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Abstract

Multitask learning has gained considerable attention as an effective approach for
improving data efficiency and reducing training overhead when addressing multiple
natural language processing (NLP) tasks. Nonetheless, it presents unique opti-
mization challenges, such as maintaining embedding space quality and reconciling
contradictory gradient descent directions, which substantially influence overall
performance. To tackle these challenges, we introduce an innovative Multitask
BERT model that integrates pre-training and fine-tuning phases by combining
contrastive learning methodologies, multitask learning strategies, fine-grained em-
bedding representations, and regularized multitask optimization techniques. Our
model’s performance is assessed on three diverse downstream NLP tasks, namely
Semantic Textual Similarity (STS), Sentiment Analysis, and Paraphrase Detection.
Empirical results from our experiments indicate that incorporating contrastive
learning significantly enhances the consistency of the embedding space, thereby
augmenting BERT’s expressive capabilities. Additionally, we propose regularized
multitask optimization methods tailored for various downstream tasks, designed
to amalgamate shared information while mitigating information conflicts. This
fusion not only expedites the training process but also bolsters prediction accuracy
and optimization stability.By integrating these advanced techniques, our novel
multitask BERT model demonstrates considerable performance gains in compari-
son to established baseline models, underscoring its efficacy for a range of NLP
applications.

1 Introduction

Bidirectional Encoder Representations from Transformers (BERT) has achieved remarkable success
in single-task Natural Language Processing (NLP) models. However, data efficiency and training cost
remain significant challenges. In response, multitask learning has emerged as a promising approach,
sharing structures between multiple tasks for more efficient training and learning from related
tasks. Nevertheless, multitask BERT models present several optimization challenges, including the
quality of the embedding space (from a singular spectrum perspective) and the contradiction of
information from different tasks. These challenges can substantially impact the overall performance
and training efficiency. Additionally, the processing of BERT embeddings, i.e., the model structure
of the head, greatly influences single-task performance, necessitating a deep understanding of the
intrinsic mechanisms.

In this paper, we propose a novel Multitask BERT pre-training and fine-tuning model that combines
contrastive learning methods, multitask learning strategies, a dense similarity scheme with fine-
grained embedding representation, and regularized multitask optimization. We evaluate our novel
multitask BERT model on three downstream tasks: Semantic Textual Similarity (STS), Sentiment
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Analysis, and Paraphrase Detection, comparing the results with the original BERT model. Our numer-
ical experiments reveal that contrastive learning methods significantly enhance BERT embeddings’
expressiveness by increasing the effective dimension of the embedding space, while fine-grained
embeddings enable more detailed input sentence representation. These techniques partially address
the non-uniformity of the embedding space.

Furthermore, the multitask learning techniques employed during the fine-tuning stage enable BERT
to integrate common information for more efficient training and maintain the conformity of the
embedding space or diversity by simultaneously training on different tasks. To avoid over-fitting
and improve performance, we introduce a regularized multitask optimization scheme using finely-
designed loss functions. For STS and Paraphrase Detection, we investigate the performance of
different BERT embeddings, demonstrating that combining pooling average of embedded tokens and
[CLS] token outperforms only using the [CLS] token in both training efficiency and task-specific
information richness.

2 Related Work

BERT has achieved remarkable success in processing NLP tasks [1], yet data efficiency and training
cost continue to present significant challenges [2]. Concurrently, multitask learning techniques have
emerged as promising methods in deep learning and have been quickly adopted for NLP tasks [3]. For
instance, Yifan et al. proposed a multitask learning framework for biomedical text mining based on
the BERT model [4], while Eleftherios et al. constructed a multitask BERT model for schema-guided
dialogue state tracking tasks, significantly reducing computational cost [5]. However, multitask
BERT models introduce new challenges, including the anisotropy of BERT embeddings and the
contradiction of gradients from various tasks, which can significantly weaken their expressiveness
[2]. Fortunately, contrastive learning offers a potential solution for addressing some of these issues,
having already been successfully applied to BERT models for the STS task [6] and proven effective
in improving the uniformity and alignment of the embedding space [7]. Specifically, for tasks such
as STS and paraphrase detection, Munikar et al. demonstrated that the structure of heads and the
choice of BERT embeddings can significantly impact prediction accuracy [8]. Our work focuses on
addressing the aforementioned challenges to enhance the capacity of our multitask BERT model.

3 Approach

In our model architecture, we utilize BERT [1] to generate contextualized representations of input
words and subsequently pass these BERT embeddings to different heads corresponding to the given
downstream tasks. During both the pre-training and fine-tuning stages, we employ contrastive
learning methods as described in [6] for supplementary pre-training and adopt multitask learning
approaches based on [9], wherein the model is trained on all three tasks in each epoch. To achieve
higher prediction accuracy, we investigate the underlying mechanisms of these individual tasks and
devise task-specific schemes. For paraphrase detection and STS tasks, we propose and implement
a dense similarity scheme using fine-grained embeddings, which involves calculating the cosine
similarity between the pooled average of sentence embeddings rather than relying solely on [CLS]
tokens. Moreover, we introduce regularized multitask optimization methods by designing appropriate
loss functions for these tasks. Our multitask BERT model integrates all of these strategies to enhance
performance across the three given tasks.

3.1 Multitask BERT model

Our Multitask BERT model is based on the BERT model[1], which consists of tokenizer, embedding
layer and 12 Encoder Transformer layers. As the core of BERT, the encoder transformer layer is
composed of the multi-head attention followed by normalization, additive layers and feed-forward
layers, in which the multi-head attention is a weighted average of single attention heads, i.e.
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Figure 1: The training pipeline of our proposed method. In pretraining stage, we use contrastive
learning to learn the intrinsic representation from datasets. In finetuning stage, we further modify the
BERT parameters w.r.t. multitask losses with regularized optimization.
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Then we pass the BERT embeddings including [CLS] token and fine-grained sentence embedding to
different heads for the downstream tasks. In sentiment analysis head, the embedding passes through a
2-layer neural network with ReLU activator to get a 5×1 logit; in STS and Paraphrase detection, after
passing the BERT embedding pairs into 2-layer neural networks, we compute their cosine similarity
to get the output logits.

3.2 Pretraining with Contrastive learning

In pre-training stage, we follow the approach in[6] and use the unsupervised SimCSE model for the
BERT model. We take a minibatch of sentences {xi}mi=1 and use x+i = xi as positive pairs. We use
independently sampled dropout masks for xi and x+i by feeding the input to the encoder twice with
different dropout masks z and z′, and get two embeddings hi and h+i . Then the training objective is

L =

m∑
i=1

−log esim(hi,h
+
i )/τ∑m

j=1 e
sim(hi,h

+
j )/τ

,

where τ is a temperature hyperparameter, hi = ψθ(xi, z), h+j = ψθ(x
+
j , z

′), ψθ is the BERT model

and sim(hi, h
+
j ) is the cosine similarity, i.e.

hT
i h+

j
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j || .

To analyze the mechanism of contrastive learning, we introduce two key description of the wellness
of embedding space, lalign and luniform from [7], where

lalign = E(x,x+)||f(x)− f(x+)||2,
luniform = log Eiid,x,y exp{−2||f(x)− f(y)||2}.

Here, lalign measures the average distance between positive instances, ||f(x) − f(x+)||2, hence
is small if the BERT can aggregate similar sentence embeddings. Just opposite to lalign, luniform
describes the dispersion, or uniformity of random instances, exp{−2||f(x)− f(y)||2} when x is
chosen independently from y, hence is small when the average distance of random embedding pairs
is relatively large. We expect contrastive learning techniques can improve the quality of BERT
embedding space by enhancing the uniformity for different instances while not weaken the ability to
distinguish similar instances.
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3.3 Fine-tuning with Fine-grained Feature

In paraphrase detection and STS tasks, we propose the dense similarity scheme with fine-grained
embedding representation. Instead of just using ucls, the BERT embedding of [CLS] token, we also
utilize the fine-grained sentence embedding {vi}i∈[ns] from last layer of BERT feature, where ns is
the total number of tokens in the input sentence. This fine-grained embedding representation greatly
enlarges the representation space of input sentence, enables the following networks to extract more
details, especially those not covered in [CLS] token, hence enormously improves the performance
of similarity detection. In detail, we pass the fine-grained sentence embedding sen1 and sen2 into
neural networks to get a refined task-specific representation, then we take the cosine similarity of the
pooling-average of fine-grained representation. We combine this dense similarity with the general
[CLS] similarity to capture both details from dense representation and integrated, sentence-level
similarities, i.e.

logittot = TaskHead(fea1, fea2) + CosSim(mean(sen1),mean(sen2))

feai = Ncls(u
i
cls); seni = Ngrained(Vi) ∀ i ∈ {1, 2}; TaskHead = Ntask

where Ncls, Ngrained, and Ntask are task-specific MLPs, ucls is the BERT embedding of [CLS]
token, V is the fine-grained sentence embedding.

3.4 Regularized Optimization

In order to address the issue of over-fitting in the fine-tuning process, we applied the Smoothness-
Inducing Adversarial method proposed by [10]that controls model complexity and reduces the
over-fitting issue. The method involves solving an optimization problem with a smoothness-inducing
adversarial regularize [10]. Given the model f(·; θ), we want to solve the following optimization for
fine-tuning:

min
θ

F(θ) = L(θ) + λsRs(θ)

where L(θ) is the loss function defined as

L(θ) = 1

n

n∑
i=1

ℓ (f (xi; θ) , yi)

ℓ(·, ·) is the loss function depending on the target task. We use multi-class classification loss for
sentiment analysis, binary classification loss for paraphrase detection, and MSE loss for semantic
textual similarity. Then, λs > 0 is a tuning parameter, and Rs(θ) is the smoothness-inducing
adversarial regularizer. We define Rs(θ) as

Rs(θ) =
1

n

n∑
i=1

max
∥x̃i−xi∥p≤ϵ

ℓs (f (x̃i; θ) , f (xi; θ)) ,

where ϵ > 0 is a tuning parameter and We used p = 2 in our implementation. For classification tasks,
f(·; θ) outputs a probability simplex and ℓs is chosen as the symmetrized KL-divergence, i.e.,

ℓs(P,Q) = DKL(P∥Q) +DKL(Q∥P )

For regression tasks, f(·; θ) outputs a scalar and ℓs is chosen as the squared loss, i.e., ℓs(p, q) =
(p − q)2. Essentially, The smoothness-inducing adversarial regularizer enforces local Lipschitz
continuity of the function f under the metric ℓs. By limiting the output change of f when small
perturbations are added to xi, the regularizer encourages f to be smooth within the neighborhoods
of all data point xi’s. We believe adding such regularization in optimization loss improves the
incorporation of learning different tasks within one epoch by smoothing out the optimization of
model parameters and preventing sudden changes in optimization directions. This smoothness thus
helps improve generalization to different tasks and further prevents overfitting to a specific task.

4 Experiments

We perform three tasks with our model on sentiment analysis, paraphrase detection, and semantic
textual similarity to evaluate its effectiveness.
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Table 1: The table shows the experiment results for methods lister above. Pretrain mode indicates the
weight for BERT is fixed; Finetune mode sets the weight to trainable status. Contra is the contrastive
pretraining, and Dense is the fine-grained feature head, and Reg is regularized optimization.

Train Mode Head Structure SST Quora STS Score

Baseline Pretrain Linear 0.344 0.390 0.111 0.282
Baseline Finetune Linear 0.388 0.451 0.237 0.359
Contrastive Pretrain Linear 0.490 0.623 0.379 0.497
Contrastive Pretrain MLPs 0.498 0.707 0.549 0.585
Contrastive Finetune MLPs 0.496 0.728 0.633 0.619
Contra + Dense Finetune MLPs 0.492 0.733 0.758 0.661
Contra + Dense + Reg Finetune MLPs 0.506 0.746 0.817 0.689
Contra + Dense + Reg Finetune (Test Set) MLPs 0.512 0.746 0.809 0.689

4.1 Dataset and Evaluation Metric

• We evaluate the performance of sentiment analysis on Stanford Sentiment Treebank (SST)
dataset[11] The SST dataset consists of 215,154 phrases with their sentiments annotated by
3 human judges. We train and predict each phrase as negative, somewhat negative, neutral,
somewhat positive, or positive.

• We use the Quora dataset[12] to test the performance of paraphrase detection. It has 400,000
labeled question pairs, and we predict whether one question is a paraphrase of another in
each pair. We evaluate the correctness using classification accuracy as well as the F1-score.

• We evaluate the performance of semantic textual similarity on SemEval STS Benchmark
Dataset[13]. It contains 8,628 labeled sentence pairs with different similarities. We predict
a logit on a scale from 0 (unrelated) to 5 (equivalent meaning) for each pair. We use
the Pearson correlation between the groundtruth and the predicted similarity to validate
performance.

4.2 Experimental details

The baseline for multitask BERT is pretraining the multitask heads (one linear layer for each) with
BERT weight fixed. Then, the succeeding models are all finetuning both the BERT parameters and
heads with the methods mentioned above. We also advance the multitask heads to a 2-layer MLP that
can better adapt to each individual task. We train the model on all tasks together in one epoch, and
we train it for 15 epochs with lr = 1e−5 and batch_size = 64.

4.3 Results

In Table 1, We can see that the pretrain mode generally gives better results than the finetune mode,
since this allows the model to learn its weight w.r.t. task-specific data. In scenarios of linear
heads, contrastive pretrain significantly improves the prediction quality, showing its effectiveness in
generalizing underlying feature representations to the model parameters.
We can see the combination of contrastive learning, fine-grained feature learning, and regularized
optimization gives us the best result. This proves that while the dense head extracts rich, detailed
semantic knowledge for downstream tasks, the regularization further balances the converging process
across different datasets. These strategies seamlessly incorporate with each other and yield our SOTA
result.

4.4 Analysis of Embedding in Contrastive Learning

To gain a deeper understanding of the effects of contrastive learning, we examine the alignment and
uniformity of the embedding space, which are defined as follows:

lalign = E(x,x+)||f(x)− f(x+)||2,
luniform = logEiid x,y exp−2||f(x)− f(y)||2,
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where (f(x), f(x+)) denotes a sentence embedding pair generated by encoding the sentence x twice
with independent dropouts, and x, y represent randomly selected sentences.

We construct the training set S for contrastive learning by integrating all sentences from the three
datasets (SST, Quora, and STS) and compute the aforementioned measures over S. The results are
presented below:

Table 2: Measurement for Contrastive Learning
Baseline Contrastive Learning

luniform -1.84 -2.91
lalign 0.253 0.280

Our analysis reveals that contrastive learning considerably enhances the uniformity of the embedding
space, reducing luniform from −1.84 to −2.91 (where a smaller value indicates a more uniform
embedding space). Simultaneously, it preserves alignment by only increasing lalign by a marginal
0.027 (note that a smaller value also represents more concentrated similar embeddings).

5 Analysis

5.1 Confusion Matrix

(a) (b) (c)

Figure 2: The confusion matrices for all tasks. The number indicates the number of predictions
falling in that category.

The confusion matrix shows the performance of our model on three different tasks. For SST, we
cast the continuous values into discrete labels. We can see that for STS and SST, the diagonal cells
are brighter than other cells, and the darkness of the color increases as we go off the diagonal and
move toward the corners. This shows despite that the model classifies most samples correctly, it still
confuses among classes that are close to the true labels (e.g. confuses between the scale of 2 and 3 in
sentiment analysis). On the other hand, the confusion matrix of the Paraphrase detection task shows
that the incorrect predictions tend to be false positives, i.e. the model over-correlates two sentences as
paraphrases. This shed a light on potential improvements of our model: to decrease the false positive
through weighted binary cross entropy loss or other regularization techniques.

5.2 Error Analysis

In this part, we will try to find error cases from all each of the tasks and investigate why our model
fails. For STS and SST, we would identify incorrectly classified samples in two cases. The first case
is samples that are far from the label (2 - 4 classes away) and the second case is samples that are close
to the label (within 1 - 2 classes).

5.2.1 STS

Here are some examples of misclassified samples with label differences greater than 4:
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A girl is talking to her dad on a cellphone. | a girl is talking on her phone. | Pred: 0.35 Label: 4.4
A woman is putting on sun glasses. | A woman puts on sunglasses. | Pred: 0.94 Label: 5.0

We can notice that the model tends to underestimate their similarities. We can easily tell that the
two pairs of sentences are very similar despite their different wording or tense. It is possible that the
model is not capable of extracting sentence meaning that is independent of the tense and additional
addressing words. We then look at misclassified samples that are not off by a lot:

A grey cat with green eyes looking into the camera. | A grey, black, and white cat looking at the
camera. | Pred: 1.44 Label: 3.2

Halliburton 1Q income rises 23 pct | Halliburton Q1 profits rise on strong North America sales|
Pred: 0.82 Label: 2.6

Both pairs are underestimated by the model. For the first pair, it looks like the model emphasizes on
the difference in the look of the cats, thus underestimating the similarity in the meaning of the two
sentences. It lacks the ability of abstraction. Similarly, the second pair express similar meanings but
the model seems to focus too much on the literal differences between the two sentences.

5.2.2 SST

Here are some examples of misclassified samples with label differences greater than 3:

It seems like I have been waiting my whole life for this movie and now I can’t wait for the sequel. |
Pred: 0 Label: 3

It ’s everything you don’t go to the movies for. | Pred: 3 Label: 0

For the first sentence, the phrase "waiting my whole life" might be misinterpreted by the model as
impatience or frustration, which could lead to the misclassification of the sentiment. For the second
sentence, its structure is complex and obscure, with a negation ("don’t") as the only indicator of
negative meaning. The model might have struggled to understand the implicit meaning hidden in the
act of not going to the movies. Here are some examples of misclassified samples that are not off by a
lot:

The film serves as a valuable time capsule to remind us of the devastating horror suffered by an
entire people. | Pred: 3 Label: 2

The film ’s welcome breeziness and some unbelievably hilarious moments – most portraying the
idiocy of the film industry – make it mostly worth the trip. | Pred: 3 Label: 4

The first sentence has a mixed sentiment. While the film’s purpose is positive, the subject matter
(devastating horror) is negative. The model might have difficulty balancing these contrasting senti-
ments. The second sentence expresses a positive sentiment. The speaker appreciates the film’s breezy
and humorous nature, although the subject matter (idiocy of the film industry) could be considered
negative. Our model might misclassify the sentiment due to the complexity of the sentence or the
presence of words like "idiocy," which could be perceived as a strong indicator of negative sentiment
in other contexts.

5.2.3 Paraphrase

There are far more False Positive (model predict them as paraphrase whereas they are not) than False
Negative samples in this binary classification task, so we will focus on investigating those FP pairs:

What can you get as a customer of Star Alliance?’ | ’What are some ways to register with Star
Alliance?

Can I use Jio in 3G phone? | How is Jio 3G?
Are water based moisturizers good for dry skin on the face? | Which moisturizer is best used for dry

skin?
What are some facts that everyone knows? | What are some facts that everyone should know?’

The reasons for these misclassifications can be attributed to several factors. Firstly, the sentences
in each pair often share similar vocabulary and sentence structure, which misleads the model to
identify them as paraphrases. Secondly, the model may not adequately account for differences in

7



meaning that arise from variations in very subtle but important words or phrases, i.e. everyone knows
versus everyone should know. Lastly, the model may struggle to discern the nuanced differences in
the context or focus of the sentences. For example, it cannot differentiate the difference between
yes-or-no questions and interrogative questions.
From the above error analysis, we propose several potential directions for model improvements: (1)
Use a stemming filter to remove the influence of tenses for sts task; (2) Tune the model specifically
on complex/indirect sentences to understand the implicit and contextual reasoning; (3) Consider more
subtle, fine-grained differences for paraphrase task to reduce false positives.

6 Conclusion

In conclusion, our proposed Multitask BERT pre-training and fine-tuning model demonstrates
significant improvements over the original BERT model by integrating contrastive learning methods,
multitask learning strategies, a dense similarity scheme with fine-grained embedding representation,
and regularized multitask optimization. The experimental results indicate that our approach achieves
better performance on the tested tasks, revealing the potential of our methods in addressing data
efficiency and training cost challenges in NLP.

Our model, while demonstrating improved performance, has certain limitations as indicated by the
analysis of its results. The confusion matrix reveals that the model tends to confuse classes close to
the true labels in the STS and SST tasks, and exhibits a higher false positive rate in the Paraphrase
Detection task. Specifically, the error analysis for STS indicates that the model underestimates
similarity due to differences in wording, tense, or an inability to abstract meaning. In the case of
SST, the model struggles with mixed sentiment sentences, complex sentence structures, and implicit
meanings. Finally, the error analysis for Paraphrase Detection suggests that the model is misled by
similar vocabulary and sentence structure, and encounters difficulties in detecting nuanced differences
in context or focus. These features indicate that the model is understanding the languages in a
relatively naive and superficial way.

To build upon these promising results and further improve the model, we propose the following
directions for future work: Investigate the integration of more sophisticated contrastive learning
methods or other self-supervised approaches to further enhance the quality and expressiveness of
BERT embeddings in multi-task settings. Evaluate the effectiveness of different pooling techniques,
such as max-pooling or weighted pooling, in the context of fine-grained embedding representation to
optimize performance on similarity-based tasks. Investigate additional multi-task learning strategies
to further improve data efficiency and reduce training costs, focusing on addressing optimization
challenges in multitask BERT models, such as embedding space wellness and task information
contradiction. Examine the impact of various BERT embeddings and head structures on different
NLP tasks, aiming to enhance the understanding of intrinsic mechanisms and inform the design of
more effective models. Explore extensions of the proposed model to other downstream NLP tasks and
evaluate its applicability across a broader range of problems, thereby assessing the model’s potential
for generalization and scalability. By pursuing these research directions, we hope to contribute to the
development of more efficient, effective, and versatile multitask BERT models, ultimately pushing
the boundaries of current NLP capabilities.
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