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Abstract

In the pursuit of revolutionizing the medical industry, Large Language Mod-
els (LLMs) have faced obstacles due to stringent quality requirements and
numerous ethical concerns. Previous medical NLP approaches focused on
building single-task models that were dedicated to simple classification or
to generating doctor-like responses. Our study presents a multi-task trans-
former encoder-decoder model that takes a patient’s symptom descriptions
and generates predictions for both the appropriate medical department and
an initial diagnosis or a follow-up question. The primary objective is to
evaluate the extent to which the inclusion of a secondary task, specifically
the doctor-diagnosis generation, enhances the performance of the medical
department classification task.
We leverage a dataset comprising 3 million doctor-patient conversations
scraped from Chinese online medical forums (MedDialog) to fine-tune
BERT and GPT-2 models, establishing baseline performances. Our findings
demonstrate that incorporating a secondary objective enables the model to
capture more nuanced relationships between the doctor’s response and the
patient’s symptom description, consequently enhancing the medical depart-
ment classification process.
The proposed multi-objective transformer encoder-decoder model outper-
forms the original BERT encoder with an accuracy of 91% compared to
84% in predicting the top 10 most relevant medical departments. Nonethe-
less, our analysis highlights significant limitations in attempting to gener-
ate a doctor’s response based solely on the patient’s symptom description,
underscoring the importance of developing AI-assisted tools that support
patients within the medical system, rather than seeking to replace human
expertise.

1 Key Information
• Mentor: Elaine Sui

2 Introduction

2.1 Motivation.

Recent advances in large language models (LLM) offer an opportunity to rethink AI systems,
specifically in the medical domain. In the United States and China, patients often endure
weeks or even months of waiting time for appointments with general practitioners, who are
responsible for referring the patient’s to the appropriate specialized doctor practitioners.
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Developing a medical healthcare department recommendation system can substantially re-
duce this waste of time by directly referring the patients to the relevant specialized doctor
practitioners, removing the necessity of having to meet with the general practitioner first,
freeing up significant medical resources, and saving people time.
Researchers from Google DeepMind have sought to tackle this issue by training an LLM
on U.S. medical exam data, encompassing multiple-choice and short-answer questions, and
utilizing few-shot learning to answer general internet medical questions[1]. The ability of
LLMs to medical question-answering might be an emergent ability combined with specific
downstream finetuning of data. While contemporary LLMs can generate coherent sentences
corresponding to patient symptoms, they often struggle to give a correct diagnosis.
By embracing the paradigm that LLM cannot replace human expertise in giving a patient
diagnosis, we can concentrate our efforts on building models that alleviate the patient bur-
den by guiding them toward the appropriate department, bypassing the need for initial
consultations with general practitioners and subsequent referrals to specialized physicians.

2.2 Our contribution.

We introduce an AI agent MEDI-BERPT designed to refer patients to the appropriate med-
ical department based on their symptoms. Our focus lies on a primary and secondary task:
the primary task is to build a multi-class classifier directing the patient’s inquiry to the ap-
propriate medical department, and the secondary text generation providing initial diagnoses
or follow-up questions from a general physician’s perspective. The primary department clas-
sification task can remove the necessity of having to meet with a general practitioner first in
order to be seen by the specialized doctor, and the secondary question-answering task can
assist doctors in better understanding the patient’s condition. By developing a scalable AI
system deploy-able in clinics and hospitals in China, where a 1.4 billion population faces in-
creased risks of system overflow, we aim to streamline the quality and efficiency of a general
doctor checkup.
Considering the inherent risks of AI model-based misdiagnoses and the challenges in logically
generating accurate medical advice based on symptoms, we prioritize leveraging the text-
generation objective to improve the medical department classification objective, thus aiding
patients in their hospital check-in process. We establish a baseline for department classi-
fication results using BERT models trained on Chinese medical corpora and anticipate a
substantial improvement in classification results with the support of the question-answering
objective.
We make use of an existing dataset collected from online medical forums between patients
and doctors and a ground-truth label of the doctor’s department to train and experiment
with our models. Our MEDI-BERPT model incorporates a pre-trained BERT encoder with
a pre-trained GPT2 decoder and simultaneously outputs a classification of the department
and a predicted doctor’s response to the question.

3 Related work.

3.1 Domain Specificity

Three dominant deep learning models in NLP are BERT[2], GPT, and T5. As per the
rationale of the T5 paper ([3]), it is advantageous for a transformer encoder-decoder model
to be pre-trained on a large text corpus and subsequently fine-tuned for specific downstream
tasks. This approach provides more nuanced attention to domain-specific representations
and improves the robustness of the language model.

3.2 Multi-Task Learning

The multi-task approach has been extensively examined in Kaiser et al.’s and Hu et al.’s
papers [4][5]. Kaiser et al. introduced a single model trained concurrently on image classi-
fication, translation, and speech recognition tasks, utilizing convolutional neural networks
and recurrent neural networks. They demonstrated the high performance achieved by a
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single model sharing the same encoder with unique decoders for different downstream tasks.
Conversely, Hu et al. showed how a single model sharing the same encoder and decoder
weights achieved high performance on various tasks through task-specific attention mech-
anisms. Jointly training multiple objectives enforces shared weights in different channels,
leading to better input representations. Specifically, mixing computation and attention
blocks may be an effective strategy to enhance performance across multiple tasks.
The Text-to-Text Transfer Transformer (T5) model also presents a novel approach to NLP
and multitask language models [3]. It employs a robust encoder-decoder structure that
generalizes to translation, sentiment analysis, word prediction, and summarization tasks,
suggesting that the success of one task can directly inform other tasks.
Inspired by the multitasking approach and an encoder-decoder structure, we hypothesize
that incorporating a seq2seq objective alongside our classification task could improve our
model’s performance in predicting the appropriate medical department for the patient.

3.3 Cross Attention & Encoder-Decoder Architecture

Human doctors must learn a holistic understanding of the patient’s symptoms first before
giving a medical diagnosis, and might constantly refer back to the list of the patient’s symp-
toms while giving the diagnosis in real life. We implemented cross-attention so that the
decoder, while giving a prediction of a doctor’s diagnosis, can have access to the entire em-
bedding representation of the patient’s symptoms. This leads to better question-answering
performance to produce more human-like responses. A better performance on the seq-to-seq
task consequently helps boost the classification performance as these tasks reinforce each
other.
We could not have used the existing hugging face encoder-decoder module because the
hugging face encoder-decoder model is dedicated to a specific task. We built our own
custom models of a BERT encoder, a classification layer appended to the output of the last
hidden layer of the BERT encoder, and a GPT-2 decoder in order to backpropagate both the
classification loss from the predictions on medical departments and the GPT-2 seq-to-seq
loss.

3.4 Medical Datasets

Researchers from Sun Yatsen University used a Reinforcement Learning framework to pre-
dict 4 types of diseases based on a pre-defined 66 types of symptoms [6]. They have achieved
quite high accuracy to build a dependency relationship between the symptoms and the dis-
eases; however, they rely on the assumption that the patients would be able to describe their
own symptoms using relevant medical terms that they have built their framework around.
As a result, this wouldn’t be able to scale and generalize to a large medical systems with
a population who do not have clinical knowledge on describing their own symptoms using
medically relevant terms.
Researchers from UCSD have attempted to carry out seq-to-seq generation on Chinese
medical online forum conversations, yet have only achieved a meager 7% BLEU score for
2-gram words [7]. Even so, they still claimed that the generated responses were ”clinically
meaningful”, without analyzing what further improvements they could be making to improve
the generated responses. Without properly rethinking the whole model, it doesn’t seem
feasible to generate meaningful doctor responses, which is why we chose to focus on only
using question-answering to improve our primary multi-class classification tasks.

4 Approach

4.1 Baselines

We started with BERT[2] (Bidirectional Encoder Representations from Transformers) and
RoBERTa[8] (Robustly Optimized BERT Pretraining Approach) models in Chinese.
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First Baseline: Our first baseline model for the encoder is a RoBERTa-Base classification
model that was trained on CLUECorpusSmall1 and finetuned on Chinese news articles[9]2.
The fine-tuned model is taken from HuggingFace and used directly with the provided to-
kenizer and multi-class model. BERT employs a ubiquitous transformer architecture, and
the relevant architecture details include the 12 layers, 768 hidden dimensions, and the 10
different output classes.
Second Baseline: Our second baseline model for the encoder, MedBERT-wwm[10], is
fine-tuned on Chinese medical corpus. Since this model is not a classifier, we modified the
model structure and added an output layer with a dropout probability of 0.1 and a 10-class
classification layer that generates 10-label classification accordingly.

Third Baseline: Our third baseline for the decoder comes from a GPT2 model trained
on CLUECorpusSmall3[11]. It is a general-domain text generation model that leverages
the transformer model and generates the subsequent token based on the token that has
come before. Developing these distinct baseline models, such as the standalone encoder and
decoder, allows us to compare how combining the encoder-decoder in a multi-task setting
improves the classification task or the question-answering task.
Our primary focus is on how seq2seq generation enhances the performance of the classifi-
cation task. Consequently, we did not use the state-of-the-art T5 model because it is an
encoder-decoder model that is dedicated to only the question-answering task. Our ultimate
goal is to use multitask learning to improve our department classification task, making our
BERPT (BERT + GPT2) multi-task model, which we will explore later, more relevant to
our objective.

4.2 BERPT model architecture

We enhance the state-of-the-art BERT and GPT-2 models by integrating them into a multi-
task encoder-decoder transformer architecture. We hypothesize that, by having a primary
objective of department classification and a secondary objective of text-generation, the en-
coder can better learn the semantic reasoning behind the patient’s symptoms and by devel-
oping a better rationale for its given medical department classification.
Encoder: The patient’s symptoms are input into the BERT encoder with 12 layers and
768 hidden-size neurons. The last hidden layer of the BERT encoder, which has size
(batch_size, sequence_length, hidden_size) is passed through an additional classification
layer, which predicts department labels and back-propagates the associated losses through-
out the network.
Decoder: Simultaneously, the decoder processes the input of the doctor’s response to
the patients’ questions, predicting the subsequent token autoregressively while performing
cross-attention with the BERT encoder’s final hidden layer. The decoder then calculates
the loss based on its autoregressively predicted response, compares it to the ground truth of
the doctor’s actual response, and backpropagates this loss throughout the entire network,
including the encoder. By jointly backpropagating both the classification and seq2seq losses
through the encoder, it learns to perform both tasks, leveraging knowledge gained from the
text generation task to improve department classification performance.
We decided to use teacher-forcing in the training process of the decoder, where the ground-
truth output from the previous time step is used as input. This is necessary because it
guarantees a faster convergence to learn the target sequence more effectively and provides
better training stability since an incorrect previous token will no longer be allowed to desta-
bilize future token predictions.
Multi-task Back-Propagation: The back-propagation of the classifier’s loss through the
encoder assists in identifying which tokens to attend to for accurate medical department clas-
sification. Concurrently, backpropagating the decoder’s seq-to-seq loss through the encoder

1https://huggingface.co/uer/chinese_roberta_L-12_H-768
2https://huggingface.co/uer/roberta-base-finetuned-chinanews-chinese
3https://huggingface.co/uer/gpt2-chinese-cluecorpussmall
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Figure 1: A diagram of our BERPT structure

helps the encoder comprehend the doctor’s rationale in response to the patient’s question,
thereby enhancing the encoder’s understanding of the patient’s query and improving classi-
fication results.

5 Experiments

5.1 Data & Preprocessing

Our study utilizes MedDialog, an extensive Chinese medical corpus that was specifically
designed for question-answering tasks [7]. This dataset contains over 3.4 million conversa-
tions between patients and accredited physicians on an online forum, making it the largest
conversational-based Chinese dataset available for this purpose. The dataset and code are
publicly accessible 4 and cover 29 different categories of specialties and 192 fine-grained
specialties.

4https://github.com/UCSD-AI4H/Medical-Dialogue-System
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The dataset was provided in ”.txt” files for each year from 2010 to 2020, with each year
adopting a different data format. We developed a custom preprocessing script to extract
pertinent information from the physicians’ raw data and dialogues on a file-by-file basis,
eventually concatenating them. In particular, we extracted three components: the patient’s
description of symptoms, the department of the physician who responded to the patient’s
inquiry, and the physician’s initial assessment of the patient’s symptom description. We
selected the 10 most prevalent medical departments and stored the relevant information in
a CSV file for convenient access by our models. The resulting processed dataset comprises
597,906 training samples and 74,739 testing samples, each labeled with one of ten department
categories, such as Gynecology, Ophthalmology, Obstetrics, and others.

5.2 Evaluation Methods

We evaluate our classification performance using accuracy, precision, recall, and F1-score.
We also used BLEU and ROUGE scores to measure the equality of the output from seq2seq
tasks. These are standard evaluation metrics to assess multi-class classification and text
generation, which will not be explored extensively in the paper.

5.3 Experimental Details

Our experiments involve training 5 models, listed in the table. During training, we used a
batch_size of 8, where input data has the shape of (batch_size, sentence_length), with a
max_length of 200 tokens for the length of each sequence. We provided padding tokens in
case the sentence_length is less than 200.
First Experiment: BERT + Grid Search In our first experiment, we utilized the
BERT model to perform a multi-class classification task on the top 10 patient department
categories in Chinese medical data. We set training epochs to 5 for all models. Using the
original classification layers provided by BERT, we achieved an accuracy score of 0.84 and
an F1 score of 0.81.
To enhance the model’s performance, we removed the original classification layers and added
a dropout layer with a 10% probability and a classification layer with random initialization.
This approach resulted in a slightly lower accuracy score of 0.84 and an F1 score of 0.8. We
also conducted a grid search across various learning_rate, dropout_probability, temperature,
batch_size parameters, but none outperformed the original BERT model. We hypothesize
that this is because the BERT model already identified the most suitable hyperparameters
for most general tasks. In an attempt to further refine the model, we froze the BERT
model parameters and trained only the parameters of the newly attached classification
layer. However, this approach yielded a disappointing accuracy score of 0.39 and an F1
score of 0.24.
Second Experiment: medBERT + Parameter Freezing In our second experiment,
we replicated the grid search and hyperparameter tuning process with the MedBERT-wwm
model, a BERT model pre-trained on a Chinese medical corpus. Initially, we achieved a
higher accuracy score of 0.86 and an F1 score of 0.85. However, upon freezing the MedBERT-
wwm model parameters, we obtained a slightly worse accuracy score of 0.35 and an F1 score
of 0.17.
Third Experiment: GPT2 decoder Our third experiment involved training a GPT2
decoder on the patient-doctor dialogue corpus. Although our primary goal was to utilize
the text generation objective to assist in the classification task, we sought to determine if
training the GPT2 decoder separately before incorporating it into the transformer encoder-
decoder model could enhance its performance.
Fourth Experiment: medBERT + GPT2 Our fourth experiment implemented the
BERPT model architecture, as specified earlier, using the MedBERT-wwm model trained
on a Chinese medical corpus and a general Chinese GPT2 model. Due to the unavailability
of a GPT2 model pre-trained on a medical corpus and limited AWS CUDA memory, we
employed the smaller GPT2 Chinese model instead of the larger base GPT2 Chinese model.
We trained each model from scratch, conducting validation tests at the end of every epoch
and logging the results using Weights Biases.
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Fifth Experiment: MEDI-BERPT Our fifth and final experiment involved loading
the pre-trained weights from the standalone BERT and standalone GPT2 models into the
multi-task BERPT model. We aimed to evaluate if pre-training individual components of
the BERPT model could help boost performance on classification tasks.

5.4 Results

Discussion of Quantitative Results From Multi-class Classification: The multi-
class medical department’s classification results obtained by us can be seen in Table 1.
While contrasting our results with CHMBERT[12], a department classification model while
finetuning of Chinese Medical BERT, one can see that our MEDI-BERT + GPT2 model
outperforms all the model listed in Wang et al. when looking at the overall department pre-
diction accuracy. This result was initially unexpected, but after an analysis of the learning
rate chosen by Want et al., we found that their learning rate and other hyperparameters
diverged from our models, validating our findings. In Figure 3 we also display the cumu-
lative classification loss of our MEDI-BERT + GPT2 model, and in Figure 4 we show the
cumulative seq2seq loss from the GPT2 decoder of the MEDI-BERT + GPT2 model.

Figure 3: Classification Loss During Training Figure 4: Seq-to-seq Loss During Training

Table 1: Performance comparison of experimental models on MedDialog
Model Task Accuracy Precision Recall F1 Score
CHMBERT 0.86 N/A N/A N/A 0.74
BERT Multiclass 0.84 0.81 0.8 0.81
medBERT Multiclass 0.87 0.84 0.83 0.83
medBERT + GPT2 Multitask 0.91 0.85 0.87 0.86
MEDI-BERPT Multitask 0.90 0.86 0.85 0.85

Discussion of Qualitative Results: Meanwhile, for the secondary seq-to-seq task in
BERPT, we see an improvement in the higher medical reasoning tasks but a decrease in
coherence when compared to the stand-alone GPT2 decoder. A stand-alone GPT2 decoder
sentence is displayed in Table 2, where we can see that the GPT2 generated response was
coherent and touched on general information on the symptoms, such as the hormone medi-
cations, yet its response was not tailored to the male patient’s symptoms. Specifically, the
stand-alone GPT2 decoder’s sentences had higher sentence coherence compared to the trans-
former encoder-decoder. However, they had a lower BLEU score and were not discussing
treatments that were specific to the patient.
The difficulty of understanding the rationale behind the doctor’s responses to the patient’s
symptoms is a likely reason that the BLEU score is relatively low in both the stand-alone
GPT2 decoder model and the transformer encoder-decoder model. We expect that by adding
more high-quality doctor responses, the secondary doctor response generation tasks can be
improved, and consequently improving the multi-class classification task.
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6 Analysis

6.1 Multi-tasking objectives improves the performance of a single-task
objective

Our most significant contribution lies in demonstrating the potential of incorporating sup-
plementary tasks into an originally single-task encoder to enhance its performance.
The BERT Encoder’s classification accuracy on medical departments reached 84%. Utilizing
a BERT Encoder previously fine-tuned on Chinese medical data resulted in a 3% increase
in classification accuracy. Most notably, we showed that by allowing the decoder to concur-
rently backpropagate its seq-to-seq loss and the multi-class classification task loss, we could
outperform a single-task multi-classification BERT encoder by 7%. This substantial im-
provement highlights the feasibility of training any model optimized for a primary objective
to be augmented by a secondary objective in the medical domain.
We hypothesize that this is because the encoder, aided by the decoder, learns to focus on
specific aspects of the patient’s symptoms and reasons through the high-level rationale of
the disease symptoms. Through qualitative analyses, we have observed that the generated
text provides justifications for the classification of certain departments. For example, some
doctor’s responses include keywords that directly connect to a department, such as ”skin,”
”endocrine,” ”bone,” etc. These would correspond to department labels of dermatology,
endocrinology, and orthopedics. Even when the output is not coherent, it produces more
medically-informative terms that show an understanding of the patient’s input, helping
the classifier distinguish between classes. The original BERT encoder’s performance is
suboptimal due to the absence of a secondary objective during training. Ultimately, we
have shown that fine-grained tuning can facilitate core tuning.

6.2 BERT Baseline Takeaways

Based on our experiments, we conclude that using a pre-trained model that is fine-tuned
on a similar corpus to our target task produces superior results than just using a general
model without fine-tuning. Carrying out a grid search with different hyperparameters can at
most achieve a marginal improvement compared to just using the original BERT parameters
because the original hyperparameters were already state of the art. Furthermore, freezing
specific parts of the models to finetune only parts of the model would not be desirable in
our case since the layers are ideally trained in conjunction with all the other layers. Going
forward, we plan on using the encoder of our baseline MedBERT-wwm model to finetune
the transformer encoder-decoder we will use for our multi-task objective.

6.3 Cross-Attention

Moreover, we implement cross-attention between the decoder’s multi-attention heads and
the encoder’s final hidden state. As these hidden states represent high-level abstractions of
the patients’ questions, enabling the decoder to perform cross-attention in relation to these
hidden states can bolster the decoder’s performance. By transferring the hidden states from
the encoder to the decoder, the latter carries out cross-attention between the hidden states
and the forward pass attention of the doctor’s answer during training. This comparison
with the ground truth allows the decoder to backpropagate its loss back to the encoder,
further refining the model.

6.4 Limitations

Our work faced limitations primarily due to AWS virtual machine constraints and the low
quality of some doctor’s responses. The virtual machine’s training time restricted the num-
ber of experiments we could conduct, while memory resource limitations confined us to a
GPT-2 model trained on only 1/10 of the Chinese text compared to the base GPT-2 model.
Furthermore, the initial responses from doctors were not always medically relevant to the
patient’s symptoms, complicating the task for our decoder to generate appropriate responses.
For instance, many doctor’s responses began with ”Thank you for your trust... please send
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a photo of your injured area” (translated). We cannot assume that a large dataset would
compensate for the low quality of these responses.
Despite utilizing an in-domain MedBERT model with greater exposure to medical vocabu-
lary, we observed instances where certain characters in the patient’s question were encoded
with ’<UNK>’, the unknown token. This disrupts the flow of the patient’s question and
hinders the model’s ability to effectively learn representations due to limited vocabulary. It
would be beneficial to develop a larger vocabulary that encompasses uncommon but critical
terms in the doctor-patient space.
Evaluating our LLM’s ability to encode clinical knowledge is challenging. Providing high-
quality answers to medical questions necessitates both a deep understanding of disease
mechanisms and the ability to interpret the patient’s self-description of symptoms. Patient
descriptions can vary greatly, making it difficult to generate accurate responses. Standard
metrics like BLEU or ROUGE scores only measure coherence without the detailed analysis
required for real-world clinical applications. Due to the high risks associated with providing
diagnoses and suggestions to patients, we prioritize improving the multi-class classification
objective, without focusing heavily on the outcomes of the sequence-to-sequence task itself.

7 Conclusion

In our experiment, we have successfully demonstrated that seq-to-seq tasks can improve the
performance of classification tasks. However, it is also possible that the reverse is true.
While comparing the outputs generated by the stand-alone GPT2 and MEDBERT’s GPT2
decoder, we found that the stand-alone GPT2 generated coherent sentences that were medi-
cally relevant yet not pertinent to the patient’s specific conditions. In contrast, MEDBERT’s
GPT2 decoder generated sentences with less coherence but demonstrated significantly more
understanding of the patient’s specific condition. Due to the low BLEU score of both predic-
tions, we decided not to include the relative results in this paper. However, this observation
suggests the possibility of the classification task assisting the seq-to-seq task.

8 Future Work

Having demonstrated that a secondary seq-to-seq task can enhance the performance of the
primary multi-class classification task, we aim to investigate whether the reverse relationship
holds true as well.
Moreover, we plan to improve the low BLEU score of the decoder in our BERPT model by
employing a more powerful version of the Chinese GPT2. Our current work was constrained
by the AWS memory limitations, and we hypothesize that utilizing a better fine-tuned
and more powerful GPT2 could improve the decoder’s BLEU score. As a higher BLEU
score indicates a better understanding of the doctor’s response to the patient’s symptoms,
enhancing this metric might further increase the performance of our multi-class classification
task.
Additionally, the quality of our classification tasks could be significantly improved by employ-
ing a team of human doctors to filter through and clean our data by removing suboptimal
doctor responses. Although the online doctors whose conversations we used for our dataset
were all clinically certified, we still observed instances of low-quality diagnostic language
during our analysis. By refining the dataset, we aim to further enhance the performance of
our model.
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Table 2: Qualitative analysis of the medical question answering system
Patient’s Question

脂溢性脱发脱发，皮肤科医生说脱发是内分
泌失调引起的，雄激素分泌过多，和油脂分泌
过多使其毛囊堵塞请问脱发是不是内分泌失
调引起的啊，我看内分泌科是否能解决脱发问
题。

”Seborrheic hair loss, the dermatologist said
that hair loss is caused by endocrine disor-
ders, excessive secretion of androgens, and ex-
cessive secretion of sebum that clogs the hair
follicles. Is hair loss caused by endocrine dis-
orders? Can the problem of hair loss be solved
by seeing an endocrinologist?”

Doctor’s Response
Ground Truth

你好，男性脂溢性脱发一般与内分泌无关，非
那雄胺治疗脂溢性脱发最有效的药物了。建议
同时外用米诺地尔溶液

”Hello, male seborrheic hair loss is generally
unrelated to endocrine disorders. Finasteride
is the most effective medication for treating
seborrheic hair loss. It is recommended to use
minoxidil solution topically at the same time.”

Prediction, stand-alone GPT2 decoder
西南皮肤病医院科室：中国人民解放军第 302
医院用药情况：雄性激素异常脱发，雌性激素，
是激素分泌过量引起的，与皮肤有机物排泄障
碍是直接相关。一旦雌雄同源，有可能会诱发
激素失调的产生，应当考虑使用某种激素，如
雌激素类药物或激素类药物治疗，同时可以进
行另一种激素的减轻症状，如皮炎，血小板减
少等，有一定疗效。建议：患病的女性服用雄
激素药，但必须经过消炎

The department at Southwest Skin Disease
Hospital is: Department of the Chinese Peo-
ple’s Liberation Army No. 302 Hospital. The
medication situation is as follows: male hor-
mone abnormal hair loss, estrogen is related
to excessive hormone secretion and directly re-
lated to organic matter excretion disorder of
the skin. Once estrogen and androgen are of
the same origin, it may induce hormone im-
balance. Therefore, consideration should be
given to using a certain hormone medication,
such as estrogen or hormone medication for
treatment. At the same time, another hor-
mone can be used to alleviate symptoms, such
as dermatitis, thrombocytopenia, etc., with
certain therapeutic effects. It is recommended
that female patients with the disease take hor-
mone drugs, but they must also be treated
with anti-inflammatory drugs.

Department Classification
皮肤科 Dermatology
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