of our project and only underwent SST fine-tuning without any custom prediction heads or
extensions. Our evaluation was based on the dev set outputs, which were used to track the progress
of our final architecture during each iteration. Finally, to assess the generalizability of our model, we
evaluated its out-of-sample performance using the test set outputs.

5.3 Experimental details

In our experimental procedure, we pursued two main stages, namely Model Refinement and Hy-
perparameter Refinement. During the first stage, we conducted several modifications to the model
architecture and implemented various extensions, using the dev accuracies as a measure of effec-
tiveness and providing insights into areas that required re-examination. Overall, we produced seven
iterations of the model, with the initial iteration being the baseline and each subsequent model
improving on the previous by introducing significant changes aimed at resolving identified issues
observed in the prediction outputs post fine-tuning. In the second stage, we performed a 3 × 3
hyperparameter search, as outlined in (4.7), utilizing the optimal values to fine-tune the model further,
which we included in the final iteration of the model. Herein, we briefly outline the seven model
iterations as follows:

1. minBERT Baseline: This iteration corresponds to our initial implementation from the
milestone. We fine-tuned the model solely on SST without any additional features.

2. Increased Dropout: We introduced dropout layers to the PD and STS prediction heads,
positioned between the model forward pass and the fully-connected linear projection layer.

3. Cosine Similarity Fine Tuning: This iteration involves switching from Iteration 1 to Iteration
2 for the STS prediction head architecture outlined in (4.4).

4. Unbalanced Round-Robin: We conducted round-robin training on all three datasets, inter-
leaving batches from each dataset for a single training epoch. We ignored size differences in
dataloaders and stopped processing batches from a single task once training examples ran
out. However, this approach led to significant training slowdown.

6https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

6

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs


5. Gradient Surgery: We adapted the PCGrad algorithm to Pytorch, enabling the projection of
conflicting SST, PD, and STS gradients during the optimizer step.

6. Balanced Round-Robin: This iteration involved reworking the round-robin training loop,
changing smaller dataloaders to cycle iterators, as outlined in (4.5), to create more balanced
dataloader sizes. However, this approach led to an additional training slowdown.

7. Modified Cos-Sim + Hyperparams: We switched from Iteration 2 to Iteration 3 for the STS
prediction head architecture outlined in (4.4). Additionally, we included the optimal learning
rate and dropout probability values obtained from the hyperparameter refinement conducted
earlier.

5.4 Results

In accordance with our approach detailed in section 5.3, we utilized the dev accuracy scores as a guide
for refining our model, resulting in incremental improvements in its performance. We performed a
thorough examination of the model outputs after each fine-tuning iteration and identified areas of
weakness where the model was misclassifying or performing poorly on certain types of sentences or
tasks. We then conducted a critical analysis of the choices and assumptions that informed our model
design, making isolated changes to evaluate their impact on addressing these issues, as outlined in
the description of our model iterations above. The results of our dev score evaluations are presented
below.

Model SST Dev PD Dev STS Dev Overall Dev

minBERT Baseline 0.391 0.380 -0.009 0.254
Increased Dropout 0.530 0.410 -0.043 0.299

Cosine Similarity Fine Tuning 0.525 0.403 0.293 0.407
Unbalanced Round-Robin 0.441 0.783 0.377 0.534

Gradient Surgery 0.455 0.779 0.421 0.552

Balanced Round-Robin 0.490 0.774 0.668 0.644

Modified Cos-Sim + Hyperparams 0.493 0.776 0.692 0.654

In light of our limited number of opportunities to make a test set leaderboard submission, we
exercised discretion in deciding when to solicit out-of-sample feedback. Specifically, we pursued such
feedback only when we were sufficiently convinced of the efficacy of our model. As a consequence,
our two leaderboard submissions correspond to our "Gradient Surgery" and "Modified Cos-Sim
+ Hyperparams" iterations, each of which represented our most promising model at the time of
submission. Our motivation in submitting these iterations was to gauge their performance relative to
other models on the test set. The outcomes of these submissions are presented below:

Model SST Test PD Test STS Test Overall Test

Gradient Surgery 0.442 0.789 0.316 0.516
Modified Cos-Sim + Hyperparams 0.501 0.778 0.662 0.647

6 Analysis

In summary, our multi-task model’s results align with our expectations, given the challenges associated
with learning a shared representation for multiple tasks. Task interference and language structure can
make it difficult to create embeddings suitable for all tasks. However, we are pleased with our final
model, as it reflects a culmination of iterative experimentation and successive improvement, with our
embeddings surpassing the baseline we aimed to exceed. We relied on qualitative analysis of model
outputs to identify areas for improvement and determine the necessary edits at each iteration.

6.1 Qualitative Evaluation of Model Iterations

1. minBERT Baseline: We noted that, despite poor dev accuracy results, the train set accuracy
scores were still pretty high, around 1.5-2x the score of the dev accuracy. We wanted to
address the overfitting that might be occuring due to our use of fully connected linear layers

7



for all the prediction heads. This prompted our next iteration in which we saw much more
consistent accuracy scores between train/dev.

2. Increased Dropout: Despite seeing an improvement in SST and PD task accuracy after
adding dropout, we still see STS dev scores lagging behind by a lot. We concluded that the
concatenated embeddings + linear layer (Iteration 1 from 4.4) approach was probably not
good enough to capture semantic similarity (which is what this task is actually seeking to
measure). This guided our choice for the next extension, which would replace the linear
layer with a cosine similarity score and we saw siginificant improvement in the STS dev
accuracy as a result.

3. Cosine Similarity Fine Tuning: Even with the improved STS scores, we see that SST has
the highest accuracy of the three. We attributed this to the single-task fine-tuning that we
still hadn’t changed from the baseline model. At this point, we decided to leverage the extra
datasets available (Quora, SemEval) in order to incorporate more information into the model
to help train/learn a better shared representation.

4. Unbalanced Round-Robin: Implementing the round-robin training led to a huge slowdown
in training time (roughly 50-60 minutes per epoch on AWS GPU), but we saw that it boosted
the PD accuracy by a very large margin, and also improved STS. We attributed this to the
fact that the Quora dataset is so much larger than the others, so the shared embeddings that
were learned have been "preferentially" fine-tuned to the PD task more than the others. We
wanted to address this issue of conflicting task objectives, so our next step was to adapt the
PCGrad algorithm and see if we could get any improvements

5. Gradient Surgery: We see that PCGrad did indeed improve the overall balance of dev
accuracies (PD decreased by a little, and SST + STS increased) which gave us evidence that
the conflicting task objectives were playing a role in restricting the model’s performance.
Given that the PD score is still much better than the others, we decided to tackle the
unbalanced dataset issue next, as we felt it would have a similar impact in improving the
collective score across all the tasks.

6. Balanced Round-Robin: Our hypothesis again proved corrrect here, as our introduction
of the balanced cycle-iterator dataloaders improved the accuracy of STS by a significant
margin, while also slightly improving SST and negligibly decreasing PD Dev. At this
point we felt like we had a solid final model, and just wanted to squeeze any remaining
performance possible from the hyperparameter search and modified STS prediction head.

7. Modified Cos-Sim + Hyperparams: When inspecting our model outputs, we noted that
the cosine similarity score between sentence pairs was very rarely negative. To address
this we came up with the modified architecture of Iteration 3 described in 4.4, where we
repurpose this anti-correlation information and do some final scaling. We also found optimal
hyperparameters as described in 4.7, yielding a learning rate of 1e-5 and dropout probability
0.3.

Fine-tuning separately on the tasks probably would have yielded better scores overall (as some of
the top leaderboard entries have shared on Ed), but the goal for us as a team was to learn about and
experiment with multi-task techniques, which we feel like we accomplished to a reasonable extent.

7 Conclusion

In conclusion, this project explored various techniques for fine-tuning and adjusting contextual
BERT embeddings to improve performance on multiple sentence-level tasks. Through the use of
cosine-similarity fine-tuning, an additive loss function for multi-task fine-tuning, gradient surgery,
and custom prediction heads, significant improvements were achieved over the baseline results. Our
contributions yielded competitive leaderboard scores for Sentiment Analysis, Paraphrase Detection,
and Semantic Textual Similarity tasks. These findings suggest that multi-task learning is a promising
approach to improving the performance of pre-trained language models on multiple NLP tasks, and
that fine-tuning strategies can be tailored to specific tasks to achieve better results. Future research
can continue to explore the use of multi-task learning and fine-tuning techniques to further improve
the performance of pre-trained language models on a wide range of NLP tasks.

8



References
Abien Fred Agarap. 2018. Deep learning using rectified linear units (relu). arXiv preprint

arXiv:1803.08375.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. * sem 2013
shared task: Semantic textual similarity. In Second joint conference on lexical and computational
semantics (* SEM), volume 1: proceedings of the Main conference and the shared task: semantic
textual similarity, pages 32–43.

Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. 2022. Mtrec: Multi-task
learning over bert for news recommendation. In Findings of the Association for Computational
Linguistics: ACL 2022, pages 2663–2669.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information
processing systems, 30.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. 2020.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836.

9


	Key Information to include
	Introduction
	Related Work
	Approach
	minBERT Baseline
	Sentiment (SST) Prediction head
	Paraphrase Detection Prediction Head
	Semantic Text Similarity Prediction Head
	Multi-Task Fine-Tuning
	Gradient Surgery
	Hyperparameter Search

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Qualitative Evaluation of Model Iterations

	Conclusion

