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Abstract
BERT is a transformer-based model that pretrains on unsupervised tasks to learn
weights that generate rich word representations from input tokens. We aimed to
improve BERT’s performance on paraphrase detection, semantic similarity, and
semantic analysis tasks in a model called SuperBERT. To do so, we pretrained
BERT using masked language modeling on datasets relevant to the three domains.
We then used different multi-task learning procedures utilizing gradient surgery on
top of the additional pretraining. We found that multi-task learning with gradient
surgery leads to significant improvements over the baseline on all of the three
tasks. We also found using mean pooling on the token embeddings with cosine
similarity as similarity metric further improves the model performance on the
semantic similarity task. We finally found additional pretraining on the target
domain datasets improved the performance on semantic similarity but did not
lead to any improvements on paraphrase detection and sentiment analysis. Thus,
we conclude that multi-task finetuning on the three downstream tasks leads to
performance on each task that is comparable to a model that finetunes only on the
specific task, even with significantly less data.

1 Key Information to include
• No external collaborators
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• Not sharing project with any class

2 Introduction
In 2018, researchers from Google published the Bidirectional Encoder Representation from Trans-
former (BERT) [1], a model built upon 12 Encoder Transformer Layers. In BERT, sentence inputs
are tokenized into word pieces and passed to an embedding layer. For each transformer layer, the
input is passed through a multi-head attention sub-layer and a feed-forward neural network (with
additive and normalization layers with residual connections following each). BERT then outputs
[CLS] token embedding as well as the last hidden state embeddings from each word piece of the
input sentence (referred to as the "LHS embeddings" for the rest of the paper). BERT is trained on
two unsupervised learning tasks, masked language modeling (MLM) and next sentence prediction
(NSP), from large general domain corpora. BERT represented a jump forward in the NLP space in
the search for models that can generate contextual embeddings. The hope is that these learned model
weights demonstrate a rich semantic understanding of language as a whole, which we can then further
finetune on a specific task/tasks using a relatively smaller training set compared to the pretrained
BERT tasks, to then perform at a high level on a specific downstream task.

Thus, we tackle the problem of improving BERT’s performance across three downstream NLP tasks:
paraphrase detection (PD), semantic textual similarity (SS), and sentiment analysis (SA) tasks (these
three tasks are collectively referred to as the "downstream tasks") in a new model called SuperBERT.
Paraphrase detection is a binary classification task of assessing if two sentences are paraphrase of
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each other. Semantic textual similarity is a task where two sentences are rated for their similarity on a
scale of 5 (same meaning) to 0 (does not share the same meaning at all). Sentiment analysis is the
task where a sentences sentiment is classified on an integer scale of 0 (negative) to 4 (positive). This
represents a challenge as a crafting robust embeddings that can perform well across the three tasks
requires a pretraining and training process that is able to learn robust representations such that we do
not degrade the performance of any one task to improve performance on another task.

To accomplish this goal, we first establishe a baseline BERT model. We trained three different models
each finetuned on one specific task and calculated the model performance on the three tasks. As the
results in Table 2 shows, the model that is finetuned on the semantic textual similarity task achieves
the highest overall accuracy. Thus we use this model as our baseline. From this, we consider a new
model called Vanilla Gradient Surgery (VGS) where we apply multi-task finetuning [2] across the
three downstream tasks with the model using a linear layer to project the CLS embeddings from each
task. For paraphrase detection and semantic similarity tasks, we average the two CLS embeddings
from the two input sentences. We found VGS outperforms the baseline model. We compare the results
of VGS to a model called CGS (Cosine Gradient Surgery) where we perform mean pool on the token
embeddings to create LHS embeddings for the input sentences. In addition, we use cosine similarity
as similirity metric for semantic textual similarity. We found CGS outperforms VGS particularly
on the semantic textual similarity task. We finally pretrain the CGS model on target-domain data
related to the three downstream tasks using MLM in a final model called SuperBERT which is our
best performing model.

3 Related Work

The improvement in training NLP systems from embeddings created from pretrained tasks rather
than using embeddings learned on a task from a randomized initial state is supported by [3] [4]. Sun
et. al [5] found that using further pretraining on target domain data in conjuction with multi-task
learning using BERT embeddings on text classifcation tasks leads to state-of-the-art results. The use
of pretraining language models has seen growing prominence in the NLP community, with Devlin et.
al [1] showing BERT’s improvement through pretraining on the Masked Language Modeling (MLM)
task, where random words are masked and the model attempts to predict the word, and Next Sentence
Prediction (NSP). While SuperBERT will be applied to different downstream tasks compared to those
in [5] , SuperBERT will also make use pretraining on additional target domain data related to the
relevant downstream tasks, as well as doing multi-task learning to further finetune performance on
the three downstream tasks. Similar to the original BERT model, SuperBERT will pretrain on the
MLM task. However, SuperBERT does not pretrain on the next sentence prediction (NSP) task as
this was found not to improve performance by a significant degree [6].

Bi et. al [7] similarly used multi-task learning over BERT embeddings on the downstream tasks
of category classification and named entity recognition, and found significant improvements over
baseline BERT models. Bi et. al [7] also noted the difficulties with multi-task learning, and this
phenomenon has been well noted in the literature, as the model attempts to minimize loss for its
parameters across the multi-task optimization landscape. Parisotto et. al [8] note how updates that
lead us away from optimal areas of the landscape can result in a model performing poorly across all
three tasks compared to if we simply trained on the tasks individually. In response, Yu. et. al [9]
identified the co-occurrence of 3 conditions (which they call the "tragic triad") that results in the
multi-task model optimizer making inadequate or even harmful gradient updates across the multi-
task optimization landscape. In turn, they recommended a novel gradient surgery technique called
PCGrad to remedy harmful gradient updates by resolving conflicting gradients through projecting the
gradients on the normal plane of one another. They found significant gains in model performance and
optimization speed as a result. SuperBERT makes use of an implementation inspired from PCGrad,
although our implementation is in PyTorch and is further optimized for efficiency by removing
the process that differentiated between updating gradients for shared parameters, which we found
empirically did not make a difference.

Reimers and Gurevych [10] showed that sentence embeddings trained on cosine-similarity loss
outperformed state-of-the-art models on semantic textual similarity tasks and transfer learning tasks.
SuperBERT also makes use of cosine-similarity loss for the semantic textual similarity task during
multi-task learning to improve performance.
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4 Approach
We experimented with a number of models to get our proposed model, SuperBERT. For all the models
in the project we utilize the Adam optimizer [11]. The baseline model is BERT model finetuned on
STS as described in the introduction section. We use three different loss functions when finetuning
the models for the three tasks. For paraphrase detection (PD), we use binary cross entropy loss
between the predictions and the labels since PD is a binary classification task. For sentiment analysis
(SA), we use cross entropy loss between the predictions and the labels. For semantic similarity (SS),
we use mean-squared error loss since SS dataset has a continuous label ranging from 0− 5.

As our models aims to improve BERT’s performance on all the three downstream tasks, we use
multi-task learning technique when training the BERT model. In multi-task learning, the loss across
all three downstream tasks is considered during the training. The most naive approach is to add all
the losses from each task during the training. Thus the total loss is calculated as:

L = Lsa + Lpara + Lsimilarity (1)

where Lsa is the cross entropy loss on the SA task, Lpara is binary cross entropy loss on the PD
task, and Lsimilarity is the mean-squared error loss on the SS task. This is in contrast to the baseline
model which is being trained to only minimize the loss of the task corresponding to its training set.

However, as mentioned from Yu et. al [9], multi-task learning can lead to harmful gradient updates
due to certain conditions as it relates to the gradients themselves, and the optimization landscape.
Thus we cannot naively sum the losses as in equation (1). To remedy this, we implement our multi-
task learning with the gradient surgery from [9] called PCGrad. In PCGrad, if two gradients are
conflicting, the gradient of each task is updated by projecting the gradient onto the normal plane
of the gradient of the other task. This maintains much of the gradients original information while
eliminating the influence of components that are conflicting, in turn making the two gradients no
longer be conflicting.

if gi · gj < 0 then
gi ← gi − gi·gj

||gj ||2 gj
end if

Our implementation of PCGrad is inspired from Yu et. al and the PyTorch implementation
[12]. However, we reimplement the algorithm in PyTorch, integrating inheritance qualities from
object-oriented-programming to more seamlessly have PCGrad work on top of the Adam optimizer
we implemented. Furthermore, we changed how the algorithm reacted to gradient updates across
gradient parameters that were not populated across each task in a given iteration and also changed
how we flattened and unflattened PyTorch tensors. This empirically resulted in a significant speed
improvements while accuracy remained the same. We use PCGrad implementation in Vanilla
Gradient Surgery (VGS) model to simultaneously finetune BERT weights on all the three downstream
tasks. VGS model projects the CLS embeddings (average of CLS tokens from two sentences for
paraphrase detection and semantic similarity) from BERT onto a linear layer. The models then uses
the logits from the linear layer to get the loss for each task.

One potential issue from VGS is that the architecture projects the BERT CLS token outputs (or
an average of the CLS tokens for PD and SS) through a linear layer for all the tasks. Though this
architecture, and specifically the use of CLS tokens, is likely suitable for the sentiment classification,
it may not work well with PD and SS as these tasks require comparisons between two inputs. For this
reason, we consider a new model called Cosine Gradient Surgery (CGS). While we continue to use
the same multi-task finetuning procedure from VGS, we change how we generate logits for each task.
Namely, we directly get the token embeddings from BERT and perform a mean pooling operation
to produce a single vector encoding that represents the sentence embedding. We then use this
sentence embedding in each of the downstream tasks. For the sentence similarity, we calculate the
cosine similarity between the two sentence embeddings. For paraphrase detection, we concatenate
the two embeddings and project the concatenated embedding to a linear layer. For the sentiment
classification, we keep the same architecture of directly projecting the embedding to a linear layer.

Finally, we observe that the original BERT model is pretrained using the unsupervised task of Masked
Language Modeling (MLM) [1] on Wikipedia articles and book collections which represents a general
domain data. Thus, following the findings of Sun et al. [5], we pretrain the CGS model on the
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Figure 1: SuperBERT architecture
training and dev datasets for all the three downstream tasks to get further improvements from domain
adaptation. As Liu et al. [6] found no significant improvements from next sentence prediction, we
do not pretrain the model with next sentence prediction. When pretraining the model on next word
prediction task, we follow the same algorithm of randomly masking 15% of the tokens as used in the
orignal BERT paper. Finally, for the datasets that have short sentences, we concatenate two sentences
to get a longer sentence as pretraining on longer sentences is shown to give better results [6]. The
additionally pretrained CGS is our proposed model. We call this model SuperBERT. The architecture
of this model is shown in Figure 1.

5 Experiments

5.1 Data

1. Stanford Sentiment Treebank (SST): a single sentence extracted from movie reviews with
5 different labels ranging from negative to positive.

2. CFIMDB dataset: highly polar movie reviews with binary labels for positive or negative.

3. Quora Question Pairs (QQP): question pairs with binary labels of whether they are
paraphrase of each other or not.

4. SemEval STS Benchmark (STS): pairs of sentences with continuous varying similarities
ranging from 0 (unrelated) to 5 (equivalent meaning).

Table 1 shows the datasets used in the project. One potential issue with the original datasets breakdown
is that the STS, QQP, and SST training sets are all different sizes. If one dataset is longer than the
other datasets, this could lead issues when performing the multi-task finetuning. When the smaller
datasets are processed during training, all the gradient updates will be coming from the longer dataset
which may lead to a model that performs well on the task with the longer dataset and performs poorly
on the other tasks. In order to avoid this issue, we decide to truncate the datasets to being 6,016
samples. We sample the examples from the a-prior distributions of the original datasets as we want
our new training sets to be as close to the original training sets in their distribution. 6, 016 training
size is the maximum number of examples we can take from STS, the smallest dataset of the three
training sets, such that it is evenly divisible by a batch size of 32 which is ideal for us to better follow
training behavior in order to problem shoot functionality or performance issues that arise during
multi-task learning. When pretraining the BERT weights on the next word prediction, we use 6,016
examples from each dataset for similar reasons. In addition, when training the baseline model, we
use the original STS dataset since the model is being finetuned for one task. We use CFIMDB data
only for pretraining the model. This dataset has longer sentences, and thus is a great fit for domain
adaptation. We do not use CFIMDB for finetuning SA task because it has binary label while the SA
test data has 5 labels. Finally, we keep using the dev datasets from the original datasets since the dev
sets do not contribute to the gradient update.
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Dataset Train Size
(Baseline)

Train Size
(Extensions)

Dev Size Test Size Associated
Task

Evaluation
Metric

SST 8, 544 6,016 1, 101 2, 210 Sentiment
Analysis

Accuracy

CFIMDB 1, 701 1,701 2453 488 Sentiment
Analysis

Accuracy

QQP 141, 506 6,016 20, 215 40, 431 Paraphrase
Detection

Accuracy

STS 6, 041 6016 864 1, 726 Semantic Tex-
tual Similarity

Pearson corre-
lation

Table 1: Datasets breakdown and the evaluation metric for each task
5.2 Evaluation method
We use accuracy as evaluation metric for sentiment analysis and paraphrase detection as shown in
Table 1. We use Pearson correlation to evaluate the semantic text similarity. We sum the three scores
from each task and take the mean to get the overall performance of the model.

5.3 Experimental Details
1. SST-Finetune: finetunes BERT weights on SST dataset for sentiment analysis task.

2. QQP-Finetune: finetunes BERT weights on QQP dataset for paraphrase detection task.

3. STS-Finetune (Baseline model): finetunes BERT weights on STS dataset for semantic
similarity task.

4. VGS: Trained on STS, SST, and QQP with multi-task finetuning with gradient surgery using
CLS tokens. More information in the Approach section.

5. CGS: Trained on STS, SST, and QQP with multi-task finetuning with gradient surgery using
LHS embeddings. More information in the Approach section.

6. SuperBERT: Trained on STS, SST, and QQP using multi-task finetuning that incorporates
gradient surgery with LHS embeddings. Pretrained on CFIMDB, STS, SST, QQP. More
information in Approach.

We used the following configurations in all our experiments: Optimizer =
Adam, learning rate = 1e − 5, batch size = 32, number of epochs =
10, hidden_layer_dropout_rate = 0.5.
When pretraining the BERT weights on the target domain data, we use batch size of 8 since we are
loading long sentences.

5.4 Results

Model Sentiment Analysis Paraphrase Detection Semantic Similarity Overall
SST-Finetune 0.532 0.491 -0.078 0.315
QQP-Finetune 0.248 0.791 -0.034 0.335
STS-Finetune 0.243 0.623 0.382 0.416

VGS 0.513 0.704 0.378 0.532
CGS 0.514 0.722 0.682 0.639

SuperBERT 0.513 0.723 0.790 0.675

Table 2: Results of all models on the dev set

Model Sentiment Analysis Paraphrase Detection Semantic Similarity Overall
SuperBERT 0.511 0.722 0.767 0.667

Table 3: SuperBERT performance on the official test set

Table 2 shows the performances of all the different models on the dev set. The first three models were
finetuned for one specific task. As expected, each model outperforms the other two models on the
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task it was finetuned for. STS-Finetune (baseline model) achieves the highest overall performance
out of the three models. We discuss in the analysis section why it achieves the highest overall accuracy.

Vanilla Gradient Surgery (VGS) leads to 0.116 improvement from the baseline model. All the
improvements comes from the VGS model preserving the improvements from the finetuning of the
individual models. If we sum the results from the single-fined models (SST-Finetune, QQP-Finetune,
STS-Finetune) on their respective tasks, we get 0.532+0.791+0.382

3 = 0.568 overall accuracy. This is
only 0.036 higher than the overall accuracy of the VGS model. This demonstrates the multi-task
finetuning with gradient surgery does better gradient updates that leads to robust embeddings which
performs well for all the downstream tasks.

CGS model improves on the VGS model by performing mean pooling on the token embeddings
to create sentences embeddings. It also uses cosine similarity as a similarity metric for sentence
textual similarity. CGS model does not lead to any notable improvements on sentiment analysis
and paraphrase detection tasks. It in fact losses 0.001 on sentiment analysis and gains only 0.018
on paraphrase detection. This is expected as the architecture did not differ much between VGS
and CGS for the paraphrase detection and sentiment analysis tasks. However, CGS leads to 0.304
improvement from VGS model on semantic similarity which translates to 0.107 overall improvement.
This shows cosine similarity is much better similarity metric than just averaging the CLS embeddings
of the two sentences.

Finally, SuperBERT builds on the success of CGS. The only difference between CGS and SuperBERT
architecture is that SuperBERT pretrains on target domain data. While the paraphrase detection
and sentiment analysis scores remain roughly the same, the semantic similarity score increases by
0.108 from CGS which leads SuperBERT achieving 0.675 overall score. SuperBERT achieves 0.259
improvement from the baseline. It outperforms STS-Finetune model on semantic similarity. However,
it does not outperform the other single finetuned models (SST-Finetune and QQP-Finetune) on their
respective tasks. One reason why we likely don’t see an improvment from QQP-Finetune to Super-
BERT with respect to paraphrase detection is that SuperBERT only trains on 6,016 examples, while
QQP-Finetune trains on the entire QQP training set. We finally compare SuperBERT performance
on the dev set and the official test set. Its performance on the official test data set only decreases by
0.008 which gives the confidence that our models did not overfit the training and dev data sets.

6 Analysis

We observe STS-Finetune performs relatively well on sentiment classification and paraphrase
detection which makes it achieve a higher overall score than the other two single finetuned models,
namely SST-Finetune and QQP-Finetune. We now analyse why SST-Finetune outperformed the
other two models. We believe this due to the nature of the other two tasks and our evaluation
method, but not due to SST-Finetuning creating embeddings that generalize well with other two
tasks. Both sentiment analysis and paraphrase detection are classification tasks with finite number
of labels. Sentiment analysis task has five classes, and paraphrase detection is a binary task.
Assuming we have a dataset that balances among the classes, a model that randomly guesses
the output class is expected to achieve 20% and 50% accuracy on sentiment classification and
paraphrase detection respectively. STS-Finetune performance (0.243 and 0.623 accuracy on
SA and PD respectively) is around this range. On the other hand, sentence similarity task has
continuous label that ranges from 0 to 5. It is much harder for a model to randomly guess the correct
similarity score. For this reason, SST-Finetune and QPP-Finetune perform poorly on the sentiment
similarity task. In addition, our evaluation methods does not take into account the nature of the
tasks and equally weights the performance on each task when evaluating the overall score. For
those two reasons, STS-Finetune achieves the highest overall score out of the three singlefined models.

We also notice that none of our models, including the proposed model, performs well on sentiment
classification. SST-Finetune achieves the best accuracy of 0.532 which is not that much higher than
the scores VGS, CGS, and SuperBERT achieve. This is expected as the architecture for predicting
sentiment does not differ among those models. However, we also believe that sentiment classification
is a hard task in nature. Figure 2 shows the confusion matrix of SuperBERT on sentiment analysis.
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We notice that the model never confuses between the extremes. For instance, SuperBERT model
never predicts positive when the ground truth is negative. However, the model confuses the close
sentiment classes like positive and somewhat positive. Though a different architecture may help the
model, we still believe this will be a challenge for any model as even the human evaluation differs.

Figure 2: SuperBERT confusion matrix for sentiment analysis

We now analyses how pretraining the BERT weight on the target domain helps SuperBERT. To check
if SuperBERT learned the target domain data, we compare the next word predictions of the baseline
model and SuperBERT model.

1. This is a great [MASK]. STS-Finetune: This is a great [idea]. SuperBERT: This is a
great [film].

2. This movie was [MASK]. STS-Finetune top five predictions:[cool, awesome, something,
good, one] SuperBERT top five predictions: [great, good, amazing, terrible, terrific]

Those examples demonstrate that SuperBERT adapted the domain data. This is also reflected in its
increase in overall score. SuperBERT’s overall score increases from 0.639 in CGS to 0.675. But
almost all the improvement is from the semantic similarity task. One possible reason for the lack
of improvement on the paraphrase detection and sentiment analysis tasks is that those tasks are
classification tasks where we either get the prediction right or get it wrong. Since BERT has huge
number of weights, we believe our pretraining on the relatively small data set did not perturb those
weights to make a different prediction. However, for semantic similarity, even a slight perturbation
that moves the BERT weights to the true value will show up in Pearson coefficient calculation, thus
increasing the model’s score on the task.

7 Conclusion
In our paper, we explored ways to improve BERT weights to create sentence embeddings that can
perform well across a wide range of downstream tasks. We found that changing the BERT architecture
to utilize the LHS embeddings and utilizing cosine simialrity to create logits for predicting the
semantic similarity, along with multi-task finetuning using gradient surgery and additional pretraining
all contributed to improvements in our model, allowing us to see an overall average score of 0.675
which is a 25.9 percentage point increase over baseline. We also found that pretraining did not
help with paraphrase detection or sentiment analysis, but it did improve semantic similarity. While
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these results are promising, there are shortcomings in our work which serve as starting points for
future work. To start, we observe that sentiment analysis performs the worst across all three tasks.
To remedy this, we would like to experiment with adding more layers to our model to improve
performance on this task. Furthermore, while we did a significant architecture change for getting
logits from the semantic similarity task that resulted in a large improvement, we did not do a similar
large architecture change for paraphrase detection. Future work could go into how best to generate
logits for paraphrase detection that reflect the nature of the task.
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