
Improved Methods for Solving Diverse Winograd
Schemas

Stanford CS224N Custom Project

Rohan Cherivirala
Department of Computer Science

Stanford University
rohanc12@stanford.edu

Max Vandervelden
Department of Symbolic Systems

Stanford University
mvdvldn@stanford.edu

Abstract

In this project we develop an improved RoBERTa model for solving Winograd
schema problems, specifically those in the robust WINOGRANDE dataset developed
by Sakaguchi et. al [1]. Winograd schemas, first conceptualized in the Winograd
Schema Challenge (WSC) [2], test anaphora resolution [3], a challenging area of
NLP for language models. We use the finetuned RoBERTa model (RoBERTa-
WinoGrande-ft) developed in the aforementioned paper as a target performance
comparison. The additions we make to RoBERTa-WinoGrande-ft are (1) new
tested loss functions, (2) a novel randomized probabilistic problem modeling, and
(3) relative word embeddings. These changes resulted in a model that achieved
a 75.6% accuracy on the WINOGRANDE dataset and lies 3.5% below that which
was reported in Sakaguchi et. al [1]. Although no improvement in accuracy was
found, these changes could prove fruitful in cracking the Winograd challenge with
future work.

1 Key Information to include

• Mentor: Christopher Cross
• External Collaborators: None
• Sharing project: No

2 Introduction

In 2011, Levesque, Davis, and Morgenstern [2] developed the Winograd Schema Challenge (WSC),
a commonsense reasoning test involving pronoun anaphora resolutions. In linguistics, anaphoras are
expressions that are defined by the words, phrases, and general context surrounding them; without
these contextualizing primers, their meaning becomes ambiguous [3]. For pronouns, specifically,
situations like these appear frequently because pronouns are inherently referential to the noun that
they are describing. For example, in the sentence:

"John moved the couch from the garage to the backyard to create space. It is too small."

Here, an example choice for the pronoun It may be "garage" and "backyard". Both of these nouns
syntactically satisfy the blank in this sentence; however, the contextual sentence, "John moved the
couch from the garage to the backyard to create space," and the determiner sentence, "It is too small,"
must be understood in tandem when determining the correct input. Based on this, we know "garage"
is the more likely here because the couch is being moved out of the said garage because of its size.
Because Winograd schemas test linguistic understanding of the meaning of the sentence itself both
also have commonsense reasoning skills about the nouns involved, they are often used as a benchmark
for the logic capabilities of new language models and are considered an improvement to the Turing

Stanford CS224N Natural Language Processing with Deep Learning



Test [1]. Models tested on Winograd schemas are generally fed some contextualizing sentence or
clause and a series of potential noun options for a blank or corresponding pronoun. Frequently, these
pronouns are presented as blanks (" ") to the models instead of the actual pronouns themselves [1].
This replacement significantly increases difficulty due to the lack of gender and number information
conveyed by the existence of these pronouns. Accuracy on these tests is measured by how frequently
the models choose the right noun for the corresponding pronoun to match the meaning of the context
clause.

On average, humans perform very well on Winograd schemas, achieving around 94% accuracy
[4]. However, most language models struggle, usually doing no better than random chance. This
is generally caused by models lacking the contextual understanding and complex reasoning skills
needed to solve the schemas [2]. In the small challenge dataset developed by Levesque, numerous
neural language models have achieved around 90% accuracy [2]. However, because of WSC’s small
size (273 entries), it is not clear how robust these models actually are and whether they would perform
well against newly generated and diverse Winograd schemas [1]. In response, Sakaguchi et. al [1]
developed a more robust dataset of Winograd schemas known as WINOGRANDE.

We make three conceptual changes to the RoBERTa finetuned model developed by Sakaguchi et. al.
Our first addition is testing new loss variants of Binary Cross-Entropy (BCE), namely BCE Dice
Loss and BCE Loss with Logits. We included these new metrics in an attempt to efficiently increase
accuracy within our model. Our second addition is the most significant. We change the problem’s
modeling, introducing more variability in how the input context and determiner sequences are fed
into the model’s pretrained RoBERTA base to provide more generalizability. Our third addition is
changing the model’s embeddings from absolute to relative key queries. Because pronouns often
describe the words or nouns most proximate to them, we seek to better represent this with relative
embeddings.

3 Related Work

There are a number of different methods which have been developed to test commonsense reasoning
skills for NLP models. These testing methods are known as Natural Language Inference (NLI) tasks.
These types of problems involve some context, and, based on this context, a hypothesis; the model
must determine the validity of this hypothesis [5]. Winograd schemas are a great example of NLI
problems because they involve a contextualizing sentence and a "hypothesis" wherein the model must
compare the validity of two possible noun inputs [2]. Some other developed NLI metrics problems
include SNLI [6], MULTINLI [7], QNLI [8], and RTE [9]. Of these, the latter three are included
in the multi-task GLUE benchmark which is frequently used to measure the general commonsense
reasoning skills of natural language models [10].

Our work primarily stems from that of Sakaguchi et. al [1]. WINOGRANDE is a dataset of more than
44,000 Winograd schemas to improve this robustness in comparison to WSC, focusing explicitly on
encouraging creativity within and removing algorithmic bias from these examples. To foster creativity
within the dataset, authors randomly selected anchor words from articles from which workers would
develop related example schemas. This process is known as "creativity from constraints" and
encourages new sentence topics and structures [11]. To reduce spurious dataset bias, the authors
developed a new algorithm known as AFLITE, an adversarial filtering algorithm. Through this
algorithm, the authors systematically removed dataset-specific bias created between different words
in the context and determiner clauses which might prime the model to assign certain nouns in place of
pronouns based on sentiment. The authors note how the WINOGRANDE dataset contains significantly
more challenging and complex questions than the WSC and other existing variants and therefore
accuracy on it suggests high levels of linguistic understanding and reasoning.

After testing the dataset on various current model types, the authors then developed RoBERTa-
WinoGrande-ft from a pretrained RoBERTa base which was finetuned on the WINOGRANDE
training and dev sets. With this model, the authors achieved higher than 85% accuracy on six
similar Winograd schema experimental tasks (including the WSC), much higher than the 65% to
80% accuracy demonstrated by the other models. When compared to models trained on the Definite
Pronoun Resolution Dataset (DPR), another NLI dataset [5], the model performs consistently better
on all WSC variant tasks [1].

2



In terms of modifying these types of pretrained transformers, small changes, like changing embed
scaling, relative and absolute embeddings, and early stopping, have shown to have a significant impact
on model performance. Small changes in how the problem’s modeling and input can drastically
improve performance on large datasets like PCFG and COGS, sometimes by more than 30% [12].
Our approaches include similar ideas, making small modifications to the model’s architecture in an
attempt to discern what may make significant impacts.

4 Approach

4.1 Architecture Changes

These changes are fundamentally intended to improve the framework used on top of the RoBERTa
pretrained base developed by Sakaguchi et. al, available at github.com/allenai/winogrande [1].
As such, we used their basic framework but made original changes for all of our approaches. We
refer to the final model with these changes in our Results and Conclusion sections as RoBERTa-
Winogrande-Modified.

Our first approach deals with testing new loss functions. The default loss function used in NLP
models for binary classification is Cross-Entropy Loss. For binary comparisons like what we are
doing between two noun options, this loss is known as Binary Cross-Entropy or BCE [13]. We test
two new loss functions which are variations on BCE Loss – BCE Dice Loss and BCE Logits Loss –
to measure how these functions influence final model accuracy. BCE Dice Loss is a combination of
BCE and the Dice coefficient for loss, measured as

Dice Loss = 1−Dice Coefficient = 1− y ∩ ypred
y ∪ ypred

(1)

where y are the actual answers to the WINOGRANDE dataset and ypred are our model’s predictions
for the answers [13]. We theorized that providing the model with a new metric of loss could serve
as a better representation of accuracy. We tested a second new loss function, BCE with logits, to
provide more numerical stability within our model. This stability is created by combining the output
of BCELoss and a sigmoid layer within one class. BCE Loss is somewhat numerically unstable
in calculation because of its potential to produce very large or small values, leading to Inf or NaN
calculations [14].

Our second approach is a novel approach to changing the problem encoding. Our change specifically
manipulates the inputs into the RoBERTa pretrained base of the model. The multiple-choice (binary)
version of RoBERTa is presented with two different choices. Each choice is presented as two segments
of the input sentence (see Evaluation method for more detail). These two segments are formed
by splitting sentence by an index, which Sakaguchi et. al chose to be the space before the " "
representing the possible noun inputs [1]. Therefore, the first segment was guaranteed to contain all
of the primer context phrase or sentence. We introduce some randomization into this selection by
subtracting the initial split index by len(sentence)

3 with a 15% probability. For the other 85% of the
time, the splitting index remains the same as the blank (" ") index (see Figure 1). Our motivation for
this change was to ensure that the model pays close attention to both the primer and determiner when
making its predictions and by varying the location of the separation on specific examples. Moreover,
this procedure helps convey the importance of both parts of the sentence in commonsense reasoning.

Our third approach was to use relative key query embeddings to represent word tokens instead of
absolute embeddings. Potentially, this allows the model to include closeness to other words in the
input sentence as a better representation of coreference probability. Additionaly, relative embeddings
help capture the intricate complexity of commonsense reasoning problems much better than relative
representations.

4.2 Baselines

We compared RoBERTa-Winogrande-Modified to a few main evaluation benchmarks and targets.
The first was random chance. Given the two possible answer choices for all problems in the
WINOGRANDE dataset, random chance performance would be equivalent to roughly 50%. Our
second set of benchmarks come from Sakaguchi et. al, who measured the performance of various

3



Figure 1: Comparison between default and potential randomized problem embedding

model types including Wino Knowledge Hunting (WKH), Ensemble Neural LMs, and BERT on the
dataset. Our target performance was the RoBERTa model itself, which achieved a 79.3% dev and
79.1% test set accuracy. The performance of these models in comparison to our final results is given
in Table 1.

5 Experiments

5.1 Data

The dataset we are using and evaluating on is the WINOGRANDE dataset, which is already split into
training, dev, and test sets which we will also use [1]. Structurally, the authors also their data in
comparison to the WSC dataset [2], only providing the expression itself and a binary option between
two possible corresponding nouns [1]. The WINOGRANDE dataset contains 44k problems; each with
a sentence string entry; two option choice strings, option1 and option2; and an answer binary
string [1]. sentence contains some sort of primer context phrase or clause and a determiner phrase
or clause that involves a blank " " representing a pronoun later within it. Here, the language model
must either choose from the nouns option1 or option2 which best fit in this blank given the context
of sentence [1].

5.2 Evaluation method

Since the problem we are looking at is solving a binary choice task, the evaluation metric we used
was determining what percentage of the test set the model predicted correctly. More specifically, we
evaluated a model based on the percentage of questions in the test set where it was able to choose the
correct option out of the two possible answers.

5.3 Experimental details

Based on the random grid search hyperparameter optimization, we trained our model using a learning
rate of 1e− 5. Likewise, we trained our eventual model using 100 epochs. Since each epoch took
around 5.3 minutes, training took around 9 hours. We trained our models on the train_large
WinoGrande dataset. Outisde of the changes made in our approaches, we followed the general
model configurations established in Sakaguchi et. al, specifically that of finetuning RoBERTa on the
WinoGrade dataset [1].

5.4 Results

Among our loss variants, we saw very little difference in performance and loss degradation. The
regular BCE Loss achieved a loss of roughly 0.05 and a final accuracy of 73.8%. In fact, the multi-
factor BCE Dice Loss showed a relatively worse accuracy and loss over time in comparison to the
regular BCE Loss. Ultimately, Dice Loss experienced a 0.03 greater loss and a 0.016 lower accuracy
(73.8% compared to 72.2%). BCE with Logits performed almost identically to regular BCE in terms
of loss and was slightly less accurate (73.8% compared to 72.4%).

4



0.05

0.15

0.25

0.35

6k 8k 10k 12k 14k 16k 18k 20k 22k 24k

0.712

0.716

0.72

0.724

0.728

0.732

0.736

6k 8k 10k 12k 14k 16k 18k 20k 22k 24k

Figure 2: Loss (left) and Accuracy (right) over Training Iterations for Loss Variants (Smoothing =
0.6)

When modifying problem modeling, we saw a significant increase in the accuracy of the model. For
the normal BCE Loss, there was a 0.2% improvement when including the modified problem approach
over the same number of 40 epochs. However, we trained this modified approach for longer than
our initial BCE Loss run. When left to train longer, this modified-approach model achieved a 0.8%
improvement between the two final versions. In comparison to the BCE Logits loss variant, adding
the new problem randomization significantly improved accuracy over 40 epochs by 1.1%.

0

0.1

0.2

0.3

5k 15k 25k 35k 45k 55k

0.716

0.72

0.724

0.728

0.732

0.736

5k 15k 25k 35k 45k 55k

Figure 3: Loss (left) and Accuracy (right) over Training Iterations for Modified Problem Modeling
(Smoothing = 0.6)

When modifying the embedding of the model from absolute to relative, we saw some interesting
changes. We trained this relative embedding model for 70 epochs. Both the modified problem
approach and relative embedding accuracies reach a large value of accuracy and decrease dramatically
before rebounding. For the relative embedding model, it achieved an accuracy of above 75% at
around 15k training iterations (25 epochs), significantly higher than the 73.8% accuracy achieved by
the standard BCE Loss. After this point, the accuracy decreases dramatically to a local minimum
accuracy of 72.7% at around 24k iterations (40 epohcs). Afterward, it increases quickly to a final
accuracy of 74.2%, 0.4% larger than the default BCE Loss. Furthermore, based on the similar
performance of the modified problem model, it seems as though the accuracy might still continue to
increase if left to train past 70 epochs. We discuss this trend further in Analysis.

Ultimately, our final results for the model, including the default BCE Loss, modified problem
modeling, and relative embeddings, were promising. After only training on the large WINOGRANDE
dataset for 100 epochs, we achieved an accuracy of 75.6%, significantly larger than random chance
and all of our model baselines. The final 79.1% accuracy calculated by Sakaguchi et. al was achieved
on the largest training dataset (xl) over a much larger number of training iterations [1].

5



0

0.1

0.2

0.3

0.4

5k 15k 25k 35k 45k 55k

0.722

0.726

0.73

0.734

0.738

0.742

5k 15k 25k 35k 45k 55k

Figure 4: Loss (left) and Accuracy (right) over Training Iterations for Embedding Changes
(Smoothing = 0.6)

Model Test Accuracy (%)
Random Chance 50
Wino Knowledge Hunting 49.6
Ensemble Neural LMs 50.9
BERT 64.1
RoBERTa (RoBERTa-WinoGrande-ft) 79.1
RoBERTa-WinoGrande-Modified 75.6

Table 1: Final accuracy of benchmarks and our model, RoBERTa-Winogrande-Modified, on
WINOGRANDE test set.

6 Analysis

As seen in our results section, each loss function resulted in a stable descending loss curve. This is
mainly a result of the loss functions we chose being derivatives of the original Binary Cross-Entropy
Loss. Although many of these changes initially seemed promising, we found they did not make a
substantial change in the results and resulted in fairly similar model behavior. To highlight this, we
can look at the loss curves in Figure 1. Moreover, we see that each loss curve follows an incredibly
similar trajectory, with the BCE loss with logits being almost identical to the regular BCE loss.

Conversely, we found that the problem modeling change had a significant impact on the performance
of the model. We believe that this is mainly due to the increased level of generality that is achieved by
adding an element of randomization to the position of the separation token. This randomization helps
convey the generality needed in commonsense reasoning and is employed in effective transformers
like BERT.

By changing the model to use relative embeddings, we saw a slight improvement in model perfor-
mance. This is likely a direct result of how the complex relationships between different parts of a
Winograd sentence are better represented through a relative key-value query.

When examining the model’s performance, we found a general pattern between the examples that
were missed, specifically that they often required very specific knowledge about a specific attribute.
Take the following sentence:

"Ben had to drain both water and oil down the sink, but the _ was too viscous."

Clearly, the correct answer in this scenario would be oil, since oil is generally more viscous than
water. Thus, we believe that the model may have missed this question due to being unable to apply
the specifics of liquid viscosity to commonsense reasoning. We believe that this is likely due to the
model losing generality as it is finetuned on the training task.

6



This idea is also echoed in the accuracy we see on the validation set while training. Namely, there
seems to be a spike in model accuracy at around 15-20k iterations followed by a sharp decline in
model performance at around 25-30k iterations. After this, the model’s performance slowly recovered.
We found this result to be highly interesting and we believe this dip in accuracy is caused by an initial
loss of generality that occurs from finetuning on the WinoGrande. On the same note, the general path
of recovery that follows seems to stem from the model better understanding of the problem and hand.
This view echoes the trends in the results that we saw, specifically with the fully trained model having
poor performance on commonsense reasoning questions requiring specific outside knowledge.

7 Conclusion

7.1 Summary and Takeaways

We found that randomizing the model’s input structure and introducing relative embeddings into the
model significantly improved performance. We found little change from introducing new loss variants
like BCE Dice Loss and BCE Loss with Logits. Conversely, we saw substantial and meaningful
improvements when applying our novel modified problem approach and relative embedding schema.
Although our final model’s accuracy was 3.5% lower than that of Sakaguchi et. al, the changes
made substantially improved model performance and outline a path for getting closer to solving the
Winograd challenge [1].

Through this experience, we learned that small architectural changes have large compounding impacts
on model performance. Additionally, we found that many changes that sound theoretically beneficial
often have unexpected practical implications. Moreover, we found that the best way to make changes
to a LLM was through repetitive testing and iteration.

7.2 Limitations

The main limitation we faced in our training process was a lack of computing power. Coupled with
time constraints, we were unable to adequately tune our hyperparameters and were only able to carry
out a relatively simple random grid search. This resulted in our model not being able to achieve the
level of test accuracy we hoped for, especially in comparison to Sakaguchi et. al.

Another limitation that we faced is dealing with the unruly codebase that we used to build our model.
Since the codebase was created 3 years ago, we found ourselves having to remove significant archaic
code and fix many model compatibility issues. Moreover, we were unable to reproduce any of the
results published in Sakaguchi et. al and instead started off with a model with about a 72% accuracy,
7.1% lower than the accuracy reported in their paper [1].

7.3 Future Work

One source for future work is how we choose the hyperparameters for our model. Grid search,
our method for selecting hyperparameters, is a very simple and brute-force method. This method
uniformly and randomly selects hyperparameters and therefore must test many ineffective options
[15]. In comparison, Bayesian optimization is an informed search method, designed to finetune
hyperparameters based on the success of previous trials. This process is based on Bayes theorem [16]
and is applied to hyperparameter optimization via

p(Score |Hyperparameters) =
p(Hyperparamaters | Score) ∗ p(Score)

p(Hyperparamaters)
(2)

where Score represents performance on some objective function. Here, the objective function we are
trying to maximize is a representation for accuracy on the WINOGRANDE dataset. While Bayesian
optimization reduces the number of trials needed to find adequate hyperparameters, it also requires
more calculation for each individual iteration [16].

Another effective change to the model could be modifying the pretrained base. One pretrained
architecture we came across in our research was DeBERTa, which performs better than RoBERTa
on many Natural Language Inference (NLI) tasks similar to Winograd Schemas [17]. The base’s

7



disentangled attention mechanism and enhanced mask decoding could lead to significant improvement
in our results with the model accuracy [17].

References
[1] Sakaguchi, Le Bras, Bhagavatule, and Choi. Winogrande: An adversarial winograd schema

challenge at scale. 2019.

[2] Morgenstern, Davis, and Ortiz. Planning, executing, and evaluating the winograd schema
challenge. 2016.

[3] Reuland, Everaert, and Volkova. Anaphora. 2011.

[4] Bender. Establishing a human baseline for the winograd schema challenge. 2015.

[5] PapersWithCode. Natural language inference, 2023.

[6] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large
annotated corpus for learning natural language inference, 2015.

[7] Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus
for sentence understanding through inference, 2018.

[8] Dorottya Demszky, Kelvin Guu, and Percy Liang. Transforming question answering datasets
into natural language inference datasets, 2018.

[9] Adam Poliak. A survey on recognizing textual entailment as an nlp evaluation, 2020.

[10] Wang, Singh, Hill, Levy, and Bowman. Glue: A multi-task benchmark and analysis platform
for natural language understanding. 2019.

[11] Stokes. Creativity from constraints: The psychology of breakthrough. 2005.

[12] Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber. The devil is in the detail: Simple tricks
improve systematic generalization of transformers, 2022.

[13] Opidi and Jha. Pytorch loss functions: The ultimate guide. 2023.

[14] PyTorch. Bcewithlogitsloss documentation, 2023.

[15] Koehrsen Will. A conceptual explanation of bayesian hyperparameter optimization for machine
learning. 2018.

[16] Shekar, Bansode, and Salim. A comparative study of hyper-parameter optimization tools. 2022.

[17] He, Liu, Gao, and Chen. Deberta: Decoding-enhanced bert with disentangled attention. 2019.

8


	Key Information to include
	Introduction
	Related Work
	Approach
	Architecture Changes
	Baselines

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Summary and Takeaways
	Limitations
	Future Work


