
PolarBERT: Enhancing Robustness and
Generalizability of BERT Sentence Embeddings
through Multiple Negatives Ranking Loss and

Contrastive Learning
Stanford CS224N Default Project

Tyler Hanson
Department of Computer Science

Stanford University
thanson2@stanford.edu

Jaisal Kothari
Department of Computer Science

Stanford University
jkothari@stanford.edu

Lucy Zhu
Department of Computer Science

Stanford University
lzhu21@stanford.edu

Abstract

Our project focuses on enhancing the performance of a BERT model for sentiment
analysis, paraphrase detection, and semantic textual similarity. To achieve this,
we have utilized two techniques: multiple negative ranking loss and contrastive
learning. We have also changed the model architecture to be deeper with more
linear layers and modified our similarity functions. The multiple negative ranking
loss method compares a valid response to multiple invalid responses, penalizing the
output if it is not ranked higher than the others. The ‘Efficient Natural Language
Response for Smart Reply’ paper states a consistent 20% error reduction using
this technique. The contrastive learning method uses dropout to create positive
and negative pairs with no additional data. Data from the forward pass will be
randomly dropped from a sentence; the modified sentence with another modified
version of itself will serve as a positive pair, and the modified sentence with a
different modified sentence will serve as a negative pair. This effectively creates
more training data and has done well for paraphrasing and similarity detection.
We have found the contrastive learning to improve our accuracy by 3% over the
previous model and multiple negative ranking loss to perform on par with other
loss functions such as MSE.

1 Key Information to include
• Mentor: Gabriel Poesia Reis e Silva
• External Collaborators (if you have any): None
• Sharing project: https://github.com/thanson2/CS224n_project

2 Introduction

As a transformer-based model, BERT (Bidirectional Encoder Representations from Transformers)
was a revolutionary transformer-based model released in 2018 that utilized bidirectional word repre-
sentations. BERT is capable of simultaneously performing multiple sentence-level tasks. We focus
on three of the tasks: sentiment analysis which classifies a text’s polarity (positive/negative/neutral),

Stanford CS224N Natural Language Processing with Deep Learning

https://github.com/thanson2/CS224n_project


paraphrase detection which finds paraphrases of texts in bodies of text, and semantic textual similarity
which determines semantic equivalence between texts. While it may be sufficient to produce a model
for each task separately, there is a great convenience and potential improvements in performance
through pooling together the knowledge from the otherwise separate models, which can be achieved
with BERT’s embeddings. The original BERT model has performed poorly in sentence embeddings
(it underperforms conventional word embedding techniques like GloVe) Anisotropy in BERT makes
the token embeddings occupy a narrow cone, resulting in a high similarity between any sentence pair.
The primary challenge we face in designing a model that can tackle all three tasks simultaneously is
in combining the learning from each task. Our approach is to interleave learning on batches from
each dataset. Further performance gains are then pursued through contrastive learning and multiple
negatives ranking loss. Multiple negatives ranking loss is employed with the intent to improve
embeddings for the paraphrase detection and semantic textual similarity tasks through augmenting
the batches with additional negative samples and maximizing the difference between the distances of
the scores of the positive and negative pairs

3 Related Work

Our project was in part based on the research done in ‘Efficient Natural Language Response for Smart
Reply’ (Henderson et al., 2017), SimCSE: Simple Constrastive Learning of Sentence Embeddings
(Tianyu Gao, 2021).

Smart Reply paper details the approaches taken to improve the response selection step of the Smart
Reply system, which tackles the task of response suggestions in human-to-human conversations. One
of the approaches is to implement a new learning method, the Multiple Negatives Ranking Loss to
improve sentence embeddings. This implementation augmented each batch by generating additional
negative samples through pairing up each sample with all other samples within each batch and aimed
to minimize the distance between the positive pairs’ sentences’ embedding while simultaneously
maximizing the distance between the negative pairs’ sentences’ embeddings. Application of this
new loss function demonstrated a consistent 20% error reduction over the Smart Reply dataset when
compared against training with sigmoid loss.

Since the loss is performed on sample pairs, we found it to be applicable to both the paraphrase
detection and the semantic textual similarity tasks as they utilize sentence pairs where negative
samples can be easily generated and seamlessly included in each batch.

SimCSE proposes a simple supervised and unsupervised method for improving sentence embeddings
and serves as a natural way to regularize the model. The unsupervised method create positive and
negative sentence pairs, where the positive pair is the same sentence twice, using only random dropout
to augment the data, and the negative pair is two different sentences with the same random dropout
applied. The model is then trained to predict positive and negative pairs from the data.

The supervised method is similar to the unsupervised method, however labeled contradicting and
entailment pairs are fed into the model. In the paper, the model is tested on a semantic textual
similarity task. We anticipated that improvements might also be found in the paraphrase detection
tasks as the two are quite similar. The authors found a 4.2% and 2.2% improvement on unsupervised
and supervised Spearman’s correlation compared to the previous best results.

We chose to adapt the unsupervised method to our model as the dataset could be trivially created
from our existing datasets and it provided the higher gains of the two methods.

4 Approach

We built our model on top of a BERT model. Our forward layer called the base BERT forward layer
and then passed through 2 linear layers. Our model had 4 prediction functions: predict_contrast,
predict_similarity, predict_sentiment and predict_paraphrase.

We extended the model with contrastive learning which improved the embeddings of the model
with no extra data. During training we created contrastive learning batches by taking a batch from
the Stanford Sentiment Treebank (which included a single sentence and masks), duplicating the
sentences and masks, and flipping the order of the second half of the sentences, thus the first half
served as positive pairs and the second half as contrastive pairs. These two sentences are fed through

2



the forward model, then a dropout layer, and then concatenated and passed into a forward layer
which outputs a single logit. The dropout augments the data to make the prediction task not trivial.
We found that inputting only one sentence through the dropout layer instead of both, and using a
single linear layer on the concatenated outputs instead of cosine similarity improved the dev accuracy
notably.

Figure 1: Contrastive Learning Architecture

We used round robin training for the predict_similarity and predict_sentiment tasks, as we found if
we trained on a full set, then the next set a lot the accuracy of the first tasks were diminished. We
originally included predict paraphrase in the round robin, but as it is a much larger dataset, the round
robin only trained on a small subset of the data, so we moved the paraphrase data to outside the round
robin which empirically performed much better. We chose to train the contrastive learning on its own
before the other training because contrastive learning is not one of the objectives of our model and
served as a form of pretraining, so it did not matter if its accuracy diminished to the benefit of the
other tasks.

predict_sentiment and predict_similarity were nearly identical in structure and even shared some
layers. The two inputs were concatenated together and passed to the forward method. The output was
passed through 3 linear layers each separated by a dropout layer with the final linear layer outputting a
single logit as the prediction. We found this method far outperformed processing the inputs separately
and using cosine similarity or other similarity functions at the end.

predict_sentiment differed from the other tasks as it was only given a single input sentence. We
fed it through forward two linear layers separated by a dropout and then passed the results through a
softmax. We found the softmax improved our results as the predictions were closer to probabilities.

Figure 2: General Multi-task Architecture

1. Predict Sentiment: final linear layer changes input_dim from hidden_size to 5; uses softmax
and then rescales it by half of batch_size; uses cross-entropy loss using sum reduction.

2. Predict Paraphrase: final linear layer changes input_dim to 1; uses MSE using sum reduction
/ Multiple Negatives Ranking loss.

3. Predict Similarity: final linear layer changes input_dim to 1; divides logits by 5; uses MSE
loss using sum reduction.

As an attempt to improve the embeddings, we implemented multiple negatives ranking log loss
and applied it to the logits output by predict_similarity and predict_paraphrase as both involved
sentence pairs, which the K-pairs structure of the loss can be adapted towards. The logits were
modified to generate all K2 possible pairs where K is the batch size of the dataset the loss is
applied to. The logits obtained from the original and new pairs are then passed into the loss learning
that simultaneously minimizes the distance between the positive sentence pair’s embeddings and
maximizes the distance between the negative sentence pair’s embeddings.

For a given K sentence pairs [(x1, y1), . . . , (xn, yn)] between x = (x1, . . . , xK) and y =
(y1, . . . , yK) where (xi, yi) are labeled as similar sentences, and (xi, yj) where i ̸= j are labeled as
not similar sentences. The loss function is as follows:

3



For each batch, the K − 1 negative samples are generated from the existing sentences within the
original batch. This formula aims to minimize the distance between xi, yi similar sentence pairs and
simultaneously maximize the distance between xi, yj not similar sentence pairs by minimizing the
approximate mean negative log probability of the data. θ represents the word embeddings and neural
network parameters. S is the scoring function.

The batches given by the datasets don’t necessarily include only positive pairs, so we implemented
additional batch processing. To do so, we still created all the possible pairs between each sentence
in the batch, computed the logits for each one. Once we computed the logits, for the true positive
pairs part of the equation aka S(xi, yi) where xi, yi are pairs of sentences that are to be considered as
positive samples, they’re denoted with a nonzero value in labels while the rest are denoted as negative
samples.

5 Experiments

5.1 Data

The datasets being used are the Stanford Sentiment Treebank1 and the CFIMDB dataset for sentiment
analysis that assigns sentences a sentiment score ranging from 0 (negative) to 4 (positive), Quora2

dataset for paraphrase detection, and the SemEval STS Benchmark dataset for the semantic textual
similarity task.

We also created a dataset from the Stanford Sentiment Treebank for the contrastive learning objective.
This was done by taking a batch from the SST set, duplicating the tokens ids and masks, and flipping
the second half of the token and masks tensors. Therefore the first half of the two sets would be
identical, serving as the positive pairs, and the second half would be different, serving as contrastive
pairs. The labels generated were 1 for the first half and 0 for the second half.

To apply multiple negatives ranking loss, we augmented the Quora and SemEval STS Benchmark
datasets to add hard negative sentence pairs such that they both

5.2 Evaluation method

We utilized the accuracy on both the SST and Quora test datasets, and Pearson correlation of the true
against the predicted similarity values on the SemEval dataset for the quantitative evaluation. The
three scored were averaged for the final dev and train accuracies.

The baseline we compare our model to is a model trained only on the SST dataset and applies cosine
similarity loss learning to all three tasks. While outperforming a random selection in the SST task,
the model’s performance is not different from that of a random selection model that picks correctly
the correct class out of 2 for the paraphrasing task and displays a low Pearson correlation for the
semantic textual similarity tasks. This is to check whether our model outperforms the method of
randomly picking a value for each sample.

5.3 Experimental details

Pretraining and finetuning were conducted for 10 epochs with a learning rate of e−5 and a dropout
rate of 0.3. Across all datasets, the batch size is set to 8.

1https://nlp.stanford.edu/sentiment/treebank.html
2https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

4

https://nlp.stanford.edu/sentiment/treebank.html
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs


The highest dev accuracy was typically found around epoch 6-8, and tended to overtrain after that.

Increasing the batch size led to lower performance, and decreasing the batch size to 1 led to small
gains but intolerably slow training times.

We also carried out Bayesian Optimization to find the optimal learning rate as part of hyperparameter
optimization. (Snoek et al., 2012) To achieve this, we created bounds for our learning rate and ran the
Gaussian Process on our black box training function. Over iterations, the acquisition function found
regions of optimal values.

Figure 3: Bayesian Optimization Process

Our experimentation with Adamax (Kingma and Ba, 2014) and other optimizers did not give any
noticeable improvements.

5.4 Results

Experimental Results:

Experiment (results on Epoch 0) Training Dev Paraphrase Sentiment STS
Baseline (Cosine similarity + Only SST dataset) 0.292 0.282 0.506 0.318 0.023
Train on all datasets 0.304 0.306 0.375 0.272 0.27
Extra linear layer on each function (Cosine similarity) 0.447 0.418 0.375 0.434 0.446
Combine inputs in one layer 0.629 0.599 0.505 0.5 0.791
With multiple negative ranking loss 0.627 0.592 0.491 0.485 0.799
Contrastive learning using cosine similarity 0.603 0.563 0.425 0.482 0.782
Contrastive learning using combined inputs 0.658 0.617 0.573 0.472 0.807
Two more linear layers and dropout layers 0.676 0.632 0.607 0.475 0.813
Remove dropout on one contrastive learning 0.679 0.643 0.632 0.481 0.815
Additional Linear Layer 0.582 0.551 0.438 0.417 0.799
Train on paraphrase, then round robin STS, SST 0.661 0.626 0.56 0.48 0.84
Train on paraphrase, round robin STS, SST, Epoch 4 0.864 0.721 0.825 0.516 0.822

Figure 4: Learning Rate Optimization Iterations

We ran Bayesian Optimization on the learning rate for 8 iterations with 15 initiation points. We got
0.0009325 as our optimal value.

Baseline Results:

5



Baseline Dev Set Accuracy
Set Pretraining only Finetuning
SST 0.393 0.520
CFIMDB 0.788 0.967

Baseline Model Statistics
Set Accuracy/Correlation
Sentiment 0.318
Paraphrase 0.506
STS 0.023

Final Results:

Dev Set Accuracy
Set Pretraining only Finetuning
SST 0.393 0.520
CFIMDB 0.788 0.967

Model Statistics
Set Test Accuracy/Correlation
Sentiment 0.531
Paraphrase 0.822
STS 0.848
Overall 0.733

6 Analysis

PolarBERT extends the BERT model by contrastive learning and multiple negatives ranking loss, both
of which improve the model by the concept of generating positive and negative pairs. A qualitative
analysis shows that we may have created, though enhanced, a polar model, which prefers extremes
over medians. This was an unexpected and very interesting finding for us.

For Sentiment, over-enthusiastic in sentimentality scoring such that it predicts a more posi-
tive/negative sentimental rating.

Sentiment Task Analysis
Positive Example Prediction Actual
It’s a lovely film with lovely performances by Buy
and Accorsi.

4 3

Entertains by providing good, lively company. 4 3
Unlike the speedy wham-bam effect of most Holly-
wood offerings, character development – and more
importantly, character empathy – is at the heart of
Italian for Beginners.

4 3

Negative Example Prediction Actual
Half Submarine flick, Half Ghost Story, All in one
criminally neglected film.

1 2

-LRB- Lawrence bounces -RRB- all over the stage,
dancing, running, sweating, mopping his face and
generally displaying the wacky talent that brought
him fame in the first place.

1 3

A coda in every sense, The Pinochet Case splits
time between a minute-by-minute account of the
British court’s extradition chess game and the
regime’s talking-head survivors.

1 4

For Semantic Similarity, the model’s cautious about rating similarities such that for extremely
similar sentences, it tends to rate them less similar.

6



Semantic Similarity Task Analysis
Example Prediction Actual
Russia, China Veto UN Resolution on Syria Russia,
China veto UN resolution on Syria killings.

2.39 3.8

The couple danced in the church. A couple of slow
dances.

0.65 3.2

Some guy sitting on a couch watching television.
A guy is sitting on the couch watching TV.

4.2 5.0

7 Conclusion

We were able to significantly improve the baseline BERT model on the three sentence-level tasks:
sentiment analysis, paraphrase detection, and semantic textual similarity. Our model improved by
3.0% when using contrastive learning. Applying the multiple negatives ranking loss resulted in no
significant change in performance (decreased training and dev average accuracies by 0.2% and 0.7%.)

Unsupervised Contrastive Learning Contrastive Learning proved to be the most effective. Inputting
only one sentence through the dropout layer instead of both, and using a single linear layer on the
concatenated outputs instead of cosine similarity improved performance notably. It was intended to
improve similarity detection and in practice, it improved the similarity detection and the paraphrase
detection but slightly worsened the sentiment analysis.

Multiple Negatives Ranking Loss Implemented one way of modifying the batches to pass into the
loss, but there are other potentially more effective approaches such as randomly sampling the true
positive and negative pairs to use in the loss computation. The loss is effective when there are a
consistent amount of positive samples in each batch, but the input involved both positive and negative
samples.

Hyperparameter Optimization Given more time and computing resources, we would like to
pursue additional modifications to the extensions we implemented and potentially apply bayesian
optimization to other parameters beyond the learning rate.

References
Matthew L. Henderson, Rami Al-Rfou, Brian Strope, Yun-Hsuan Sung, László Lukács, Ruiqi Guo,

Sanjiv Kumar, Balint Miklos, and Ray Kurzweil. 2017. Efficient natural language response
suggestion for smart reply. CoRR, abs/1705.00652.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical bayesian optimization of
machine learning algorithms.

Danqi Chen Tianyu Gao, Xingcheng Yao. 2021. In SimCSE: Simple Contrastive Learning of Sentence
Embeddings.

7

http://arxiv.org/abs/1705.00652
http://arxiv.org/abs/1705.00652
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1206.2944
http://arxiv.org/abs/1206.2944

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

