
Constructing a Transformer-Based Architecture for
Explainable Conversational Recommendation

Stanford CS224N Custom Project

Brock Grassy
Department of Computer Science

Stanford University
bgrassy@stanford.edu

Abstract

Recent research on recommendation systems have emphasized producing item
recommendations that are both relevant to users and backed by some sort of explana-
tion as to why the item was selected. Parallel research has also been undertaken into
producing conversational recommendation systems that allow for users to engage
in dialogue with the system and provide iterative feedback on recommended items.
This feedback is incorporated into model results, allowing users to request items to
be recommended that match more closely with their explicit preferences. Despite
there being numerous papers written on these topics individually, investigation into
the intersection of these fields have been somewhat limited. In this paper I propose
modification of an existing transformer-based explainable recommendation system
architecture for use as a conversational explainable recommendation system. To
achieve this goal, I also modify an existing explainable recommendation dataset
to produce data suitable for use in the conversational objective. I found that this
model architecture bettered existing results on explainable recommendation system
benchmarks. Although the model did not improve recommendation performance
when progressing through a simulated series of sentences in a conversation, a lack
of proper conversational data means that we cannot rule out that this architecture
would not perform well given better input. Furthermore, results point towards
potential benefits of including synthetic conversational data as input to transformer-
based explainable recommendation systems, which may improve implementations
of the existing state of the art in that area.

1 Key Information to include
• Mentor: Hong Liu

2 Introduction

Recommendation systems are tools that provide recommendations for items (typically either in the
form of a top item list or predicted ratings for an item) personalized to users. Traditionally, these
recommendations are hard to interpret- these models tend to be black boxes that provide no insight
into why certain items are selected. In standard enterprise uses of recommender system (for instance
on retail sites such as Amazon), this feature may prove to be useful- users may want to know what
reasons are given as to why a certain item is recommended. Research into explainable recommender
systems aims to tackle this question. There are two main categories of explainable recommendation
models. The first method involves incorporating explainability directly into the model through
outputting it simultaneously with item ratings. This can be accomplished through construction of
a two-headed model that handles each individual task as output from one of its heads. The other
strategy commonly used for explainable recommendation is construction of a separate explanation
model that can produce explanations independently of the recommendation model architecture. This

Stanford CS224N Natural Language Processing with Deep Learning



provides additional flexibility at the cost of potential loss of information that could be shared between
the two tasks.

Explainable recommendation systems can also come in multiple flavors with respect to the type of
explanations that they produce. Common examples include:

• Features/concepts the user tends to like that are shared by the item (action movies, folk
albums, etc)

• Similar items to the recommended item that the user liked - for example, if the user has
liked the movie Knives Out it may provide “user liked Knives Out” as the justification when
recommending Clue, a similar murder-mystery styled movie.

• Free textual output (“This movie has great acting and a fast-moving plot”, “This album is
very pretty”)

Constructing each of these explanation types has different trade-offs in terms of effectiveness of
explanation and complexity. Computing concept or feature-based explanations may be simpler as
there is a more limited set of possible explanations that can arise. Nearest-neighbor styled models
are commonly seen in movie streaming websites (for instance in “Because you liked...” sections)-
however, if the set of possible items is very large this may be very computationally expensive. Free
text is the most flexible option, and is the one I will focus on in this paper.

Another downside to typical recommendation systems is that they lack the capacity for users to
simply provide feedback on the recommendations they receive from the model. One potential way to
address this issue is through research into conversational recommendation. As implied by the name,
conversational recommendation systems mirror standard recommendation systems behavior with the
additional capacity to receive conversational input from the user interacting with the system. For
instance, let’s examine an imaginary conversation with such a system.

User: I would like to watch a romance movie.
Model: What about Casablanca?
User: I’d like a more modern movie.
Model: I’d recommend When Harry Met Sally.
User: How about something more bittersweet?
Model: I recommend Eternal Sunshine of the Spotless Mind.

As can be seen, the model provides responses in the form of recommendations to the user’s prompts,
adjusting the recommendations based on the provided input. For such a system, we may want a
conversational model to have the following characteristics:

• Adjusts to user responses and improves recommendations accordingly.

• Provides coherent responses (either by use of template to output sentence or some sort of
generating language model).

• Does not sacrifice performance on other metrics, particularly recommendation quality.

There has been a small amount of research on unifying these two objectives into a single model
(deemed an explainable conversational recommendation system). In this paper, I aim to construct a
transformer-based architecture that manages both of these objectives jointly.

3 Related Work

There is a wide array of research relating to recommendation systems as a whole. For one particularly
useful high-level review of standard strategies in this system one can refer to Isinkaye et al. (2015).

3.1 Explainable Recommendation: PETER

I examined two main explainable recommendation models, both written by the same set of authors.
The first one I examined is PETER (PErsonalized Transformer for Explainable Recommendation)

2



presented in Li et al. (2021). The aim of this paper is to construct a simple transformer-based
explainable recommendation system that provides personalized recommendations for users and items.
In order to personalize the recommendation, the researchers propose a methodology for encoding
user and item IDs into the model. For the model, we have three different types of token provided
as input: user tokens, item tokens, and word tokens. The model constructs three different sets of
randomly initialized embeddings for each sets of tokens and concatenates them together, giving the
input sequence [u, i, e1, e2, · · · , en] (where u is the user embedding, i is the item embeddings, and
ei is the embedding for the ith text input token).

To account for these new inputs, they produce a modified attention masking mechanism. The
transformer architecture consists of L layers, and for each layer tokens are allowed to attend to all
tokens to the left. In addition, the user and item tokens are allowed to attend to each other.

After passing the input data through the transformer, the output is put into a linear model to construct
the logits for each word in the output vocabulary. This allows for generation of explanation text
through greedy decoding and iterative selection of the word with the highest probability. They define
a loss function Le to penalize the difference between the predicted probability of the true word and
the correct probability. The researchers also construct a mapping between user and item IDs and
words and construct a loss term Lc to encourage the output explanation to be similar to concepts in
the user and item embeddings.

Finally, they pass the output through one last multi-layer perceptron to compute a predicted rating for
each user-item pair. MSE loss is computed between the predicted and true rating for all user-item
pairs in the data, and is denoted by Lr. The overall loss combines all these objectives into a single
function as follows:

J = min
Θ

(λeLe + λcLe + λrLr).

The λ terms handle regularization and the relative weighting of each of the three objectives in the
overall loss function, allowing people training the model to determine if they value explanation
quality or recommendation quality more. This model provides good initial results- however, the
transformer architecture is rather shallow. The next paper attempts to address what happens with a
larger model.

3.2 Explainable Recommendation: PEPLER

The same authors produced a later model, PEPLER (PErsonalized Prompt Learning for Explainable
Recommendation), that uses a pretrained GPT-2 transformer as the basis of their architecture (Li et al.,
2023). The rough intention of the model is similar- they still want to produce a recommendation
system that generates natural language explanations while retaining strong performance on current
recommendation performance metrics. They propose a variety of variations of their model, but I
would like to focus specifically on their “continuous prompting” model.

For this paper, the researchers use a similar strategy to construct user and item embeddings. These
embeddings are initially randomly constructed in the same fashion as they were for PETER, and we
construct a similar input sequence [u, i, e1, e2, · · · , en]. This input is fed through the GPT-2 model
to generate output data and a corresponding explanation. Transformer loss is measured by the loss
LC , defined in the same way as the previous model.

The researchers expand the recommendation rating generation model head to provide two options:
the data is either fed through a matrix factorization (MF) method or a MLP (multi-layer perceptron).
Either way, this recommendation model outputs a rating prediction for each user-item pair, with its
loss penalized by MSE as a term LR. The researchers found that the MF head produces better text
quality relative to MLP, while the MLP head produces better rating performance. This architecture is
a flexible way to handle explainable recommendation that lends itself well to model tweaks, such as
the one to include conversational input that I discuss later in the paper.

3.3 Explainable Conversational Recommendation: ECR

I found one main existing explainable conversational recommendation system (Chen et al., 2020). As
discussed in the introduction, explainable conversational recommendation aims to marry the objective

3



of explainability with the capacity to have conversations with the user about the recommendations.
This paper aimed to satisfy three main objectives: recommendation accuracy, explainability, and
explanations that reflect the concepts provided in the user’s messaging.

To accomplish these goals the authors leverage Microsoft Concept Graph, a system that defined a
series of concept-level embeddings and an associated graph that shows connections between these
concepts. As a first pre-processing step, they extract a set of concepts for each user and item. Without
loss of generality, we can discuss how concepts are extracted for users. The authors find the set of all
reviews that are submitted for each individual user. Using Microsoft Concept Graph, they find the set
of concepts that appear the most frequently across these reviews. This same process is repeated for
items.

After extracting user and item concepts, they proceed with extracting concepts from the conversational
feedback provided by the user. These concepts are all fed into the model, which produces both
explanation text and a predicted rating (as with the other models). In generating explanations, they
use a GRU to constrain generation to use the most important concept provided in the input feedback.
The loss is also penalized if the explanation is dissimilar to the other most relevant concepts with
positive sentiment, or if it is similar to the most relevant concepts with negative feedback sentiment.
This encourages the model to produce explanations that are similar to what the user wants.

When attempting to use this model as a baseline, I found that Microsoft has deprecated Microsoft
Concept Graph at some point in the recent past. There were no associated codebases with this
paper either. I invested a significant amount of time into attempting to implement the paper myself,
but was unable to find a suitable reimplementation for Microsoft Concept Graph. As such, I am
left without a suitable baseline directly for explainable conversational recommendation models and
require additional work to construct baselines.

4 Approach

In order to construct my own explainable conversational recommendation system, I decided to modify
the architecture provided in PEPLER to allow for conversational input- I use the codebase cited in
their paper as a starting point for my implementation. Figure 1 shows a flow chart of the new model’s
architecture.

Item User Conversation Explanation

Rec Model

Rating

GPT2

Linear

Output
Expl.

Figure 1: Proposed Transformer-Based Explainable Conversational Recommendation Architecture

4



As with PEPLER, my model constructs user and item embeddings ua ∈ Rd, ib ∈ Rd. In the
original model, for a ground truth explanation sentence of padded length n, we concatenate this
data to construct an input of dimension Rd×(n+2) and feed it into GPT-2 to produce our predicted
explanation. To add conversational input, I used the same tokenizer used to tokenize ground-truth
explanation sentences to tokenize the input text. From this, the model’s embeddings are computed for
all tokens. In order to standardize the size of this embedding, I took the mean of all token embeddings
in the input to produce a final input vector cj ∈ Rd. The aim of this transformation is to incorporate
all concepts in the sentence into a single unified vector.

Once we have all of our individual embeddings, we must now define how the explanation and
recommendation heads of the model handle the new input. For the recommendation task, we simply
concatenate the conversational embedding with the other embeddings like so: [u, i, c, e1, e2, · · · , en].
Our new input is in Rd×(n+3), and can be directly passed into the same GPT-2 model as is used in
PEPLER.

To pass the conversational embedding into the recommendation model, we can instead construct an
input by directly concatenating the user, item, and conversational embedding vectors together as a
flat vector like so. The ensuing vector [uT iT cT ] is in R3d. I then proceeded to modify the MLP
and MF methods used as recommendation models to take this additional input. This modification
strategy is straightforward for the multi-layer perceptron, as simply upping the input dimension of the
model to by 3d allows for the model to directly take all of that information as input. For the matrix
factorization model, the output rating was originally determined by returning uT i. I tweaked this by
simply having it output (u ◦ i)T c (where ◦ denotes the Hadamard product of two vectors).

No tweaks were made to the loss function or other internal parameters of the model. Ideally there
would be an additional term in the loss function that, similarly to the ECR model presented before,
directly rewards the model for outputting explanations and recommendations conceptually similar
to positive concepts expressed in the conversational input and penalizes it for explanations and
recommendations similar to negative or irrelevant concepts. I tried a few strategies of doing so
(measuring similarity scores of word embeddings, etc) but was not able to come up with a satisfactory
loss function to incorporate this. Despite this setback, it’s still worth exploring if the conversational
input leads to improvement without an explicit loss term.

5 Experiments

5.1 Data

I could not find any datasets that are custom-built for explainable conversational recommendation.
As such, I modified an existing Amazon-based explainable recommendation dataset (provided in
the PETER/PEPLER papers) to generate synthetic conversational data. The original form of the
dataset is in the form of 450k (user, item, rating, explanation, key feature) movie review tuples. The
explanation sentence is simply taken to be the first sentence of the full Amazon review associated
with the user-item pair. The key feature is a single word that was determined to be most important
that the researchers extracted from the explanation. I modified the dataset through the following
process:

1. Use pretrained GloVe embeddings1 to find 20 most similar words to the key feature.

2. Manually construct positive, negative, and mixed sentiment sentence templates that users
may use in conversation (such as “I would like to watch movies related to <WORD>.”, “I
do not like movies about <WORD_1> but I enjoy <WORD_2>”.)

3. Randomly choose positive and negative templates. For positive templates, fill with a random
word from the most similar words. For negative templates, fill with a random word not in
the most similar words.

4. Return the new (user, item, rating, explanation, sentences) tuple.

The result is now that for each explanation we put as input we include a series of sentences that the
user could have conceivably provided in order to get an explanation tailored to these features. As one

1https://nlp.stanford.edu/projects/glove/

5



example, suppose the explanation in our original training data is “This movie is a good action movie
with an enjoyable ending”. Suppose that “action” is isolated as the top word, and that “action” and
“energy” are two similar concepts chosen while “romance” and “slow” are two dissimilar concepts
chosen. Our template-based system would produce input like the following:

“I like movies related to action. I do not like movies with romance. I am interested in movies with
energy, but not movies that are slow.”

This naturally is an imperfect solution- we have no guarantee that our chosen concepts through
vector similarity are similar to the key feature in context, nor that the templates we construct are
grammatically correct. If a dataset existed with both true conversational data collected from real
people and corresponding valid item explanations, then we would be able to get around these data
integrity issues. However, across the whole corpus we should tend to include concepts as input that
are similar to what the user has given in their review, so it should somewhat simulate the sort of data
we want to account for.

5.2 Evaluation method

We have four main categories of metrics that we want to measure: recommendation quality, output
text quality (syntactically), output text explainability, and receptiveness to conversational input. For
recommendation quality, we use RMSE and MAE to measure the error between the predicted rating
and true rating across data in our training set. To measure the quality of our output text, we can use
BLEU and ROUGE. FMR (a metric defined in the PETER/PEPLER papers) calculates explanability
performance on our dataset by finding the proportion of data in our test set that have the key feature
in their generated explanation. Finally, to measure conversational ability, I generated 3 conversational
sentences for each test data item using the aforementioned methodology. For each set of 3 I then
tested model RMSE performance given the first sentence, the first two, and all three sentences as
input sequentially. If the model is properly incorporating the conversational input we would ideally
see performance improve as more relevant sentences are provided.

5.3 Experimental details

As discussed in the model description, there is a regularization term that determins how much we
weight the rating objective as opposed to the explainability objective. I tested values for that in the
set λ = {0.01, 0.1, 1, 10}. As both PEPLER and my new model architecture take this parameter, I
trained both models across these parameters. I also used both the matrix factorization and MLP rating
model heads for both architectures, and added a PETER model with default parameters as one more
baseline. All models were trained with initial learning rate 0.001 and Adam optimization for 100
epochs, with early stopping after 5 epochs without improvement.

5.4 Results

I have bolded the top three models for each metric across all trained models in Table 1. As can be
seen, my model has at least one version of it appearing in the top three for all metrics except FMR.
Similarly to the original PEPLER model architecture, the MLP version of the model performs better
on the rating metrics while the MF version performs relatively better on explanation text quality.
These results imply that including the synthetic conversational data into the model input improves
rating performance compared to the model without conversational input. Even if the model doesn’t
perform well in the conversational metrics, this shows that incorporating synthetic conversational data
into transformer-based method may directly improve explainable recommender system performance.

When testing the data on the aforementioned conversational metric, results across models all had the
same behavior as in Table 2- there appeared to be no benefit to providing more than one conversational
sentence with regards to RMSE. This could be due to poor quality in the synthetic data- before writing
off this model as a bad option in this domain it would make sense to evaluate it using a better
conversational dataset.

6



Model RMSE MAE BLEU-4 ROUGE FMR
My Model (λR = 0.01, MF) 0.9994 0.7686 1.0796 1.8542 0.1100
My Model (λR = 0.1, MF) 0.9745 0.7389 1.0763 1.8932 0.1111
My Model (λR = 1, MF) 1.0209 0.7922 0.9148 1.7875 0.1166
My Model (λR = 10, MF) 1.0562 0.8385 0.8330 1.4990 0.1025
My Model (λR = 0.01, MLP) 0.9472 0.7228 0.9373 1.7941 0.1126
My Model (λR = 0.1, MLP) 0.9490 0.7083 0.8554 1.6723 0.1031
My Model (λR = 1, MLP) 0.9536 0.7190 0.7172 1.4979 0.0977
My Model (λR = 10, MLP) 0.9511 0.7146 0.7596 1.4994 0.1026
PEPLER (λR = 0.01, MF) 1.1707 0.9341 0.9869 1.9080 0.1273
PEPLER (λR = 0.1, MF) 1.1436 0.9276 0.7912 1.7742 0.1195
PEPLER (λR = 1, MF) 1.1587 0.9413 0.9334 1.7115 0.1248
PEPLER (λR = 10, MF) 1.1549 0.9358 0.5179 1.5041 0.0928
PEPLER (λR = 0.01, MLP) 0.9513 0.7298 1.0548 1.9187 0.1073
PEPLER (λR = 0.1, MLP) 0.9525 0.7016 0.8242 1.7418 0.1159
PEPLER (λR = 1, MLP) 0.9512 0.7216 0.9231 1.6727 0.1136
PEPLER (λR = 10, MLP) 0.9549 0.7092 0.9428 1.8564 0.1289
PETER 0.9612 0.7268 0.9311 1.7102 0.0925

Table 1: New model and baseline model results

1 Input 2 Inputs 3 Inputs
RMSE 0.7478 0.7456 0.7465

Table 2: Sample conversational results (MF, λR = 0.1)

6 Analysis

More care is needed when examining qualitative performance for these models. As there are
rather dramatic differences in the architecture of my model and PEPLER with the PETER model,
I will restrict this analysis to observation of specific text outputs. Let’s examine the following true
explanation and the generated explanations across models (restricting PEPLER and my model to use
λR = 0.1 and matrix factorization):

Ground Truth: you realize just how different the characters and situations are from most thrillers My
Model: the film is a thriller in the vein of the best of the genre PEPLER: the movie is a little too long
and too long PETER: the characters are good

As can be seen, it seems like my model has captured features more specific to the recommended
item itself, while both of the other models produce more generic explanations. However, this is not
universally true. In investigation into other results, I found that some phrases consistently appeared in
my model’s generated text. For instance, every ten generated explanations or so had the phrase “this
is a great movie“ as the whole explanation or a subset of it. This points to a need for improvement
in the objective function for our model- if we explicitly encourage that explanations with concepts
similar to user feedback are returned, with either good feedback provided or strong synthetic data we
should be able to construct more meaningful explanations than this.

In an initial investigation into the set of poor explanations, I have isolated a few typical other cases
that tend to arise:

1. Poor quality initial explanations. If the initial explanation quality is protracted and gives
no relevant information, the ensuring predicted explanation mirrors it accordingly. This
could be mitigated with higher quality explanation data that is not inferred directly from
item reviews.

2. Synthetic conversational data is not useful. If the randomly selected concepts are relevant,
the ensuing explanations tend to be less relevant as well.

3. The generated explanation is occasionally opposite in sentiment from the true one. For
example, in one case the true explanation is “i also did not like some very long shots and

7



kubrick ’s choice of cruise and kidman” and the generated is “i am a big fan of tom cruise
and i think he is a great actor”. This is likely due to opaqueness in the key feature selection
and similar word randomization when constructing synthetic sentences. There is no concept
of sentiment involved in either of these processes. As such, a more robust mechanism of text
construction may proper encapsulate these nuances and result in better downstream results.

7 Conclusion

Existing research on explainable conversational recommendation is very limited, and published
architectures for this problem that involve transformers as their base are even scarcer. In this project
I have examined and proposed a new transformer-based architecture that matches or bests state
of the art performance of explainable recommendation systems on a dataset of Amazon reviews.
Although the model does not improve in testing as more synthetic sentences are added as conver-
sational input, the inclusion of these sentences contributes directly to improving performance over
current non-conversational architectures. As these sentences can be generated and incorporated into
transformer-based architectures without making the model fully conversational, the strategy I have
described here has the potential to enhance the performance of existing state of the art explainable
recommendation systems. Throughout my work on this project I have gained valuable experience
working with transformer-based architectures and a wealth of domain-specific knowledge relating to
recommendation systems. The following limitations of and potential associated avenues for future
work may potentially provide ideas for myself or others to expand on the conclusions drawn from
this paper:

1. There exists no current conversational explainable recommendation dataset. As such, it
may be worth investing more time into either generating higher-quality synthetic data
(through factoring in sentiment into generation, improved feature similarity metrics, less
rigid synthetic templates, etc) or collecting data suitable for this task.

2. Similarly, it appears that current explainable datasets are somewhat limited by the quality of
the explanations in the data. The Amazon model does not come with proper explanations for
the recommendations in the training data, and instead infers it from the text in the associated
review (which may not provide any sort of explanation at all). Running this model on a
better dataset or acquiring better explanation data may also improve performance.

3. The model could benefit from explicit incorporation of similarity between the input feedback
and output explanation into the loss metric to improve explanation quality. Due to time and
training constraints, I was unable to find a suitable method to do so.

4. The embedding aggregation for the conversational input (taking the mean of embeddings
across tokens in the input) may lose information and prove meaningless if there is a lot of
input provided. As such, it may be worth exploring additional ways to pass the text input
into the model. I briefly tried prepending this text to the ground-truth explanation passed
into training, but found results to be unsatisfactory. Future efforts could explore either more
robust embedding generation for multiple sentences or further tweaks to the architecture to
better include full conversational history.

5. Current analysis of textual quality is not very formalized. It may be worth seeking out
external human assistance to evaluate this model on output quality due to the limitations of
purely computer-based evaluation systems.

8 Acknowledgements

I would like to thank my mentor, Hong Liu, for the comments provided on my proposal and milestone,
as well as for his responses to the questions I had related to my project. I would also like to
acknowledge AWS for stepping in to help with the class GPU situation and ensuring that myself and
other students had access to the proper resources to make our projects possible. Finally, I would like
to thank Professor Manning and the whole CS224 staff for the engaging content they have provided
throughout the course of this class- it has been incredibly enjoyable throughout, and I’m very I had
the chance to participate in this experience over the last few months.

8



References
Zhongxia Chen, Xiting Wang, Xing Xie, Mehul Parsana, Akshay Soni, Xiang Ao, and Enhong Chen.

2020. Towards explainable conversational recommendation. In International Joint Conference on
Artificial Intelligence.

F.O. Isinkaye, Y.O Folajimi, and B.A. Ojokoh. 2015. Recommendation systems: Principles, methods
and evaluation. In Egyptian Informatics Journal, Online.

Lei Li, Yongfeng Zhang, and Chen Li. 2021. Personalized transformer for explainable recommenda-
tion. In Annual Meeting of the Association for Computational Linguistics.

Lei Li, Yongfeng Zhang, and Chen Li. 2023. Personalized prompt learning for explainable recom-
mendation.

9

https://doi.org/10.1016/j.eij.2015.06.005
https://doi.org/10.1016/j.eij.2015.06.005

	Key Information to include
	Introduction
	Related Work
	Explainable Recommendation: PETER
	Explainable Recommendation: PEPLER
	Explainable Conversational Recommendation: ECR

	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Acknowledgements

