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Abstract

While large language models like BERT[1] have greatly advanced language model-
ing, effective multi-task learning with generalizable sentence embeddings continues
to be an important area of research. We implemented a BERT Transformers [2]
model that predicts sentiment, detects paraphrases and predicts semantic textual
similarity (STS). On the test sets our extended-BERT model achieves 86.5% ac-
curacy on paraphrase detection, 50% accuracy on sentiment analysis, and an STS
correlation coefficient of 76.1%, for an average metric of 70.9%. We found that for
the tasks with small datasets, heavy regularization via SMART [3] and leveraging
additional in-domain datasets via SimCSE contrastive loss [4] were paramount to
improving perfomance. We further found that head architecture is very important,
and that by prompting the model we were able to expedite learning. Our imple-
mentations of our extensions resulted in an approximately 12% improvement over
our base-BERT model.

1 Introduction

Bidirectional Encoder Representations from Transformers (BERT) is a transformer-based model that
generates contextual word representations that capture context from both left and right directions[1] .
With its release in 2018, BERT took a large leap forward for large language models. The release of
the model enabled its use for fine-tuning on downstream tasks with fewer computational resources
and smaller datasets. However, fine-tuning effectively on multiple tasks continues to be an open
research problem.

We created a minimalist implementation of the BERT model (minBERT), including multi-head self-
attention and Transformer layers. Using pre-trained weights from bert-base-uncased [1], we created
a multi-task baseline model that predicts sentiment, classifies paraphrases, and gauges semantic
textual similarity (STS). We also implemented the Adam [5] optimizer with weight decay [6]]. We
applied extensions to this model in order to obtain robust and generalizable sentence embeddings that
allow for strong multi-task performance.

2 Related Work

The General Language Understanding Evaluation (GLUE) [7] benchmark is a collection of natural
language understanding (NLU) tasks designed to evaluate and compare the performance of various
machine learning models on a wide range of NLU tasks. Introduced by Wang et al [7], the GLUE
benchmark aims to promote research in developing general-purpose language understanding models
that can perform well across multiple tasks. We selected 3 of these tasks to focus on. Sentiment
classification involves determining the polarity of a given text. Paraphrase detection aims to identify
whether two given texts convey the same meaning using different wording. The goal of semantic
textual similarity (STS) prediction is to measure the degree of semantic similarity between two pieces
of text.
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Figure 1: Architecture diagram of our network. BERT (bert-base-uncased) was used as the basis for
fine-tuning. The CLS token produced by BERT for each input sentence was provided to each of the
sentiment classification, paraphrase detection, regular STS, and STS contrastive learning tasks.

One of the challenges with multi-task training is that aggressive weight updates can cause over-fitting;
an aggressive weight update to accommodate one task can come at the expense of the other tasks. To
reduce the likelihood of training in a zero-sum game, Jiang [3]] et. al propose SMoothness inducing
Adversarial Regularization and BRegman PRoximal poinT OpTimization (SMART) regularization.

Moreover, contrastive learning is a technique that aims to learn effective representations by pulling
semantically close neighbors together and pushing apart non-neighbors [§]]. This mode of learning,
which mimics the way humans learn, has shown promising results in deep learning for both leveraging
large, unlabeled datasets and for providing an alternative and sometimes better mode of learning for
labeled datasets. Meng et al [[9] demonstrated that a contrastive objective can be extremely effective
when coupled with pre-trained language models such as BERT [[1]]. They presented SimCSE, a simple
contrastive sentence embedding framework that can produce superior sentence embeddings from
either unlabeled or labeled data.

Furthermore, the authors showed that SImCSE can alleviate the anisotropy problem that is common
in language modeling. Anisotropy is when learned embeddings occupy a narrow cone in the vector
space, which severely limits their expressiveness. SimCSE regularizes pre-trained embeddings’
anisotropic space to be more uniform and better aligns positive pairs when supervised signals are
available. In theory this should help improve multi-task learning in which shared embeddings are
used. We hypothesized that using SimCSE to leverage additional in-domain datasets can help create
generalizable sentence embeddings.

3 Approach

Sentences were used as input for three different downstream tasks of sentiment analysis, paraphrase
detection and semantic textual similarity. The output was a categorical label from 1 (negative) to 5
(positive) for the sentiment task, a binary label for the paraphrase task, and a continuous score from 0
to 5 indicating degree of semantic textual similarity for the STS task.

3.1 Baseline Model

Sentences were passed through BERT’s tokenizer and resultant sentence embeddings were fed through
our network. Our baseline model’s architecture was similar to[Il It had one head for each task and an
MLP comprised of a dropout layer, linear layer and activation function for each task. The CLS token
X e R(BXT784) for each sentence produced by BERT was passed into each of the downstream tasks.
This model served as the basis for extensions, some of which we ultimately adopted to result in the
architecture shown in Figure[T} which is discussed in Section[3.2}



Figure 2: Decision boundaries learned without (a) and with (b) SMART regularization. The red
dotted line in (b) represents the decision boundary in (a). As can be seen, the output f in (b) does not
change much within the neighborhood of training data points. Image borrowed from [3].

3.2 Head Architecture and Model Prompting

Different head architectures were explored for each of these tasks. The sentiment classification head
had a dropout layer followed by a linear layer and squared relu activation function. Its output was of
shape N5, where N is the batch size.

The model was prompted for the paraphrase task. The tokenized form of the prompt "Are these two
sentences paraphrases ?”” was concatenated with the tokenized form of the first sentence, the SEP
token and the tokenized form of the second sentence along the sequence length dimension. The
combined input was fed through BERT and the resultant CLS token was passed through dropout,
linear and sigmoid layers.

The architecture for the STS task is described in section [3.6]

3.3 SMART Regularization

One extension that proved valuable was our implementation of smoothness-inducing regularization
component of SMART regularization, which was employed for sentiment classification; this task in
particular initially suffered from a high degree of overfitting due to the small size of its initial datasets.
Its loss is characterized in [
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At train time, the input sentence embeddings were perturbed « times such that the p-norm of the
difference between the input embeddings and perturbed embeddings was <= e. Each of these
perturbed sentence embeddings was run through the model to produce f(e?; ), and the maximum
symmetric KL-divergence between the original output’s CLS token and the « f(e?; 6) CLS tokens
was added to the loss.

The constraint enforces that the perturbation should not exceed a certain distance (measured by the
p-norm) from the original input. Its effect is summarized in Figure 2]

3.4 Task Weighting

Joint optimization of multiple tasks is challenging due to unbalanced dataset sizes and variations in
task difficulties. We monitored training loss and adapted task weights throughout training according
to loss magnitude in order to prioritize harder tasks over easier tasks.



3.5 Further In-domain Training

As described in Table[T] there was severe dataset size imbalance with the original datasets of SST,
CFIMDB, Quora and SemEval. The Quora dataset for paraphrase detection is 406x the size of the
SemEval STS dataset and 28x the size of the Stanford and CFIMDB sentiment datasets combined. As
a result initial experiments showed much weaker results for the sentiment and STS tasks. To combat
this, we made use of the Stanford Natural Language Inference (NLI) [10] dataset for the STS task
and the Twitter Sentiment Analysis Training Corpus [[11].

3.6 Contrastive Learning to Enable Further In-Domain Training

Another extension for which we wrote an efficient implementation was the use of both unsupervised
and supervised SimCSE. In unsupervised SimCSE, the authors take a collection of sentences {z; }7" ,
and use identical positive pairs 2;” = x;. The key ingredient is the use of independently sampled
dropout masks for 1:;" and x;. They denote hf = fy(z;, z), where z is a random mask for dropout.
They feed the same input to the encoder twice and get two embeddings with different dropout masks

z,z'. The training objective for a mini-batch of N sentences is
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where sim is the cosine similarity and z is the standard dropout mask in Transformers. Dropout
serves as a minmal form of data augmentation. Interestingly, the authors note that when they use
no dropout (p = 0) and "fixed 0.1" dropout (i.e. the same dropout masks for the pair), the resulting
embeddings for the pair are exactly the same and there is a dramatic performance degradation.

In supervised SimCSE, the authors propose the loss function
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where sim is cosine similarity, h; and A are the embeddings for a positive pair and h; and h . are
embeddings for a negative pair. Per Table[T] the SemEval train set had only 6k examples. To combat
overfitting we downloaded the Natural Language Inference (NLI) dataset, which had 275,600 triplets:
two sentences per triplet had similar meaning, and a third sentence had an opposing meaning and was
deemed a hard negative. Because this dataset did not have labels with continuous scores between 0
and 5, we leveraged it using SimCSE supervised contrastive loss and had this task share a linear layer
with the STS task trained on SemEval.

The SemEval STS head separately ran each of the two input sentences’ CLS token through the
linear layer it shared with the NLI task, performed cosine similarity on the tokens, and clamped the
output between 0 and 1 before scaling it by a multiple of 5 as the output to feed to MSE loss. This
architecture is reflected in Figure

4 Experiments

4.1 Data

For sentiment analysis, the Stanford Sentiment Treebank (SST) dataset [12], CFIMDB [13] and
Twitter Sentiment Analysis Training Corpus (TSATC) [[L1] datasets were used. SST was parsed
with the Stanford parser and includes a total of 215,154 unique phrases from those parse trees, each
annotated by 3 human judges. Each phrase has a label of negative, somewhat negative, neutral,
somewhat positive, or positive. The CFIMDB dataset consists of 2,434 highly polar movie reviews.
Each movie review has a binary label of negative or positive, and many of these reviews are multi-
sentence. TSATSC is an English language corpus of Tweets with labels of negative, neutral and
positive. For consistency with the output of categorical labels 0, 1, 2, 3, and 4 for our sentiment task,
we mapped negative to 0, neutral to 2 and positive to 4.



The Quora dataset was used for paraphrase detection. The subset that was used consists of 400,000
question pairs with labels indicating whether particular instances are paraphrases of one another.

The SemEval STS Benchmark dataset [[14] was used for semantic textual similarity classification.
It consists of 8,628 different sentence pairs of varying similarity on a scale from O (unrelated) to 5
(equivalent meaning).

The NLI dataset came in triplets: two sentences with similar semantic similarity (considered an
entailment pair) and a sentence with an opposing meaning (considered a hard negative). This made
it a great fit for contrastive learning, so we trained it with a supervised SImCSE objective. This
augmented performance on our much smaller SemEval STS dataset.

The dataset sizes and train, dev and test split sizes are listed in Table |1} All splits for CS224N datasets
are consistent with the splits designated for the course. There wasn’t any discernible distribution shift
between the train and dev sets. For the datasets we introduced we created random splits for train and
dev splits.

Dataset Task Total Train Dev Test
Stanford | Sentiment 11,855 8,544 1,101 2,210
CFIMDB | Sentiment 2,434 1,701 245 488

Quora Paraphrase | 400,000 | 141,506 | 20,215 | 40,431
SemEval STS 8,628 6,041 864 1,726
NLI STS 275,600 | 261,820 | 13,780 N/A

Twitter Sentiment 27,481 24,731 2,750 N/A
Table 1: Our datasets and their split sizes. We added the NLI dataset for STS and the Twitter TSATC
dataset for sentiment classification.

4.2 Evaluation method

For sentiment classification and paraphrase detection we monitored accuracy because these tasks
have categorical labels. For the STS task we calculated the Pearson correlation between the true
similarity and predicted similarity values. We compared results with our own baseline model. Our
main metric that we maximized during training was the average performance of these three tasks on
the SST, Quora, and SemEval dev datasets.

4.3 Experimental details

Experiments used a Tesla p100 GPU with batch size of 64. We experimented with different learning
rates and decay schedules and ultimately used a constant learning rate of 3e-5, dropout rate of 20%
and weight decay of le-2. Training was done in a round robin fashion between the different tasks.
Cross-entropy loss was used for all tasks other than the regression task of STS, for which MSE loss
[15] was used.

4.4 Results

Table [3]shows the dev set results of ablation experiments that were completed with the same seed
to evaluate the efficacy of our extensions before we adopted them. Each of these experiments was
run to 1500 steps due to compute constraints. We found that for the paraphrase task, changing the
architecture of the head to procure a single CLS token for a combined input of the prompt and the
two tokenized sentences separated by the SEP token expedited learning for that task. We also found
that SMART regularization on the sentiment task helped alleviate overfitting considerably, as did
leveraging the NLI dataset via SImCSE learning for the STS task. Task weighting helped overall
performance. Sometimes one extension improved results on one task at the expense of the others;
this underscores an inherent challenge in multi-task learning.

In "pretrain" mode BERT’s weights were frozen and only the head weights were updated. In
"finetune" mode all layers were updated. We found that it was nearly impossible to significantly
improve performance on the STS task in "pretrain" mode, which is consistent with what we expected.
Keeping BERT’s weights frozen gives relatively little ability to learn and does not allow for updating
the sentence embeddings.



Dev Set Performance Ablation Experiments

Average Sentiment Paraphrase 5TS

Baszeline 0.616 0.477 0.747 0.623
Prompting (para} 0.623 0.463 0.786 0.619
SMART reg 0.616 0489 0.749 0.610
Task weighting 0.620 0.482 0.752 0.625
SimCSE 0.630 0.453 0.753 0.683
A .TSATC 0.817 0.480 074 0.831
sentiment dataset

Figure 3: Ablation experiments used to initially gauge whether an experiment is useful. Run with
batch size 64, 1500 steps and the same seeds.

Regularization from SMART and weight decay proved critical to improving dev set performance for
the Sentiment and STS tasks. This is consistent with our expectations because prior to the addition of
the NLI and TSATCs datasets these two tasks had much smaller datasets; without regularization the
model was prone to overfitting to the training data.

Using recommendations from [3] and our own fine-tuning we found that « = 7, ¢ = 5e — 3,
and A = 50, and p = inf works best. With our implementation of SMART regularization, the
performance drop between the train and dev sets for STS went from 45% to 26%, which is a 42%
improvement.

Surprisingly, the large TSATC sentiment dataset did not help improve performance on SST. We
suspect three reasons for this: 1) it’s possible that Tweets are too dissimilar to movie reviews in SST,
2) the TSATC dataset may need further cleaning, and 3) TSATC only had labels for negative, neutral
and polar rather than 5 more granular labels of polarity. We mapped negative, neutral and polar to
classes 0, 2 and 4. On the other hand, leveraging the large NLI STS dataset via supervised contrastive
learning with 7 = 0.05 did prove important for improving performance on SemEval.

Ultimately our baseline model achieved a mean metric of 64.0% on the dev set, and our extended
BERT model achieved a mean metric of 71.7% on the dev set and 70.9% on the test set. Our
extensions thus resulted in a 12% improvement on the dev set.

Average | Sentiment | Paraphrase | STS
Base BERT (baseline) | 0.640 0.481 0.781 0.656
Extended BERT (dev) | 0.717 0.500 0.865 0.785
Extended BERT (test) | 0.709 0.500 0.865 0.761

Table 2: Performance of our baseline BERT and extended BERT. Our extensions thus resulted in a
12% improvement on the dev set.

5 Analysis

Of the three tasks, sentiment accuracy was the lowest. This is probably due to a number of factors,
including subjectivity in the labels, as bolstered by the fact that a small degree of label smoothing
helped that task. The misclassifications were not egregiously wrong. Per figure 5(b)| 80% of the
misclassifications were off by 1 category, 18% were off by 2 categories and 2% were off by 3
categories. As shown in Figure[d] the model underpredicted the extreme polarity classes 0 and 4.

The paraphrase task had the highest accuracy. This is likely due to the fact that it had the largest
training dataset and that it required a 2-class categorization rather than 5-class or continuous score
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Figure 4: Predicted and ground truth score distribution on the dev set for the sentiment task. The
model underpredicted the extreme polarity classes 0 and 4.
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output. Error analysis showed that the model had an approximately equal rate of false positives
as false negatives. Some of the "error" cases actually turned out to be cases of mislabeling. The
pair "how do compasses work? and "how does a compass work?" was erroneously labeled as not a
paraphrase, while "It healthy to eat a whole avocado every day?" and "What is a cheap healthy diet i
can keep the same and eat every day?" were erroneously labeled as paraphrases.

Some false positives were understandably dif-

ficult. One such example is "What are the best "Sentiment + Paraphrase | 0.77
books to read by Indian authors?" and "Wat are  [~Sentiment + STS 027
good book of poetry by an Indian author?"; they Paraphrase + STS 0.08

would have been paraphrases if not for the spec-
ification of poetry in the latter sentence. Some Table 3: Correlation coefficients between dev per-
false negatives indicate that the model has trou- formance on the tasks.

ble with very long statements. One such exam-

ple is the pair "how far back in time could we

go in the uk before we would start to be unable to understand the english of the day?" and "how
far back would we have to go for a current english native speaker to have trouble understanding an
english speaker from the past?".

Per Figure [5(a)] the errors in STS tended to come from systematically underestimating similarity
except at the very high end of the similarity range. This suggests that in future work this task might
benefit from a different head structure. A lot of the errors were understandable. For the pair "a woman
opens a window." and "woman is looking out a window" the label was 2.0 but the prediction was 4.6
and for the pair "the note ’s must-reads for friday, december 6, 2013" and "the note ’s must-reads for
friday, july 12, 2013" the label was 1.8 but the score was 4.9. It appears that the model has difficulty
when a pair of statements has a lot of words in common but has subtle nuance that changes their
meaning.



We computed the correlation coefficients between the dev set performances of the different tasks.
Per Table[3] the the sentiment and paraphrase tasks had a high correlation coefficient of 0.77. The
sentiment and STS tasks were weakly correlated with a coefficient of 0.27, and the paraphrase and
STS tasks had a very low correlation of 0.08. This reveals the inherent challenge in multi-task
learning. Unfortunately, in this context a rising tide does not float all boats by the same amount.

6 Conclusion

In conclusion, we implemented minBERT and extensions. We found that for the tasks with small
datasets, aggressive regularization via SMART and leveraging additional in-domain datasets via
SimCSE contrastive learning was critical. We further found that head architecture is very important.
For the paraphrase task, adding a prompt and SEP token to the input expedited learning. On the test
leaderboard our model achieves 86.5% accuracy on paraphrase detection, 50% accuracy on sentiment
analysis, and an STS correlation coefficient of 76.1%, for an average metric of 70.9%. We found that
improving performance on one task correlated positively but sometimes weakly with performance
on the other tasks. Good areas for future work would be to test if model prompting can help with
the sentiment and STS tasks, reduce noise in the labels, and to delve deeper into the literature on
effective multi-task learning.
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