
Multi-Task Learning with BERT
Stanford CS224N Default Project

Naveen Kumar
Department of Computer Science

Stanford University
navee2@stanford.edu

Abstract

This project explores multi-task learning with BERT on three natural language
processing tasks: sentiment analysis, paraphrase detection, and semantic textual
similarity. We employ a variety of techniques focusing on regularization techniques
to improve the performance of the multi-task BERT model. We first establish a
baseline using a LSTM model for each task. For model training, we start with
individual models for each task and analyze the impact of various hyperparameters
such as dropout and learning rate on each task. We then implement cosine annealing
on the learning rate, use the AdamW optimizer, increase the training epochs, and
vary the number of layers to be fine-tuned in the BERT model. For the semantic
textual similarity task, we also experiment with different similarity structures to
capture the semantic relationship between sentences. Finally, we train all three
tasks together on a single BERT backbone and compare the performance with the
individual task models. Our experiments demonstrate that multi-task learning with
BERT can significantly improve the performance of some tasks.

1 Key Information to include

• Mentor: Cathy Yang

2 Introduction

Pre-training of language models has become a crucial step in natural language processing tasks,
such as text classification, sentiment analysis, paraphrase detection, and many others. The goal
of pre-training is to train a model on a large corpus of unannotated text data in an unsupervised
manner. This process allows the model to learn the underlying patterns and structures in natural
language, which can then be used to improve performance on downstream NLP tasks. Pre-training
typically involves training a deep neural network on a large corpus of text data using masked language
modeling in which model is trained to predict missing words in a sentence. Such pre-trained models
are also called foundation models.

Once the model is pre-trained, it can be fine-tuned on a smaller labeled dataset for specific NLP
tasks. Fine-tuning typically involves re-training the last few layers of the pre-trained model on the
task-specific dataset.

In multi-task fine tuning different NLP tasks have different objectives and require different types of
data and input representations. For example, sentiment analysis may require a model to identify and
extract sentiment-related features from the text, while named entity recognition may require a model
to identify and extract entities such as names, dates, and locations. This means that a single model
that is trained to perform multiple tasks must be able to learn and extract different types of features
from the text, which can be a difficult task.

For multi-task fine-tuning we use multiple datasets to build a robust network working across different
problems. Different NLP tasks have different objectives and require different model structure. We

Stanford CS224N Natural Language Processing with Deep Learning



aim to create a robust backbone which supports these multiple tasks which adding layers on top of
the backbone to support unique characteristics of the problem. Multi-task fine-tuning on BERT can
be computationally expensive and requires a large amount of memory, especially when fine-tuning
multiple tasks simultaneously. Such a trained model is expected to be robust for other tasks outside
of the given tasks. We expect improved performance of all the base problems in the process in
comparison to individual fine-tuning.

3 Related Work

Fine-Tuning and specifically Multi-Task fine-tuning on foundation models have been widely studied.
Chi Sun et al provides three strategies for fine tuning - differentiate learning rate across layers,
additional pretraining in target domain, and train on multiple tasks in target domain.[1]. Smoothness-
Inducing Adversarial Regularization is an adverserial loss technique where we add loss corresponding
to worst prediction difference in neighboring ϵ distance from inputs. This ensures that prediction is
robust.[2]. In terms of loss function there is suggestion of simple addition of loss function from all
the tasks.[3] A slight modification known as gradient surgery projects the gradient of the i-th task
gi onto the normal plane of another conflicting task’s gradient gj . We also looked into training of
LLaMA model by meta for ways to improve training[4]. They have suggested training with AdamW
optimizer with cosine learning rate schedule. Both of these provide some degree of regularization to
the learning.

4 Approach

First we start with baseline establishment for each of the tasks. We have used Bi-directional LSTM
for this purpose. We pass the tokens through an embedding layer to learn the embeddings. This is
passed through two layers of Bidirectional LSTM. A feedforward layer is then used to produce the
output. For sentiment analysis, feedforward layer produces 5 outputs corresponding to 5 classes.
Paraphrase detection and semantic sentence similarity produces 1 output. For paraphrase detection
and semantic sentence similarity problem we start with concatenation of 2 inputs. For sentiment
analysis Cross entropy loss is used, for paraphrase analysis binary cross entropy loss is used and
for semantic sentence similarity we use MSE on the produced output which is considered to be
continuous prediction between 0-5. Figure 1 is an schematic diagram of the network.

Figure 1: Baseline model with bi-directional LSTM

Next we observe effect of different hyperparameters on all the tasks. To do this we use simplest
possible network. For sentiment classification we use a linear layer which has 5 outputs and loss of
cross entropy is used. For paraphrase detection we first concatenate two embeddings and then use a
linear layer with 1 output. Binary cross entropy is used as loss in this case. For semantic sentence
similarity, we concatenate the embeddings from two sentences and then use a linear layer with 1

2



output. We consider the similarity to be a continuous metric and use a MSE loss. Figure 2 and Figure
3 show the two architectures.

Figure 2: Base architecture for Sentiment clas-
sification

Figure 3: Base architecture for paraphrase
detection and semantic sentence similarity

Semantic Textual similarity problem has unique evaluation in terms of correlation of predicted
similarity score with ground truth similarity score. Pair of embedding were manipulated in different
ways to obtain similarity score.

• Concatenate and map to score: Embeddings obtained from two sentences were concate-
nated. This was then passed through a linear layer to map to similarity score.

• Take Multiply embeddings and map to score: Embeddings were multiplied with each
other (without addition) and then were mapped through a linear layer with similarity score

• Take difference of embeddings and map to score: Difference of embeddings was passed
through a linear layer to map to similarity score.

• Use scale cosine similarity: Cosine similarity was evaluated between two embeddings. As
the cosine similarity outputs between -1 to 1, it was scaled to 0 to 5 as (cosine_similarity +
1) * 2.5

A couple of optimization techniques were tried as well. AdamW is an optimization techniques which
modifies Adam to include a weight decay term that reduces the magnitude of the weight values and
helps prevent overfitting. Cosine Annealing is a technique which starts with a high learning rate, then
reduces learning rate following a cosine curve to regualize the learning.

Once we had experimented with base tasks individually, we worked upon multi-task problem. We
started with combining the loss function of all the tasks.

L = Lsentiment + Lparaphrase + Lsts

As the three datasets had different size, we used a round robin approach for training. For each epoch,
first training was completed using data of sentiment analysis task. This was followed by training
using paraphrase detection. Finally, Semantic textual similarity was used to propogate gradients
through the network. As a modification to above network SMART loss was applied which added
additional loss signifying different in prediction in neighborhood of a point.

5 Experiments

5.1 Data

As this is a multi-task problem there are 3 datasets involved:

3



1. SST dataset - The Stanford Sentiment Treebank consists of 11,855 single sentences from
movie reviews extracted from movie reviews. The dataset was parsed with the Stanford
parser and includes a total of 215,154 unique phrases from those parse trees, each annotated
by 3 human judges. Each phrase has a label of negative, somewhat negative, neutral,
somewhat positive, or positive.

2. Quora Dataset - 400,000 question pairs with labels indicating whether particular instances
are paraphrases of one another.

3. SemEval STS Benchmark Dataset - 8,628 different sentence pairs of varying similarity
on a scale from 0 (unrelated) to 5 (equivalent meaning). We have treated the similarity as a
continuous variable in our experiments

5.2 Evaluation method

Following are individual evaluation metric for individual tasks:

1. SST dataset - Accuracy(primary), F1 of the multi-class classification
2. Quora Dataset - Accuracy of the binary classification
3. SemEval STS Benchmark Dataset - Pearson correlation of the true similarity values against

the predicted similarity

For the multi-task problem the combined metric is average of the evaluation of three tasks.

5.3 Experimental details

We used dropout of 0.5, learning rate of 1e-5, finetuning all layers and 10 epochs as base configuration
for all experiments. It was targeted that all 3 tasks should not take more than 30 minutes for initial
experiments. As, paraphrase tasks had lots of data and was taking lots of time, it was sampled to
make its size same as sentiment analysis problem. This help with quick iteration initially.We started
with hyperparameter variation. Table 1 shows the hyper-parameter variation experimented for single
task case.

Table 1: Hyperparameter variation

Hyperparameter Base Variation
Dropout 0.5 0.1, 0.3, 0.5

Learning Rate 1e-5 1e-4, 1e-5, 1e-6
Layer Freezing Finetune all Finetune all, last 2 finetune, last 1 finetune, pretrain

Epochs 10 10, 20, 30

In subsequent steps for multi-task learning we removed the sampling of paraphrase detection task
and chose the most optimal hyperparameter setting.

5.4 Results

5.4.1 Baseline

We used a 2 layered Bi-directional LSTM to train all the 3 models. We used 10 epochs of training,
learning rate of 10−5, batch size of 64 and dropout of 0.5 after each of LSTM layers . Following
table shows the performance for 3 problems

Table 2: Baseline for differnet Tasks

Task Performance
Sentiment Analysis 25.34%
Paraphrase detection 37.5%

Semantic Textual Similarity 13.5%

We note that we trained the embedding layer. The performance of baseline could have been better if
we had used a pretrained embedding layer instead of training embedding layer.

4



5.4.2 Hyperparameter variation on individual models

We varied dropout, learning rate, number of frozen layers and epochs. As a base dropout was kept at
0.5, learning rate at 1e-5, no frozen layer as base and epochs as 10. Table 3 Shows variation of tasks
with dropout variation.

Table 3: Performance of different tasks with dropout variation

Task Dropout=0.1 Dropout=0.3 Dropout=0.5
Sentiment Analysis 51.59% 52.4% 51.4%
Paraphrase detection 76.32% 76.02% 76.17%

Semantic Textual Similarity 38.98% 38.28% 36.74%

We don’t see large variation in performance due to dropout in final layer.

Table 4 Shows variation of tasks with learning variation.

Table 4: Performance of different tasks with learning rate variation

Task lr=1e-4 lr=1e-5 lr=1e-6
Sentiment Analysis 49.31% 52.04% 49.04%
Paraphrase detection 78.83% 75.31% 71.74%

Semantic Textual Similarity 37.96% 39.15% 33.95%

We observe that none of the tasks perform well with learning rate of 1e-6.

Table 5 Shows variation of tasks with epoch variation.

Table 5: Performance of different tasks with epoch variation

Task epoch=10 epoch=20 epoch=30
Sentiment Analysis 52.4% 52.95% 53.58%
Paraphrase detection 75.18% 78.05% 79.23%

Semantic Textual Similarity 37.93% 38.34% 38.55%

We observe some benefit of training longer.

Table 6 Shows variation of tasks with varying number of freezing layers.

Table 6: Performance of different tasks with Number of freezing layers variation

Task Fine Tune all Fine Tune last 2 Fine Tune only last PreTrain
Sentiment Analysis 51.68% 51.95% 52.22% 30.33%
Paraphrase detection 76.18% 74.21% 73.9% 62.84%

Semantic Textual Similarity 38.34% 38.08% 36.96% 17.58%

We observe a sharp reduction in performance of all tasks if we freeze all layers. In addition, we see
similar or better performance if we fine tune only top 2 layers instead of all the layers.

5.4.3 Variation of fine tuning for Semantic Textual Similarity Task

We applied 4 kinds of similarity extraction for STS Task - concatenation, dot product, difference and
cosine similarity as discussed in approach. Table 7 Shows variation of tasks with epoch variation.

5



Table 7: Performance of sts with variation in use of two embeddings

Fine-tune method Performance
Concatenation and map 37.4%
Dot product and map 38.93%
Difference and map 3.69%

Scaled Cosine Similarity 38.76%

Dot product and map based method works best in this case.

5.4.4 Applying Pytorch AdamW and cosine Annealing

Table 8 Shows variation of tasks with epoch variation.

Table 8: Performance of different tasks with learning rate variation

Task AdamW CosineAnnealing
Sentiment Analysis 50.49% 52.04%
Paraphrase detection 75.64% 75.31%

Semantic Textual Similarity 38.16% 39.15%

We don’t see improvement using AdamW and Cosine Annealing. These might be more useful with
prolonged training as done in Llama paper.

5.4.5 Multi-task training

Now we apply round robin training of multi-task problem and its variation with smart. A major bump

Table 9: Performance of tasks with simultaneous optimization

Task Additive Loss Additive loss with SMART
Sentiment Analysis 49.4% 50.2%
Paraphrase detection 74.5% 73.62%

Semantic Textual Similarity 46.7% 39.4%

in performance of STS is seen which had lowest data among three providing evidence of benefit from
other data sources. We didn’t see performance bump from SMART regularization. Other tasks with
larger dataset have shown slight degradation. This might be due to averaging of the three losses. One
of the loss function got much importance then other.

6 Analysis

A major bump in performance of STS is seen which had lowest data among three providing evidence
of benefit from other data sources We didn’t see performance bump from SMART regularization
Other tasks with larger dataset have shown slight degradation. This might be due to averaging of the
three losses. One of the loss function got much importance then other Longer training provides some
benefit across the tasks While fine-tuning all layers is preferred for STS and Paraphrase detection,
we see the improvement from fine tuning last 2 is small. If BERT layers are not fine-tuned then
there is large drop in performance Learning rate of 1e-5 worked best, but decrease in learning rate
to 1e-6 leads to lower learning across tasks Lower dropout works better for two tasks. This is a bit
counterintuitive as we see large overfitting. The train losses are almost always much higher than dev
loss We don’t see major benefits of optimization techniques such as AdamW and Cosine Annealing.
These seem to be more appropriate in domain with higher data

7 Conclusion

In conclusion, our findings suggest that multi-task learning is a highly effective approach for im-
proving the performance of NLP tasks. Our experiments demonstrated that training multiple tasks

6



simultaneously can lead to better results than training each task individually. Specifically, our results
indicate that the benefits of multi-task learning are most pronounced for the task with the least
amount of data. Additionally, our experiments also revealed that while varying hyperparameters for
individual tasks did show some hyperparameters to be ineffective, we did not observe a significant
improvement in overall performance across all tasks. This suggests that the benefits are not solely
dependent on tuning hyperparameters tuning for each individual task. These findings have important
implications for the design of NLP models and suggest that multi-task learning is a promising strategy
for improving the accuracy and efficiency of natural language processing systems.

References
[1] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. How to fine-tune bert for text classification?,

2020.

[2] Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao.
SMART: Robust and efficient fine-tuning for pre-trained natural language models through
principled regularized optimization. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguistics, 2020.

[3] Asa Cooper Stickland and Iain Murray. Bert and pals: Projected attention layers for efficient
adaptation in multi-task learning, 2019.

[4] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

7


	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results
	Baseline
	Hyperparameter variation on individual models
	Variation of fine tuning for Semantic Textual Similarity Task
	Applying Pytorch AdamW and cosine Annealing
	Multi-task training


	Analysis
	Conclusion

