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Abstract

As one of the most effective tools in modern natural language processing, transfer
learning has been bottle-necked by the finetuning process. In order to address this
challenge, we implement the Adversarial Regularization and Bregman Proximal
Point Optimization (SMART) and demonstrate its success in finetuning improve-
ments on downstream tasks such as sentiment analysis. By careful hyperparameter
tuning, we’ve gained 10.4% improvement in accuracy over the baseline min-BERT
model. In addition to SMART, we’ve also studied another strategy, the Contrastive
Learning with Self-Guidance (CLSG), in pursuit of further improvement. However,
through careful reasoning we found that the CLSG approach necessitates huge
batch size and is therefore infeasible for the downstream finetuning tasks on hand.
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2 Introduction

Transfer Learning is one of the leading applications of Natural Language Processing (NLP). In
the past few decades, transfer learning has gained extensive attention from academia and industry,
as it is a promising technology for search engines and dialogue systems. Early works in transfer
learning for NLP focused on leveraging pretrained word embeddings, such as Word2Vec [1] and
GloVe [2], which provided dense vector representations of words capturing semantic and syntactic
relationships. These pretrained embeddings were used as input features for various downstream tasks,
improving performance and generalization. Vaswani et al. [3] proposed a novel architecture, so-called
Transformer, that fully relies on self-attention to compute the representation of inputs and outputs
without using block architectures adapted from recurrent neural networks. The Transformer model has
become the foundation for many subsequent works, including Bidirectional Encoder Representations
from Transformers (BERT) and its variants, the Generative Pretrained Transformer (GPT), and
other large-scale pretrained language models. Its self-attention mechanism enables efficient and
effective transfer learning by capturing long-range dependencies and complex relationships in natural
language. The emergence of large-scale unsupervised pretraining methods, such as ULMFiT [4],
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ELMo [5], and OpenAI’s GPT [6], marked a significant milestone in transfer learning for NLP.
These models introduced the concept of learning deep contextualized representations from large
amounts of text data, which could then be finetuned for specific tasks. These approaches demonstrated
substantial improvements in a wide range of NLP benchmarks. BERT [7] further advanced the field
by introducing a bidirectional pretraining method that enabled the model to learn deep contextualized
representations by jointly conditioning on both left and right contexts. BERT achieved state-of-the-art
results on numerous NLP tasks, highlighting the power of transfer learning in this domain.

Our project investigates how to modify a single, large base BERT model to perform a number
of tasks, specifically concentrating on the use of deep neural networks for multitask learning on
various natural language processing tasks (NLU), pretrained on large corpora of English text. In
this transfer learning paradigm, machine learning models are trained using data from several tasks
simultaneously, leveraging shared representations to discover similarities in a group of related
tasks. These shared representations improve data efficiency and result in quicker learning speeds for
connected or subsequent tasks, assisting in the high computational and data load of deep learning. We
apply a combination of several techniques to iteratively improve embeddings for certain downstream
tasks. Specifically, we implement Bregman Point Optimization and discover that it demonstrated
improvement over the baseline, and that CLSG demonstrated little improvement beyond Bregman
due to its data-hungry nature.

3 Related Work

There are several papers we discovered in our exploratory literature review that we either drew from
explicitly or used as guidance. Most directly, we rely on the BERT [7] paper, which is based on
the transformer architecture. Extensions we are explicitly implementing include “Bregman Point
Optimisation for Scalable Multitask Learning” [8], which proposes a multitask learning approach
known as Scalable Multitask Learning using Bregman Point Optimisation (SMART). This method
leverages Bregman divergence to learn shared representations across multiple tasks, resulting in
improved performance for all tasks. The authors demonstrate that SMART is efficient and scalable,
outperforming alternative multitask learning approaches on a variety of datasets and tasks, and
provides a strong foundation for our project as we aim to develop efficient multitask learning
algorithms.

One particularly relevant work we build upon is “Self-Guided Contrastive Learning for BERT
Sentence Representations” [9]. This paper presents a self-supervised approach to learn sentence
representations by exploiting the inherent structure of BERT. The authors utilize contrastive learning,
where positive sentence pairs are constructed by masking out different portions of the same sentence,
while negative pairs are generated from different sentences. The CLSG approach demonstrably
improves over traditional BERT sentence embeddings in various sentence similarity benchmarks.

Indirect papers include “Sentence-BERT: Sentence Embeddings Using Siamese BERT-networks”
[10], which uses a Siamese neural network architecture, consisting of two BERT models with shared
weights. The network is trained on a contrastive loss function, which encourages the embedding
of similar sentences to be closer together in the embedding space, while pushing the embeddings
of dissimilar sentences apart. This paper presents a simple and effective way to learn sentence
embeddings that capture semantic similarity without additional supervision or external resources.

The aforementioned works share a common theme of multitask learning and contrastive learning,
which are central to our research. While these papers provide valuable insights, there remains room
for improvement in developing more efficient algorithms and extending the methods to other tasks
and domains. Our work aims to address these limitations by building on the foundations laid by
the SMART and CLSG approaches, ultimately contributing a novel and effective solution to the
field of multitask learning. Another paper includes “Multi-Task Learning Over BERT for news
recommendation.” This paper proposes a multitask learning approach for news recommendation
using the BERT model. The proposed approach trains the BERT model on multiple tasks like news
topic classification, news subtopic classification, and news recommendation. The model is trained in
a joint manner so it learns shared representations across tasks, leading to improved performance on
all tasks. This demonstration of multitask learning by showing the model performs well on all tasks
even when trained on smaller subset of tasks, such as STS and paraphrase detection, which ensures
all our tasks can improve in tandem.
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4 Approach

Initially, we implemented the default vanilla min-BERT. In doing so, we implemented multi-head
self-attention, the transformer layer, and the Adam Optimizer. Since details regarding this are on
the project handout, we will refrain from further discussion here. As a quick discussion of this
central neural network architecture, BERT is a transformer model consisting of sentence conversion,
embedding layer, and the transformer layer. Overall, our approach from the beginning was not to
finetune BERT on individual tasks, but rather make use of multitask learning to update BERT. Note
that we used cross-entropy loss for sentiment and paraphrase, but for similarity prediction, the task
was no longer so binary; then it made more sense to use mean squared error as the loss function,
which allows us to express a prediction on a sliding scale.

Key Method #1: SMART

SMART [8] solves the optimization minθ = L(θ) + λsRs(θ) for finetuning, where L(θ) is a normal
loss function, and Rs(θ), the smoothness-inducing regularizer, is defined as

Rs(θ) =
1

n

n∑
i=1

max
|x̃i−xi|≤ϵ

l(f(xĩ; θ), f(xi; θ)). (1)

Details around this function are in the default project handout, so will be omitted for concision.
We implemented the suggested extensions: finetuning with regularized optimization, Smoothness-
Inducing Adversarial Regularization, and Bregman Proximal Point Optimization.

But what does it mean, precisely, for a loss landscape to be smooth? Lipschitz continuity offers a
strong means by which smoothness can be quantified. It can be a challenging number to definitively
express in deep neural networks, though, as the landscapes being traversed are geometrically intricate,
and nonlinearities abound. With that said, the Lipschitz constant K of a model’s loss can be estimated
by computing the product of the spectral norms of the weight matrices over each layer in the forward
propagation like so:

K ≈
∏
i∈θT

∥Wi∥2, (2)

where θT is the set of all named parameters in the network, and W is the weight matrix of layer i.

Key Method #2: CLSG

CLSG [9] exploits internal training signals made by BERT itself to finetune it. Concretely, CLSG
utilizes the hidden representations from BERT’s intermediate layers, as pivots that BERT sentence
vectors should be close to or be away from.

In the CLSG framework (Figure 1), BERT is first cloned into two copies, BERTF and BERTT. BERTF
is fixed during training to provide a training signal while BERTT is finetuned to construct better
sentence embeddings. Each sentence si is subsequently fed into BERTF and into BERTT to compute
token-level representations hi and ci, respectively. The NT-Xent loss [11] is computed as normalized
cosine similarity between hi and ci. The total loss function is constructed by summing up the NT-Xent
loss over all sentences in the batch, plus a regularized term that prevents BERTT from being too
distant from BERTF. After training is completed, all components are removed except BERTT, and ci
is simply used as the final sentence representation. This contrastive learning framework uses noise in
an unsupervised setting to predict labels correctly—Figure 1 demonstrates this in greater detail.

A full-fledged implementation of CLSG entails token-level hidden representations in Rni×d, where
ni is the length of the ith tokenized sentence in a document, and d is the size of BERT’s hidden.
Theoretically, this approach is suited well to STS regression and similar NLP tasks [9].

5 Experiments

5.1 Data

We pretrained with the train and dev test sets from the CFIMBD dataset and the SemEval STS
Benchmark. The SemEval STS Benchmark consists of 8,628 different sentence pairs on varying
similarity on a scale from 0 (unrelated) to 5 (equivalent meaning).
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Figure 1: Noise filtering is a key benefit of CLSG. As seen in the example matrix of instance pairings,
highlighting the relationships between positive and negative samples, is a promising way to predict
the labels on the far right-hand side. Supervision is not required for CLSG, and theoretically, samples
from any training dataset could be used to realize this functionality

Vanilla min-BERT used the following hyperparameters: hidden dropout probability of 0.3, batch size
of 8, and learning rate of 10–5 for 10 epochs. An epoch took approximately 20 minutes and 10 seconds
to run during pretraining. The g5.2xlarge instance of the Deep Learning AMI GPU PyTorch 1.13.1
offered by Amazon Web Services was our choice of hardware for all experiments. For finetuning, we
first focused on improving the performance of sentiment analysis, adjusting the learning rate to η =
10–7. We used the Stanford Sentiment Treebank as training data, which contains 11,855 sentences
extracted from movie reviews parsed into phrases, where each phrase has a negative, somewhat
negative, neutral, somewhat positive, or positive label. Ultimately, we arrived at an experimental
optimum of η = 0.001 for pretraining and η = 10–5 for multitask finetuning. We chose not to vary
weight decay, and hidden dropout probability remained at 30%.

For the multitask classifier, we made heavy use of the Quora dataset in training for paraphrase
detection. It consists of 400,000 question pairs with labels indicating whether particular instances are
paraphrases of one another.
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Figure 2: Finetuning ran for 5 epochs, and the estimated Lipschitz constant (left) exponentially
decreased as evaluation metrics of accuracy and correlation (right) increased for all tasks.

5.2 Data Pre-Processing

We have preprocessed the datasets mentioned above by creating two smaller versions for each and
programmed the training loop to sample training examples uniformly at random. This is to test the
efficacy of CLSG min-BERT, as the hypothesis is that it works better for smaller amounts of data.

5.3 Evaluation method

For evaluating the performance of our extended implementation of min-BERT, we used sentiment
accuracy, sentiment F1 scores, and other downstream task metrics. We compared our scores for
modern sentiment analysis tasks for BERT-based models, including the GLUE leaderboard detailed
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Task Score

Overall (E1) 0.388
Sentiment Classification Accuracy 0.411

Paraphrase Detection 0.625
Semantic Textual Similarity / Turing NLRv4 0.127

in Table ??. We performed error analysis manually. KL-Divergence held promise as a measure
similarity between model prediction {fj(xi)}3j=1 and the annotation distribution {pj(xi)}3j=1, but
this metric did not prove to be worth the additional time of setup. We made sure these are correct with
sentiment accuracy scores after pretraining and finetuning. We used the Pearson correlation metric to
measure performance on the STS dataset, and similar correlations on the SST and Quora datasets.

5.4 Experimental details

The initial specifications of this project called for the AdamW stochastic optimization algorithm—a
bespoke version of which we implemented in the early stages of research. To identify optimal
hyperparameters and train the final model, we opted for torch.optim.AdamW instead. In the end,
we found that PyTorch’s C++ implementation offered a speed boost during training without any
noticeable negative side effects. In terms of hardware, it consisted of the g5.2xlarge instance of the
Deep Learning AMI GPU PyTorch 1.13.1 offered in Amazon Web Services.

To arrive at suitable hyperparameters for the model, we conducted a randomized search through sets
of hyperparameters that frequently came up in the literature review. Specifically, we ran trials for

• learning rates of 10–5, 2 × 10–5, 3 × 10–5, 5 × 10–5, 10–4, 0.001, and 0.003;

• momenta of 0.9 and 0.95;

• standard deviations of 0.001, 0.01, 0.1, and 1;

• and nuisance parameters of 10–5, 10–4, 0.01, 0.05, and 0.3.

From the search, we achieved the highest F1 scores from the following hyperparameters, which we
decided to use for the final training subroutine:

Name of parameter Mathematical symbol Experimental optimum
Learning rate η 0.001

Batch size |B| 64
Momentum β 0.99

Standard deviation σ 0.01
Nuisance parameter ϵ 10–5

All hyperparameters were kept the same as above for finetuning, save η = 10–5 and |B| = 32. These
hyperparameters resulted from a combination of human-in-the-loop heuristics and a randomized
algorithm that searches a predefined parameter space defined in a separate .csv file. We converted
the multitask training function to an objective function by repeatedly evaluating the model, deriving
a score from those results and then returning that as the number to maximize. From there, it was a
matter of selecting apt permutations of various numbers, running the trials, and extracting whichever
parameters happened to lead to the best performance metrics on sentiment analysis, paraphrase
detection, and similarity regression. If we noticed that the model was underperforming, given a
random set of hyperparameters, we would terminate the training loop and skip to the next random set,
so as not to waste time and computational resources. This procedure follows Bayesian optimization
in the sense that prior evaluations informed how we narrowed down the set of favorable choices. We
could have fully automated this process, but since hyperparameter tuning bears no clear pattern of
cause and effect, it can be as much of an art as a science.

5.5 Results

The final results are as follows:
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Task Score

Overall 0.600
Sentiment Classification Accuracy 0.508

Paraphrase Detection 0.667
Semantic Textual Similarity / TuringNLRv4 0.626

Prior to the addition of Smoothness-Inducing Adversarial Regularization techniques, vanilla min-
BERT achieved an F1 score of 38.76 out of 100, with paraphrase detection accuracy of 0.625,
sentiment classification accuracy of 0.411, and STS correlation of 0.127. Notice that all of these
metrics have improved considerably. STS correlation had the sharpest rise: about 393%. For the
multitask classifier, we made heavy use of the Quora dataset in training. At first, we tried a batch size
of 16, learning rate of 3×10–5, and hidden dropout probability of 0.2 over 5 epochs, but ultimately,
we opted for the default hyperparameters.

For both CFIMDB and SemEval STS Benchmark datasets, the sentiment classifier used the following
hyperparameters: hidden dropout probability of 0.3, batch size of 8, and learning rate of 10–5 for 10
epochs. For finetuning, we altered the learning rate to 10–7.

The CLSG approach yielded results consistent with our predictions. Naturally, CLSG calls for a large
batch size during epochs, as there must be a diverse set of available negative samples, and effective
optimizations to “communicate” across batches can be difficult to come by. In this paradigm, the
model is programmed to learn representations of encoded data that bring similar examples from the
training set closer together and maximize the distance between relatively dissimilar examples. Without
a large batch size, examples while training are not sufficient enough for meaningful representations
to be learned. Secondly, the estimation of contrastive loss gets closer to the true labels faster with an
aptly chosen batch size from the start, which makes for more efficient training as the epochs come.
After considering the prospect of precomputing representations, after implementation of CLSG, we
made do with additional gradient accumulation modifications to the training function with an eye
toward memory efficiency. Then we could experiment with slightly larger batch sizes, but in the end,
we did not notice a statistically significant boost in performance from these interventions.

6 Analysis

In this project, we investigated the limitations of transfer learning in NLP tasks and explored
novel techniques to improve finetuning performance on downstream tasks, specifically focusing
on sentiment analysis. We implemented the Adversarial Regularization and Bregman Proximal
Point Optimization (SMART) method, which demonstrated significant improvements in finetuning.
With meticulous hyperparameter tuning, we achieved a 10.4% increase in accuracy compared to the
baseline min-BERT model.

In addition to SMART, we examined and implemented the Contrastive Learning with Self-Guidance
(CLSG) strategy to potentially enhance our results further. However, we discovered that CLSG
requires substantial batch sizes, rendering it unsuitable for the specific downstream finetuning tasks
we targeted. Consequently, CLSG did not yield any significant improvements.

By manually combing through individual logits of correct and incorrect predictions made by min-
BERT, we identified 3 common errors in the examples, which we have ranked below in order of
estimated frequency.

Semantic errors

As Led Zeppelin’s Robert Plant knows, “sometimes words have two meanings.” Homonyms and
other phrases that are heavily context-dependent have a way of causing trouble for neural networks,
too. Indeed, semantic errors were extremely common for the sentiment classification task in the
first three epochs of training. A case where this happened was with the movie review identified in
the CFIMDB dataset as 73cad423414ddfc7a4d004264. In it, the reviewer says, “I’ve seen a lot
of good stupid plotlines in my time, but this one is among the best.” One reason the model could
have misinterpreted this sentence as negative is because of a high attention value placed on the word
“stupid.” However, to a human observer, it is clear that stupid is not being used here to degrade the
film or to describe it as lacking the most intellect of any plotline the reviewer has seen. Rather, it
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is being used positively by the reviewer, to convey that there is a sense of whimsicality to the film,
which makes it an enjoyable diversion well worth the time.

Subtext errors

One- or two-word differences sometimes change, in drastic ways, the underlying statistics of how
a sentence is encoded. In the sentence pair identified as ecd65aa281c08c976c4ab79df from the
Quora dataset, we spotted one such example of where we expected to see this effect:

1. “How many people have ever been born?”

2. “How many people have there ever been?”

Literally, these questions can be taken to be different, if one assumes that the second question is
implying that someone seeks to know how many people have been in a certain profession, location,
or state of being. As a matter of fact, any past participle could be substituted for “been,” and the
differences would be more drastic to the unaided eye. Ditto if one were to remove the word “born”
from the first sentence, leaving only, “How many people have ever been?” Sometimes these models
do not handle ambiguity well. Notably, whereas vanilla min-BERT might have mispredicted this
one (we did not track this specific sentence pair while developing the model), this time around, our
updated model correctly predicted that these questions are paraphrases. We cannot say with certainty
whether the correctness is a consequence of smoothness-inducing adversarial perturbations added to
the training loop, but it is plausible, given this is precisely a problem that such training considers.

Overfitting errors

The third error occurred during aggressive overfitting, which happened much more often in earlier
stages of experimentation, especially during finetuning. The smaller learning rate, during finetuning
made the model prone to fixating on local minima during gradient descent. Then the model would start
to cater to examples from the training sets that did not help improve its accuracy on the dev sets. This
overfitting became so severe at one point that it was no longer possible to ignore. Thankfully, pausing
to address the overfitting is what led us to discover a bug in the implementation of our multitask
training function, which skipped over entire batches of paraphrase training examples, resulting in
meaningless updates to model parameters. After correction, the effectiveness of the adversarial
training examples and overall performance of the model significantly improved in pertaining and
finetuning.

On a side note, we also looked through the datasets to find instances of nested clauses or misplaced
modifiers to study how these ambiguities played into min-BERT, but we did not find what we were
looking for in time, as the datasets are vast and do not lend themselves to exhaustive manual review.

We believe the 10.4% improvement in accuracy with SMART min-BERT is closely related to the
improvement from smoothness. Our estimated Lipschitz constant ended up being K ≈ 1.104×1078,
which represents a 109-fold decrease in the upper bound on the coarseness of the loss landscape—
hence a substantial increase in smoothness.

Smoothness along decision boundaries improves accuracy because the landscape of a loss function
can consist of many hills and valleys with exactly that quality. Capturing more of the sophistication
of this overall structure leads to enhanced approximation of patterns in the training data, which in turn
leads to better generalization to unseen data, while still minimizing the sensitivity to small fluctuations
or random noise. Before implementation, we expected the regularization in particular to decrease
training accuracy and increase dev accuracy. This came from the intuition that smoothness-inducing
regularization introduces perturbations in the loss function. Minimizing this variant loss may mean it
is less predictable, resulting in the model’s training accuracy to drop. On the other hand, since this
prevents the model from overfitting to its pretraining using the original dataset, this should increase
prediction accuracy. However, SMART did not come without its drawbacks. Smoothness-inducing
regularization significantly increased training time for each epoch.

7 Conclusion

Primary achievements of this study include successfully utilizing the SMART method to enhance
finetuning performance by 10.4%, and subsequently identifying the limitations of the CLSG approach
for paraphrase detection, sentiment analysis, and semantic similarity assessment. CSLG proved
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to be infeasible for these downstream tasks due to large batch size requirements. Had there been
more computational resources available, upgrading to a larger GPU would have been within the
realm of studies. With additional time, it would have also been advisable to experiment more with
weight decay and hidden dropout probability. Nevertheless, we decided to prioritize learning rate and
SMART-specific hyperparameters that tend to have a more measurable effect on the performance of
the model.

Future work may explore alternative strategies or modifications to the CLSG approach to make it
more practical for downstream finetuning tasks. Additionally, research can be conducted on further
refining the SMART method to maximize its potential in improving transfer learning performance
across a wider range of natural language processing tasks. It would have also been interesting alter
the weight decay and dropout rates, but those were not able to implemented given time constraints.
A relatively easy extension that we believe would significantly increase our performance gains
could be implementing cosine similarity for similarity comparison, which is similar in goal to
CLSG but experimentally much more effective (on account of reports from other peers working
on the default project). A more substantial challenge is developing a conceptual framework for
minimizing the frequency of errors related to semantics, subtext, and overfitting. At scale, any of
these algorithmic modifications may further demonstrate the power of Bregman divergence, shared
sentence representations, and the architecture of BERT as pertaining to the novelties of multitask
learning across domains.
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