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Abstract

Large Language Models (LLMs) have seen remarkable success in a multitude of
domains, however, these models are generally trained on a fixed corpus of text and
need further work to adapt to new data. The world is ever-changing and the usage
and meanings of old and new words are constantly shifting. We aim to develop
and implement techniques that can improve an LLM’s (for example, GPT-2) ability
to understand and adapt to new words. Using an Urban Dictionary Dataset of
novel words, definitions, and their examples, we find that GPT-2 fine-tuned on an
“understanding words’ training objectives does not perform particularly well on
in-context learning tasks. We find that changing the paradigm to ’understanding
definitions’ performs slightly better, indicating that, in few-shot learning settings,
GPT-2 might be better at applying new words immediately in context than it is at
storing information that is has been given.

1 Key Information to include

* Mentor: Isabel Papadimitriou, Steven Cao

2 Introduction

Natural Language Models (NLMs), particularly Large Language Models (LLMs), have demonstrated
remarkable efficacy across multiple domains. However, these models are typically trained on a static
corpus of text and require further refinement to adapt to novel data. The dynamism of language and
the evolving connotations and usages of both existing and newly coined terms necessitate ongoing
updates to ensure that LLMs remain effective in diverse settings. As such, recent works study how
we can efficiently adapt existing models to new data. Many of the current methods focus on word
changes that are caused by shifts in factual knowledge or task distribution shifts; they don’t account
for more subtle language changes, like when the popularity or meaning of a word changes over time.
These subtle changes have been shown to cause a consistent decrease in model performance. Thus, it
is important for LLMs to understand new words through either examples or definitions, in particular,
through "in-context learning". However, measuring an LL.Ms word acquisition ability is difficult
in practice because come test time, it is difficult to know which words the LLM has already been
exposed to.

The overarching theme in adapting LLMs to distribution shifts is a crucial one: the ability
to adapt and understand new words is important for language models like GPT-3 to effectively
communicate with and assist humans in natural language tasks. Now, adapting these models to words
that change in meaning and popularity over time (such as those in our Urban Dictionary Dataset) is
important because it enables the model to keep up with the evolving nature of language. Fine-tuning
techniques can be developed and implemented to improve the model’s ability to recognize and
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understand such words, ensuring that it remains relevant and effective in a rapidly changing linguistic
landscape.

We explore the space of word shifts, particularly in the case of limited data, by using an Urban
Dictionary dataset, that contains one-shot instances of new words, definitions, and an example
sentence. To our knowledge, no prior work has been done on understanding novel urban dictionary
words in context. This task is especially difficult for 3 primary reasons: 1) our dataset contains only
one instance of each word, 2) the urban dictionary is not standardized - definitions and examples
are based on arbitrary, public input, 3) GPT-2 itself is not a particularly strong LLM for in-context
learning (especially by today’s standards). Despite these challenges, we aim to leverage the limited
data to better understand the semantic shifts of new words in context. This allows us to investigate how
new words are used in context and how their meanings may shift over time. We hope to gain insights
into how Large Language models internalize new information by developing and implementing
techniques that can improve an LLMs ability to adapt to and understand new words.

3 Related Work

In recent years, the areas of word shifts, domain adaptation, and in-context learning have become
major components in NLP research.

Word shifts and domain adaptation are subfields of NLP that deal with the challenge of
adapting machine learning models trained on one domain to perform well on data from a different
domain (or unseen words from a word shift). This is a critical problem in NLP because many
real-world applications involve text data from unseen domains. To adapt LLMs to these new
distributions, Ziser et al. propose pivot-based language modeling based on long short-term memory
(LSTM) networks which predicts the presence of pivots and non-pivots, thus making representations
structure-aware. [ 1] These approaches modify the input features of the model to reduce the domain
shift problem. Model-centric approaches modify the model architecture or parameters to adapt the
model to the target domain. One groundbreaking approach is domain adversarial training, where
the model is trained to distinguish between the source and target domains while minimizing the
classification loss [2]. A loss-centric method [3]] for domain adaptation involves optimizing a
Wasserstein-Distance (an optimal-transport-esque function defined between probability distributions
on a given metric space) over distributions of words in our original and fine-tuning datasets. This
representation learning technique involves a neural network (the "domain critic") to estimate the
Wasserstein distance between the source and target samples and adversarially optimizes the feature
extractor network to capture a new distribution that includes the new words. This method has seen
success in stable training for domain-adaptation tasks.

In-context learning refers to the process of training language models by incorporating contextual
information from the surrounding text. As such, properly evaluating LL.Ms on in-context learning
tasks have received much attention. In [4], Eisenschols et al. introduces a new paradigm for
measuring how effective LLMs are in learning novel words during inference. In doing so, they
produce a new dataset, WinoDict, that was built using a heuristic method for introducing and defining
new words. This method involves drawing keys and definitions from WinoGrande [5]], WinoGrad
[6]], and WordNet [[7], and combining these pairs with a morphological method in creating synthetic
words. The result is a novel dataset of unseen words with plausible definitions. This dataset is then
used to test models for word acquisition ability (results are compared to human evaluation). Using
this new metric, they benchmark the performance of several state of-the-art LLMs (like GPT-3 and
PalLM) across scale and number of shots. Eisenschols et al. evaluation method is highly relevant
to our approach in this project, as we measure LLMs on their ability to complete fill-in-the-blank
in-context prompting.

4 Approach

Our first approach is to evaluate raw and fine-tuned GPT-2 on multiple-choice, fill-in-the-blank
questions that test the model’s ability to understand novel words. We also implemented another
approach that follows a different training paradigm - rather than teaching GPT-2 new words and
testing on those words, we teach GPT-2 how to interpret definitions and apply them on an individual



basis. These approaches are described in length in the following subsections. All of our code and
experiments were written by ourselves, from scratch, and with no references to other codebases.

4.1 Baselines

We have two baseline models for predicting the in-context multiple-choice prompts, which differ
by their embedding initialization. In our first baseline, we initialize the Urban Dictionary words as
random noise embeddings and evaluate raw GPT-2 over the multiple-choice prompts. For our second
baseline, we initialize the word embeddings by drawing from a Gaussian distribution where the mean
is the average over all of the existing words that GPT-2 has stored. These baselines represent how
well our LLM performs with no direct information about the meaning of these words.

4.2 Fine-Tuning

We fine-tune GPT-2 by training on 50k words that are formatted in sentence form ([word] means
[definition]). We also feed the model example sentences that put the words in context, according to a
50/25/25 train/val/test split. This way, before evaluation, the model will have seen how other new
words are being used in context. We trained GPT-2 on this data using casual language modeling,
where the model has to predict the next word to fill in a given sentence. We selected casual language
modeling since GPT-2 was already trained using casual language modeling.

Given this structure, we fine-tune on a model where the new words are initialized as random noise,
and on a model where the new words are drawn from a gaussian distribution. The idea here is as
follows: adding words into a vocabulary as small-norm random noise can cause GPT-2 to place
probability = 1 on the new words for most prefixes, and thus, generating from this model will only
generate the added words, leading to worse domain adaptation performance as the first gradient steps
only remove probability from the first words. On the other hand, averaging existing embeddings for
initialization bounds the KL divergence between pre and post-expansion token-level distributions,
which stabilizes the fine-tuning process. This approach was inspired by [8], where the theory is
further developed.

After evaluating results from fine-tuning on the two different initalizaitons, we chose to add an adaptor
to our model. Our adapter architecture [9] consists of an adapter layer after each feedforward block
in the transformer layers and an invertible adapter layer after the LM layer. Essentially, instead of
adjusting GPT’s weights, we train the adapter. This makes training faster and increase portability, as
the adapter can be stitched into many models. This is especially relevant to our task, where we could
train an adapter to recognize new words and then stitch it into many other GPT2 models without
having to retrain.

4.3 Predicting Embeddings

We trained BERT to predict the word embedding of a word based off its definition. For training data,
we used words that were in our Urban Dictionary dataset and were also already known by GPT2 (had
a word embedding). As seen in Figure[I] we then added a custom head to HuggingFace’s BERT
model which used a linear layer to map the last hidden state of the CLS token to a word embedding
with the correct dimension. After training BERT using a mean square error loss function, we make
predictions of the word embeddings for unknown words and add these embeddings to GPT2.

4.4 A New Training Paradigm

Our other approach involves a reformulation of the task and a different training paradigm. Rather
than training on definitions and example sentences, we train on pairs of words with their definitions
and a masked sentence that corresponds with one of the two words. The model then has to predict
which of the two words the example sentence corresponds to. As an example, perhaps we have the
two words:

{word: "massive", definition: "large and heavy or solid, exceptionally large"}
{word: cat, definition: "a small mammal with soft fur and retractable claws."}

{example: "The crowd at the football game was [MASK]"}
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Figure 1: BERT Embedding Prediction Pipeline

where our LLM would attempt to guess the masked word, "massive". As a first baseline with this
method, we proceed with a standard fine-tuning pipeline, in which GPT-2 generates a prediction
of the masked word. Our Cross Entropy Loss internally converts this prediction into a probability
distribution over all words in the tokenizer, which we can then use to calculate a loss against the true
word.

We run a similar experiment with weight decay, which is a regularization technique that adds a small
penalty (the Ly norm of the weights), to the loss function. This effectively penalizes large weight
values in a neural network’s parameters during training, helping to prevent overfitting and improve
generalization performance.

We also consider gradient clipping, which is a technique used in machine learning and deep learning
to prevent exploding gradients during training. Gradient clipping involves setting a threshold value
for the gradient. If the gradient value exceeds the threshold, it is clipped or truncated to the threshold
value. By limiting the gradient values, gradient clipping helps to stabilize the training process and
prevent the model from diverging or oscillating during training.

Finally, we consider gradient accumulation, which is a technique used in deep learning to simulate
the effect of using a larger batch size during training, without requiring a larger memory capacity.
Normally, during training, the weights of a neural network are updated after every batch of data
samples is processed through the network. However, in gradient accumulation, the weight updates
are performed after accumulating gradients from several mini-batches.

The general idea here is not for the model to understand particular words, but rather, for the model to
be able to apply words in context on a per-instance basis. During the evaluation, unlike our previous
methods, we test on words and definitions that we have not trained on before.

5 Experiments

5.1 Data

We extracted our data from an Urban Dictionary Dataset, which contains approximately 1.2 million
words, their definitions, an example sentence, and other attributes. From this dataset, we drew 50,000
words uniformly at random, which we used to train, test, and evaluate our models. We checked to
ensure that GPT did not already know the words. From the 50,000 words, we randomly selected
12,500 of them to evaluate all 6 models on. Using this sample allowed us to try out a lot of different
ideas more quickly and without straining computing resources. To run our experiments on the other
training paradigm, we draw 21,500 words, definitions, and examples (split between training and
evaluation).


https://figshare.com/articles/dataset/UrbanDictionary_1999-May2016_Definitions_Corpus/4828954

5.2 [Evaluation method

Our primary method for evaluation involved creating fill-in-the-blank questions based on the example
sentences. For each example sentence, we mask out the correct word and have the model choose the
correct word out of a few different choices. The overall accuracy is then simply the percentage of
questions that the model gets correct.

Our evaluation method on the other training paradigm follows a similar spirit. We provide the
fine-tuned model with two words, their definitions, and a masked example sentence. The model then
chooses which of the two words the masked example corresponds to. Again, the accuracy will be the
percentage of questions that the model gets correct.

5.3 Experimental details

5.3.1 Fine tuning

Our main experiments involved investigating the effectiveness of two different methods of word
embedding initializations (random vs average) and the effect of fine-tuning on words and definitions
using masked language modeling. To train our model, we used HuggingFace’s GPT2LMHeadModel,
which contains the standard GPT-2 transformer with a language modeling layer on top; this archi-
tecture is particularly suitable for fine-tuning and domain adaptation tasks. To fine-tune the GPT-2
model, we used a casual language modeling approach, which involves training the model to predict
the next token. We used HuggingFace’s DataCollatorForLanguageModeling to prepare the data for
training. We trained this using a learning rate of 3e-4 and weight decay of 0.1. We computed our
validation loss using the perplexity metric [10] defined in Eq[IJ[L 1] and trained each model until the
validation stopped decreasing.

¢
PPL(X) = exp (— %Zlogp(;mx < z)) (1

Overall, each models took approximately 3 hours to train when training using the standard Google
Colab GPU compute resources.

5.3.2 BERT Embedding Prediction

For BERT embedding prediction, we wrote a custom Pytorch model that used HuggingFace’s BERT
implementation and added a linear layer that mapped BERT’s last hidden state to a tensor with
the correct dimensions for GPT2’s word embedding. We gathered 21,316 words for which we
had both Urban Dictionary definitions and GPT2 word embeddings and split this into a 90/10
training/validation set. We used a mean square error loss for both our training and validation loss and
trained until the validation loss stopped decreasing (12 epochs).

5.3.3 New Training Paradigm

We ran the "Applying Words in Context" models over 15000 training examples, drawn uniformly at
random, from the Urban Dictionary Dataset. Each of these models ran under 10 epochs, 32 batch
size, and 5e-5 learning rate. With gradient accumulation, we accumulate gradients over 2 batches
before updating. With gradient clipping, we specify a max value at norm 1.0. Finally, we fine-tune
with a weight decay of 0.1. We then evaluated the accuracy of these models by randomly drawing
6500 different words and definitions.

5.4 Results

Our results for the multiple choice prompts are summarized in Figure[2] As expected, fine-tuning on
words that had been initialized based on a distribution of the existing embeddings worked better than
randomly initializing. In addition, fine-tuning did not particularly help, regardless of the number of
choices in the number of multiple-choice prompts. This is as expected: teaching GPT-2 to store and
understand new words from definitions that it might not understand either is not the most promising.
Having at most two (definition, example) sentences to train on is a huge challenge as casual language
modeling typically requires more.
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Figure 2: Accuracy of the ‘Understanding Definitions’ Paradigm

Baseline Fine-Tuned | Weight Decay | Gradient Clipping | Gradient Accumulation
Correct 3254 3830 3474 3665
Total 6500 6500 6500 6500
Accuracy | 0.5007 0.5892 0.5344 0.5639

Table 1: Accuracy of the ‘Applying Words in Context’ Paradigm

Our results for the other training paradigm is summarized in Table 1. While neither of these models
performed particularly well, fine-tuning with weight decay did show some promise. This suggests
that overfitting might have been a factor in the other experiments.

6 Analysis

6.1 Number of choices

We were first motivated to explore giving GPT2 multiple choice questions with a varying number
of choices because when doing preliminary exploration, we noticed that it could pick up on part of
speech. For example, when we gave it the sentence "I ate [MASK]." which the choices of pizza, table,
mom, running, and music it chose running only four percent of the time compared to the next lowest
being 15 percent. As such, we thought that GPT2’s ability to recognize part of speech with words
with common endings like "ing" could be a cofounding factor to measuring its ability to understand
word meaning, and by having a greater number of options this factor was diminished since with
25 options, there are likely many words of each part of speech. However, given that the accuracy
normalized by the expected is roughly the same across all number of choices, we determine that
GPT2 was not able to meaningfully use common endings that suggest part of speech to predict words.

6.2 BERT Embedding Prediction

One concern we had about BERT is that it was predicting the same embedding for all words/definitions.
We find that on average the standard deviation of a given dimensions across all 12,500 words we
predicted on is 0.02, compared to 0.1216 on the existing word embeddings. There was also a
significant difference in our means, as the magnitude of the difference of the mean tensor for the
existing and predicted embeddings was 0.2556.

To better visualize our word embeddings, we used principal component analysis (PCA) to extract the
top 50 features from our embeddings and then used t-Distributed Stochastic Neighbor Embedding
(t-SNE) to map them to a 2D space. We then generated a heat map demonstrating how many
embeddings are in a given area, as seen in Figure 3] We see that overall the predicted distribution
on the left seems to be pretty uniform, with no clear clusters compared to the existing embedding
distribution on the right.

With this in mind, we thought that training for more epochs would make BERT create predictiosn
better in line with the existing embeddings. As such, we allowed BERT to run until the validation
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Figure 3: Heatmap of spatial distribution of predicted BERT embeddings. Left: predicted embeddings,
Right: existing embeddings

accuracy started increasing (overfitting), which took 12 epochs. This is much longer than the standard
4 epochs and resulted in slightly better performance, but ultimately failed to fully resolve the issue.

6.3 Comparing methods for Understanding Definitions Paradigm
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Figure 4: Left: the proportion of questions on which two methods selected the same answer. Right:
the proportion of questions with which 0 through 6 models selected the correct answer.

Although all six methods had approximately the same performance, we further analyze the models’
behaviour. In the left of Figure[d] we go through all the questions the models were evaluated were on
with five choices and compute the proportion of questions on which two models selected the same
answer. All of the proportions are around 0.2, which we would expect if the models are more or
less choosing randomly. None of the models appear to be closely aligned to each other; the models
are not choosing the same wrong answers which we expected them to do if two words have similar
meanings but instead appear to be more or less randomly choosing.

On the right of Figure ] we see the proportion of questions with which a certain number of models
get the correct answer. We see that very few questions have more than 4 models get the correct
answer; in fact there are no questions on which all six models get the correct answer.

Overall, the models seem to be more or less randomly choosing. This seems to indicate that they do
not know enough about the five choice words to do any better than randomly guessing. We attempt to
increase the number of epochs we train for in hopes that seeing the data more times will allow the
model to better learn, but ultimately this is fundamentally a challenge caused by the limitations of
our data.



6.4 Applying Words in Context

The framework in which we teach the model to apply new definitions immediately in context has
shown slightly more promise. In particular, we note that each of weight decay, gradient clipping, and
gradient accumulation perform better than baselines (though marginally). The fact that weight decay
performed best suggests that our initial fine-tuning pipeline was overfitting to the training data; this is
strange, considering our training data is full of one-shot instances of words. This indicates that our
selected data may have had a substantial number of words and definitions that are semantically very
similar, where the model may be correlating features of different words together. One relevant future
step will be to test these same models on different samples of the large Urban Dictionary dataset, and
compare the effects of regularization in each instance.

7 Conclusion

In summary, we successfully trained several fine-tuning models for GPT-2, and experimented with
a few training paradigms for experimenting with how well GPT-2 can adapt to new contexts. We
found that getting GPT-2 to understand the actual definitions was slightly more difficult than teaching
GPT-2 to apply definitions on a per-instance basis. We were bottlenecked primarily on our dataset
and our compute. In particular, our dataset only has one instance of each training example, meaning
we require our LLM to understand words with very limited data, which is in itself, a very difficult
framework to perform well on. Further, the example sentences in the dataset are quite arbitrary and
don’t necessarily encapsulate proper usage of the word (especially considering there is only one
example).

In future works, we aim to look at data augmentation techniques for generating synthetic sentences
for few-shot learning. One naive approach would be to curate a dataset on top of the Urban Dictionary
dataset that includes multiple definitions and examples for a single word. Another approach would
be to build off of the works of Winodict [4] to generate synthetic words; to an LLM, these words
would have an identical effect as Urban Dictionary words in terms of training and understanding. It
would also be interesting to experiment with other, potentially stronger, LLMs. By now, GPT-2 itself
is not a state-of-the-art model, and so looking at this problem through a stronger lens like GPT-3 may
provide more practical insights. As our main bottlenecks with this project were the limited power
of the LLMs and the limited data, these future approaches have strong potential to yield interesting
results.
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