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Abstract

Backpack language models generate predictions that are log-linear in non-
contextual “sense vector” representations of the input tokens. This property enables
targeted interventions that can operate consistently across contexts. To lay the
groundwork for future control techniques, we perform interpretability analysis
on each component of Backpack language models. We qualitatively explore how
sense vectors encode grammatical and semantic information, and we characterize
how contextualization weights can route responsibility for next-word prediction
to specific token senses. We also formulate contrastive saliency scores to inves-
tigate how sense vectors and contextualization weights jointly contribute toward
predicting a target token over a specific foil token, and we explore the patterns that
emerge across arbitrary sets of context sequences via clustering analysis. In the
direction of control, we demonstrate that simple interventions on specific sense
vectors can interpretably influence verb conjugation, and we propose an updated
mechanism for topic control.

1 Introduction

Large language models (LMs) are difficult to interpret and control. Since the Transformer LM is a
large monolithic function of the input sequences, any intervention on the input or the word embeddings
has complex, non-linear effects that depend on the context. Moreover, since the word embeddings
are contextual, there are no guarantees that past analysis of word embeddings in Transformer LMs
will generalize globally across all contexts. In cases such as debiasing, we want simple, direct
interventions on the language model that reliably reduces bias across all contexts.

Backpack LMs are a recent neural architecture for which predictions are log-linear in a set of non-
contextual sense vector representations (Anonymous, 2023). For each vocabulary token x ∈ V ,
we use a sense function C: V → Rd×k to obtain k sense vectors C(x)1, . . . , C(x)k ∈ Rd. The
sense function is parameterized via an embedding matrix E ∈ Rd×|V| and feed-forward network
FF: Rd → Rd×k such that C(x) = FF(Ex). Then, given an input sequence x1:n, we calculate
contextualization weights using a standard Transformer α = A(x1:n) ∈ Rk×n×n, and we log-linearly
combine the sense vectors according to the contextualization weights to form the final prediction:

oj =

n∑
i=1

k∑
l=1

αlijC(Exj)l, (1)

p(y|on) = softmax(E⊤on). (2)

The non-contextual property of tokens’ sense vectors provides the opportunity for interventions that
operate consistently and interpretably across contexts.

This work explores two primary questions: (1) How do Backpack LMs effectively perform next token
prediction? (2) How can this explainability work lead toward interpretable control techniques?
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We perform explainability analysis on each component of the Backpack LM architecture. In section
3, we visually examine the grammatical associations embedded in sense vectors of function words
such as “and”. In section 4, we analyze the role that contextualization weights play in influencing
verb conjugation and pronoun agreement.

In section 5, we formalize saliency scores that quantify the joint contribution of sense vectors and
contextualization weights to model predictions. We also formulate a contrastive saliency score that
compares how much each token sense contributes to the prediction of a target token rather than a foil
token. These scores allow us to isolate the individual sense vectors that are relevant to the relationship
between target and foil, and reweighting these token senses takes a step toward interpretable control.

In section 6, we follow Yin and Neubig (2022) and use contrastive saliency scores to cluster foil
tokens that rely on context across a corpus in similar ways.

Through these analyses, we provide insight into the prediction mechanisms of Backpack LMs,
which is a prerequisite to designing more complex interventions on token sense vectors. One
approach toward control decomposes the problem into first identifying relevant sense vectors and
then applying targeted modifications to achieve a desired result. In this vein, Anonymous (2023)
perform interventions by reweighting specific sense vectors, including sense 10 for gender debiasing.
Our interpretability methods can facilitate the identification of relevant token tenses, e.g. ranking the
relevance of sense vectors via contrastive scores based a set of minimal pairs. Anonymous (2023)
also perform experiments that heuristically reweight sense vectors in the setting of topic control, and
we normalize the topic re-weighting equation to improve topic-controlled generation in section 7.

All experiments in this paper use a pre-trained 170M parameter backpack model with k = 16 senses.

2 Related Work

Explainability. Previous work in explainability has studied the behavior of Transformer LMs from
various angles. For example, Hewitt and Manning (2019) and Eisape et al. (2022) study how LMs
internally represent syntactic structure. Other methods focus on using saliency scores to explain
why models make specific predictions. In particular, Yin and Neubig (2022) establishes methods to
interpret LMs via contrastive explanations, which inspires our formulation of contrastive saliency
scores for Backpack LMs. Broadly, we extend this line of work to the analysis of Backpack LMs.

Control. Previous work has proposed various methods to intervene on LM predictions. For example,
on the level of syntax, explainability analyses often verify their hypotheses by demonstrating that
they can modulate model behavior through the mechanisms they identify (Eisape et al., 2022).
Additionally, Meng et al. (2022) proposes a causal tracing method for knowledge localization and
editing within GPT. However, localization and control of Transformer LMs is a complex challenge,
and Hase et al. (2023) demonstrates that causal tracing cannot necessarily determine optimal layers
for editing – suggesting that better mechanistic understanding of LLMs may not immediately translate
into better mechanisms of control.

The Backpack LM architecture may provide a setting that enables more consistent and interpretable
control. Anonymous (2023) explores methods for intervention on Backpack LMs, and our work
further lays the groundwork to explore more complex methods of control.

3 Sense vector association visualization

3.1 Methodology

Qualitative inspection suggests that sense vectors for common function words may serve as reposito-
ries of grammatical information (Table 1).

We extend the sense visualization analysis in Anonymous (2023). For a token x, we plot the
distributions of logits EC(x)ℓ ∈ R|V| for each sense l. The logits EC(x)ℓ measure the associations
that the Backpack LM learned between x and the vocabulary, which have meaningful relative values
(i.e. if token y1 has a higher logit than y2, then sense vector ℓ of x will contribute toward upweighting
y1 over y2 in all contexts). We obtain a histogram of logits for each sense.
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“ the” sense 5 (-) “ the” sense 2 (-) “the” sense 9 (-) “ and” sense 9 (-)
were sightings few substituted
Scroll rises Less consulted

concede clashes better drew
admit phases worst worked

querade uphe strong protested
were foregoing Few danced
have celebrations another nodded

remain collapses fewer added
depict massacres only apologised

demonstrate sighting unknown tasted

Table 1: Top 10 vocabulary tokens that are negatively associated with specific token sense vectors.
Sense 5 of “ the” is strongly negatively associated with plural verbs. Sense 2 is negatively associated
with various tokens that appear to contain relevant singular-plural information. Sense 9 is negatively
associated with adjectives. Sense 9 of “ and” is strongly negatively associated with past tense verbs.

Figure 1: Histograms of logits corresponding to sense associations of “ and” for senses 3 and 11. The
red lines correspond to logits of 50 plural nouns.

To study the grammatical structures learned by the Backpack LM, we also visualize the logits of
representative words from grammatical groups such as adjectives, plural/singular nouns, and past
tense verbs. The logits are visually overlaid on each histogram. If logits for words in a given
grammatical group are concentrated in one area of the distribution, that sense vector may have
grammatical utility within the model (e.g. used to upweight singular/plural verbs).

3.2 Results

Sense 3 and 11 of “ and” demonstrate structured assocations with plural nouns (Figure 1). See
Appendix Figures 5 and 6 for further results.

We observe that content words such as “ sports” and “ man” have Gaussian logit distributions while
function words like “ and” and “ the” have several senses with heavily skewed or multimodal logit
distributions.

Additionally, for function words, we observe that the 50 highlighted logits concentrate around modes
and skews of the logit distributions: the first mode of sense 11 of “ and”; the left-skew of sense 9 of “
and”; the left-skew of sense 13 of “ a”. Thus, we hypothesize that the modes and skews of multimodal
logit distributions correspond to grammatical associations of the token senses.

4 Contextualization weight analysis

4.1 Methodology

Visualization. We examine whether similar sentences elicit similar Backpack contextualization
weights. We consider sentences extracted from the M&L dataset, which is a dataset of minimally
different pairs of grammatically correct and incorrect sentences related to different grammatical rules,
e.g. pronoun agreement (Marvin and Linzen, 2018). In this work, to maintain consistent interaction
with the GPT-2 tokenizer, we only consider examples for which target verbs’ singular and plural
forms are both a single token. We also omit “is” and “are” as special cases.

Here, we consider sentences from the vp_coord category, which focuses on verb conjugation.
We extract a set of singular sentences and a set of plural sentences, which maintain identical
syntactic structure: “the <subject> <verb1> and <verb2>”. For each set, we calculate the average
contextualization weights used to predict the second verb in the sequence.
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Figure 2: Average contextualization weights for singular (blue) and plural (orange) vp_coord
sentences. Error bars denote standard deviation. We flatten the contextualization weights so that each
context token is represented by k = 16 bars, as indicated by the ticks on the x-axis.

simple agrmt vp coord simple reflexives sent comp (pl) sent comp (sg)
sg transfer 1 / 20 13 / 20 1 / 140 3 / 120 1 / 120
pl transfer 7 / 20 20 / 20 14 / 140 20 / 120 11 / 120

Table 2: Effect of transferring contextualization weights from a singular sentence to a plural sentence
(row 1) and the converse (row 2) for various M&L categories (columns). The table shows the number
of samples for which transferring weights from a sg/pl setting causes the model to shift to a sg/pl
verb, despite a pl/sg subject. We only report transfer in cases when the model was originally correct.

Transfer. We investigate the role of contextualization weights in model predictions by transferring
contextualization weights from singular to plural sentences and vice versa. This transfer also allows
us to quantitatively evaluate the variation between sets of contextualization weights. Specifically, we
consider pairs of grammatically valid, minimally different singular and plural sentences from the
M&L dataset, drawn from subcategories related to verb conjugation and pronoun agreement (e.g.
“the author laughs” vs. “the authors laugh”). We transfer weights between the sentences in each pair.

4.2 Results

Visualization. Shared contextualization weight profiles emerge for sentences with shared syntactic
structure. Contextualization weights for singular and plural sentences in the vp_coord category have
low standard deviation (Figure 2). 1 In addition, the weights for singular and plural sentences have
slightly different profiles, with the variation primarily located in sense 5 of “the” (Figure 2).

Transfer. Transferring the contextualization weights from plural sentences to singular sentences can
lead the model to predict the plural foil verb with higher likelihood than the ground truth singular verb
– even though the actual subject is singular (e.g. “the author laugh”) (Table 2). This result suggests
that the contextualization weights for singular and plural sentences carry significant differences, and
these differences play a strong role in verb conjugation.

Our results suggest that a subject’s sense vectors are not necessarily the primary determiner of verb
conjugation, given that we observe changes even when that token is fixed. Instead, contextualization
weights route number responsibility to the token senses of adjacent function words, which are present
across all examples. We further explore this result in section 5.2.

However, singular transfer is much less prevalent than plural transfer, suggesting that the subject
token still carries significant verb conjugation information (Table 2). Future work could investigate
the mechanism for singular conjugation by evaluating the effects of substituting each sense vector of
the plural subject with that of the singular subject. 2

5 Saliency scores and grammatical interventions

5.1 Methodology

To interpret Backpack LM predictions, we must consider (1) how token sense vectors upweight
different output tokens and (2) the contextualization weights with which those vectors are combined.

1However, we caution that raw contextualization weights may be difficult to interpret. Even small variations
may have an impact on model predictions in ways that are not immediately evident.

2Note: the baseline model generally has stronger performance in the plural setting than in the singular setting.
An overall bias toward predicting plural verbs could in part explain why plural transfer is more prevalent.

4



We combine these considerations into a saliency score that measures how much each sense vector of
each context token contributes to the prediction of a target output token. 3

Saliency score formulation. When performing next token prediction at index t, we define saliency
scores s ∈ R(t−1)×k such that for token at index j < t and sense vector ℓ < k, the saliency for a
particular target token xt is

s(xt)jℓ = (αℓtjE(C(xj)ℓ))xt
. (3)

C(xj)ℓ is the noncontextual vector for sense ℓ of token j, and E(C(xj)ℓ) ∈ R|V| is the corresponding
distribution of scores across the vocabulary. We scale this by αℓtj , the contextualization weight for
sense ℓ of token j, to measure how much that token sense contributes to the logit for each token in
the vocabulary. We retrieve the value for token xt to quantify the contribution to the target token.

Contrastive saliency score formulation. Contrastive saliency scores explain why a model predicted
a target token xt rather than a contrastive foil token xf . We formalize contrastive saliency scores by
extending the methodology of Yin and Neubig (2022) to Backpack LMs. In particular, we quantify
what token senses are responsible for the prediction of a target token over a foil token:

s′(xt,xf ) = s(xt)− s(xf ). (4)

This score allows us to pinpoint sources of variation between a target and foil token (e.g. sense 10 of
“nurse” is a source of gender bias, as reported in Anonymous (2023) (Appendix Figure 7).

Notably, we can extend this approach beyond single examples. Given a set of minimal pairs, we
can identify what token senses are responsible for predicting specified target tokens over foils by
accumulating contrastive saliency scores across all pairs. The token senses with large scores reveal
what token senses encode the information that distinguishes targets from foils. This approach works
on any number of sense vectors. For example, we find that sense 44 for the k = 64 Backpack LM
model is responsible for gender bias in a manner analogous to sense 10 in k = 16.

Intervention. After identifying what token senses are relevant to a given prediction via contrastive
saliency scores, we can stage intervention techniques to influence those predictions. Following
Anonymous (2023), we upweight or downweight particular sense vectors of particular tokens and
quantify the effect on downstream generation. We compare reweighted performance to the baseline
performance of the unmodified model. Specifically, we quantify performance by evaluating whether
the model can predict the correct verb with higher probability than the incorrect verb, directly
comparing the logits at the indices of the verb token.

5.2 Results

Saliency inspection. We consider categories of M&L that test subject-verb agreement for singular
and plural verbs: vp_coord and long_vp_coord. Across the M&L data, sense 5 of “the” has high
contrastive saliency during verb conjugation. In the example, “the authors laugh and smile”, although
“authors” is what necessitates the plural verb, the sense vectors of “the” have the largest contrastive
saliency (Figure 3).4 This effect originates in the underlying sense vectors: sense 5 of “the” has
positive association with singular verbs (“smile”) and large negative association with plural verbs
(“smiles”), making the difference between their saliency scores large (Table 1). Therefore, weighting
this token sense highly should increase the likelihood of predicting a singular verb.

Intervention. Reweighting sense 5 of “the” predictably influences verb conjugation. In Figure 4,
we multiply the token sense vector by λ ∈ [−0.5, 2]) and re-evaluate on M&L. We observe that, as
expected, upweighting leads to predicting singular verbs while downweighting leads to plural verbs.
This effect is strongly visible on the simpler vp_coord dataset and also present in long_vp_coord.

Perturbing other senses of “the” also influences conjugation, but to a weaker degree (Appendix for
Figure 8). We also found that reweighting sense 10 of “ and” leads to strong trends in vp_coord, but

3Backpacks’ contextualization weights provide a natural notion of saliency, but they disproportionately
weight the directly preceding token and offer no clear path toward control.

4The lack of saliency for the subject is not unexpected. Saliency scores operate on the level of tokens’ sense
vectors. They do not capture how much each token is "responsible" for a prediction – which would require
deeper analysis of the Transformer that sets contextualization weights.
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Figure 3: Saliency scores for target words “smile” and “smiles” in the sentences, “the author laughs
and X” (left) and “the authors laugh and X” (right). The rightmost subplot in each panel shows the
contrastive saliency score. The token senses that contain information related to grammatical number
have contrastive saliency scores with large magnitude. The saliency scores on sense 5 of “the” is
large and opposite between the two sentences, signaling its grammatical function.

Figure 4: Effect of reweighting sense 5 of “the” on performance on M&L vp_coord and
long_vp_coord. (The bar for weight 1 represents the performance of the unmodified model.)

reweighting the subject of each example leads to only very weak trends in sense 0 and 6. (Plots and
further discussion omitted due to space constraints.)

6 Clustering foils

6.1 Methodology

We perform a foil clustering analysis that follows the methodology of Yin and Neubig (2022).
Contrastive explanations demonstrate what evidence models use to disambiguate between target and
foil tokens. We consider various targets of interest (Table 3) and use the 1,000 most frequent tokens
in WikiText-103 (a dataset extracted from verified Wikipedia articles) as foils (Merity et al., 2016).

Consider a target yt. We sample 500 sentences containing that target from WikiText-103. For each
sentence, we calculate the contrastive saliency scores between the target yt and each foil yf , yielding
s′(yt, yf ) ∈ Rk×Rdi where k is the number of sense vectors and di is the length of sentence i. Then,
for each yf , we concatenate the saliency score vectors for all sentences to generate an explanation
vector in Rk ×R

∑
i di . We separate this into k per-sense explanation vectors of length

∑
i di, and we

consider an additional vector by taking the sum across all senses. These explanation vectors highlight
the tokens used to disambiguate the target from the foil in various contexts, per sense.

For each sense ℓ < k, we apply k-means clustering on the explanation vectors for all foils yf , using
100 clusters. Foils for which the model uses similar evidence to disambiguate cluster in groups,
revealing patterns of context-based grammatical and semantic similarity.

We compare the clusters that emerge to the clusters yielded by analyzing raw foil token sense vectors.
We also extract the 5 nearest neighbors for each token sense vector.
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target foil sense cluster (truncated)
go runs all runs, was, is, has, works, does
go went all went, were, had, did, began, took, wrote, won, came, died, started, told

man men all men, people, children, women
his their all their, her, its
five one all one, 18, 17, 8, 15, 16, 12, 11, 13, 14
girl person 9 person, John, James, William, George, David, Michael, Henry, Robert, Paul, Charles, Thomas, Smith, Peter

black white 0 white, been, American, British, German, French, English, man, Japanese, Australian, black, Black, mother
European, director, White, Red, International, Star

black white 1 white, short, right, black, Black, White, Red

Table 3: We focus on the sum across senses (denoted as “all”) that operates on the token level.
However, we include some sense-level clusters, e.g. for “ girl” to demonstrate that senses pick up on
individual patterns that are not evident in the summed analysis – specialization.

6.2 Results

Characterizing contrastive explanations across various contexts allows us to better understand how
models disambiguate between targets and foils. We recover clusters roughly consistent with selected
findings from Yin and Neubig (2022). For example, the foil “she” is distinguished from the target
“he” by similar contextual evidence as other female-gendered pronouns. Distinguishing “runs” from
“go” requires similar contextual evidence as other singular verbs. Additional examples can be found
in Table 3, and more results with comparison to baseline cluster approaches are in Appendix Table 5.

Foil clusters also capture per-sense specialization for words with multiple meanings. By grouping
foils based on the context tokens that distinguish them from a target, our clustering method recovers
a context-dependent notion of word sense that is more aligned with traditional linguistic word sense
than the raw senses of non-contextual sense vectors. For example, for the target “black”, the foil
“white” falls into different clusters for senses 0 and 1, which relate to different aspects of the target
token’s meaning: race/ethnicity descriptor vs. visual color descriptor. In sense 0, “white” clusters
with “European” because their disambiguations involve similar context usage even though their raw
sense vectors do not demonstrate a significant degree of similarity.

7 Topic control

7.1 Methodology

We also revise the topic-controlled generation method proposed in Anonymous (2023). Upon
choosing the re-weighting factors δlij ≥ 1 according to the logits EC(xtopic) for the topic xtopic,
they update the Backpack equation to

oi =

n∑
j=1

k∑
l=1

αlijδlijC(xj)l. (5)

However, we observe that setting δlij → ∞ turns p(y|on) into a 1-hot vector, instead of the desired
distribution EC(xj)l. This flaw suggests that Equation (5) is missing a normalization factor. Thus,
we repeat the experiments in Anonymous (2023) with the following normalized Backpack equation

oi =
1√

1
nk

∑
j,l δ

2
lij

·
n∑

j=1

k∑
l=1

αlijδlijC(xj)l. (6)

The normalizing constant is chosen such that in the baseline case when δlij = 1 for all l, i, j, Equation
(6) reduces to the original Backpack equation.

7.2 Results

We repeat the experiments for topic control in Anonymous (2023) with the normalized Backpack
equation (6). We keep the same values of δ with annealing, then apply normalization before generating
the predictions.

We generate 500 strings for each of 21 categories in the topic classifier of Antypas et al. (2022) and
calculate the percentage of strings that the classifier assigns the correct topic label with at least 0.5
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Method Sem Acc ↑ Toks-in-vocab ↓
Backpack
Unchanged 7.4% 0.0%
Old+1 12.1% 0.2%
Old+2 24.3% 1.5%
Old+3 35.3% 3.5%
Ours+1 13.9% 0.2%
Ours+2 30.8% 2.4%
Ours+3 42.8% 4.8%

Table 4: Semantic accuracy and frequency of the topic words in the generations for each strength
level across the topics in Antypas et al. (2022).

confidence. In addition, we calculate the frequency at which the generated text contains the topic
token since we want the language model to discuss the topic without mentioning the topic explicitly.
Table 4 shows the performance of the updated topic control method.5 Although the semantic accuracy
significantly increases with normalization, the frequency of topic tokens also increases.

8 Discussion

Our experiments demonstrate that Backpack LMs use a complex combination of sense vectors and
contextualization weights to control grammar. Based on input context, Backpack LMs may learn
to upweight and downweight specific sense vectors of function words to produce grammatically
valid outputs – a hypothesis we tested by evaluating contextualization weight transfer as well as by
intervening on the salient function token sense.

Unlike saliency analysis on Transformer LMs, saliency scores on Backpacks LMs provide a direct
path to influencing output. As such, our experiments also motivate various lines of future work.

Further foil cluster analysis. Foils that cluster together rely on contexts in a similar fashion, so
updating a token sense relevant to one token in a cluster may also impact the other tokens in a cluster
(e.g. modifying a certain sense of MacBook will likely affect not only Apple and HP but also any
other tokens found in the same foil cluster). Therefore, the foil clustering analysis may be useful to
better characterize the impact of proposed interventions.

More generally, studying the mean explanation vector for each foil cluster would allow us to
characterize what evidence the model actually uses to make specific distinctions, following how Yin
and Neubig (2022) qualitatively analyze what senses of what context tokens are important for specific
disambiguations. For Backpack LMs, modifying those relevant token senses may be a path toward
effective control.

Contextualization weights and tool use. We can view the trained contextualization Transformer as a
model that has learned how to use sense vectors as specialized “tools”. High contextualization weights
can activate these tools in the relevant settings. For example, Anonymous (2023) found that sense 3
of a given token is often associated with common next word pieces, and we qualitatively observe that
the Transformer often learns to activate sense 3 of the immediately preceding token during next token
prediction, e.g. “and” in Figure 2. One could examine training a contextualization transformer on a
set of frozen sense vectors or vice versa to deepen our understanding of this relationship. A potential
experiment could aim to reconstruct a sense like sense 3 that fires for immediately preceding tokens.

Additionally, if we simply subtract the contextualization weights for singular and plural sentences
(e.g. “the author smiles”, “the authors smile”), we can observe what token senses are being activated
differently in different contexts. Future work could look more closely at what token senses the model
weights differently in different contexts.

Sense vector relationships. Different sense vectors interface in complex ways that are not directly
interpretable. For example, different senses may contribute positively or negatively to the logit for a
specific output token, and the manner in which they “cancel out” could be another interesting line of
inquiry.

5We were unable to generate MAUVE scores due to technical and time constraints.
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A Appendix

target foil sense
he she all contrastive cluster her, she

sense cluster he, He, she, him, She, John, himself, George, David, Paul, Smith, Peter
sense neighbors she, She, he, He, him, they, them, They

man men all contrastive cluster people, men, children, women
sense cluster men, man, children, women
sense neighbors men, man, women, people, them, him,ians, others

go runs all contrastive cluster was, is, has, works, does, runs
sense cluster work, released, wrote, built, release, written, published, run, developed, writing, works, worked, working

runs, designed, available
sense neighbors runs, run,ing,ed,s, with, on,es

go went all contrastive cluster were, had, did, began, took, wrote, won, came, went, died, started, told
sense cluster came, went, go, going, come
sense neighbors went, go, going, came, was, were,ed, been

black white 0 contrastive cluster been, American, British, German, French, English, man, Japanese, Australian, black, white, Black, mother
European, director, White, Red, International, Star

sense cluster black, white, Black, White
sense neighbors white, White, black, Black,-, (,2, 0

black white 1 contrastive cluster short, right, black, white, Black, White, Red
sense cluster black, white, Black, White
sense neighbors white, black, White, Black, red,-, (,man

his their all contrastive cluster their, her, its
sense cluster the,s, The, his, their, her, its, His, my, Her, My, whose
sense neighbors their, its, his, whose, my, her, the, His

girl person 9 contrastive cluster John, James, William, George, David, Michael, Henry, Robert, Paul, Charles, Thomas, Smith, Peter, person
sense cluster people,ers, members, member, population, others, crew, President,ors, director, church, person,ians
sense neighbors person, people, man, others, men,man, member, himself

five one all contrastive cluster one, 18, 17, 8, 15, 16, 12, 11, 13, 14
sense cluster a, an, first, one, this, A,th, This, second, single, another, third, One, fourth,nd, First,one
sense neighbors one, One, another,one, each, this, two, that

going being all contrastive cluster being, following, having, using, making, playing, leading, working, saying, opening, taking, beginning
sense cluster was, is, were, had, be, are, have, been, has, being, became, having, become,re, remained, appeared, get
sense neighbors being, be, is, been, are, was, were, have

Table 5: Further foil clustering results with comparisons to clustering raw sense vectors for the listed
foils, as well as extracting the five nearest neighbors.
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Figure 5: Histograms of logits corresponding to sense associations of content words.
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Figure 6: Histograms of logits corresponding to sense associations of function words.
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Figure 7: Saliency scores for “The nurse came into the room. When X”, where “X” is “she” (left)
vs. “he” (middle). The rightmost panel shows the contrastive score between the target “she” and
contrastive target “he”. Observe the high contrastive saliency scores on the word “nurse”. Meanwhile,
the non-contrastive method is prone to highlight the directly preceding token. Note: the example
sentence is from Anonymous (2023).

Figure 8: Effect of reweighting all senses of “the” on verb conjugation performance in vp_coord(left)
and long_vp_coord (right). The sense to reweight varies on the y-axis. Accuracy is displayed for
the ground truth plural setting and ground truth singular setting in the left and right of each panel.

13


	Introduction
	Related Work
	Sense vector association visualization
	Methodology
	Results

	Contextualization weight analysis
	Methodology
	Results

	Saliency scores and grammatical interventions
	Methodology
	Results

	Clustering foils
	Methodology
	Results

	Topic control
	Methodology
	Results

	Discussion
	Appendix

