
Techniques for Extracting Meaningful BERT Sentence
Embeddings for Downstream Tasks

Stanford CS224N Default Project

Jacob Mejia
Department of Computer Science

Stanford University
jamejia@stanford.edu

Matt Harvill
Department of Computer Science

Stanford University
mharvill@stanford.edu

Michael Xue
Department of Computer Science

Stanford University
mikexue7@stanford.edu

Abstract

In this project, we first implement key components of the BERT transformer model
to gain a better understanding of the architecture. We then focus the majority of our
effort on finetuning and building on top of the base BERT model in order to extract
richer sentence embeddings and succeed at multiple downstream tasks. Our tasks
of interest include sentiment analysis, paraphrase detection, and semantic textual
similarity. We find that the combination of using Jaccard similarity for sentence
comparison tasks, weighing the losses of the three tasks, sharing network weights
across paraphrase and textual similarity tasks, and representing sentences by the
average of their token embeddings gives us optimal performance on our tasks of
interest. We also test with other methods that don’t improve performance across
tasks and discuss the implications.

1 Key Information

• Mentor: David Huang

• Sharing project: N/A

2 Introduction

The emergence of the transformer architecture has significantly increased the capabilities of the field
of natural language processing and become the new state-of-the-art with regard to language model
architecture. Transformers have several advantages in comparison to traditional NLP models such as
RNNs and LSTMs. First, transformers have the ability to capture long range dependencies between
words and thus capture contextual information efficiently, a limitation of its counterparts. Second,
transformers can learn representations that are more reusable and transferable across different tasks,
making them more efficient for transfer learning.

One of the most important and difficult obstacles in natural language processing is developing
sentence embeddings capable of performing well on a variety tasks. Learning robust sentence
embeddings will result in machines better understanding human language and a model capable of
performing multitask learning efficiently. The difficulty in achieving this goal lies in optimizing a
finetuning process capable of learning generalizable sentence embeddings across different tasks. We
aim to tackle this issue and present proven strategies for achieving this goal.

Stanford CS224N Natural Language Processing with Deep Learning



In this project, we implement a transformer based architecture, minBERT, and then use techniques
that result in better learned sentence embeddings for higher performance on downstream NLP tasks.
More specifically, we improve upon pretrained BERT embeddings for our downstream tasks of
interest by architecting a finetuning pipeline with the goal of learning more robust embeddings. We
accomplish this goal by experimenting with many strategies. The most salient strategies include
representing sentences by the average of their token embeddings as opposed to using the CLS
token embedding, building separate feed-forward networks for sentiment classification and sentence
similarity/paraphrase detection, and weighing the sentiment classification related losses higher with
respect to the other tasks. The details of each of these techniques and more are outlined in the
Approach section.

3 Related Work

Since BERT embeddings can be obtained without training, they are often used for many downstream
tasks. Unsuprisingly, it is common for them to be used as a starting point for a range of multitask
learning objectives, including Polarity and Subjectivity Detection (Satapathy et al., 2022) as an
example. Due to the large range of these applications, the study of multitask learning built on BERT
embeddings is important and impactful to many parties; this prompted the creation of GLUE (Wang
et al., 2019), a common benchmark of NLP tasks including semantic textual similarity, paraphrase
detection, sentence similarity, and more.

Many researchers have studied methods used to finetune BERT for improved multitask performance,
including Zhang et al. (2021), who showed that not all BERT layers are beneficial to transferring
learning across tasks. In Reimers and Gurevych (2019), it was also discovered that using the CLS
token as the sentence embedding was not as effective as using an average of the sentence’s token
embeddings or GloVe embeddings. In our attempt to finetune a BERT model to succeed at sentiment
analysis, paraphrase detection, and semantic textual similarity tasks, we incorporated ideas from
these papers and more to produce our well-rounded multitask model.

4 Approach

4.1 Baseline

Our baseline model includes up to a single linear layer for each of the three tasks on top of BERT. For
sentiment classification, we transform BERT embeddings to output five logits followed by a softmax
to produce probabilities for the five classes. For paraphrase detection, we pass the difference of each
sentence’s BERT embeddings through our task-specific linear layer and transform it into a probability
of paraphrase with a sigmoid activation. Lastly, for our semantic textual similarity task we use a
linear transform of the cosine similarity of our sentences to output sentence similarities ranging from
0-5.

4.2 Main Strategies

After the base model implementation, we focus on strategies to improve our pretrained BERT
sentence embeddings. Our first improvement to our baseline model includes implementing feed-
forward networks with skip connections, dropout, batchnorm, and ReLU activations to replace our
intitial linear layers. We then find that the following strategies improve our embeddings and generalize
well across our tasks of interest, placing us in the top quartile of leaderboard submissions.

4.2.1 Average Token Embeddings vs CLS Token Embedding

Through initial testing, we find that representing our sentences with the average of their tokens’ BERT
embeddings leads to better performance on our tasks compared to using the CLS tokens of each
sentence, inspired partially by Reimers and Gurevych (2019). We conclude that using the average of
token embeddings captures important information about the sentence for our given tasks that is not
captured in the CLS token embedding. We compare the results of each approach in Experiments and
prove that we achieve stronger results using the average.

2



4.2.2 Jaccard Similarity for Paraphrase Detection and Semantic Textual Similarity

Computing the Jaccard Similarity of two sentences is simple—all we have to do is compute the number
of tokens that overlap divided by the total number of unique tokens shared between the sentences.
We decide to add the Jaccard Similarity of inputs for Paraphrase Detection and Semantic Textual
Similarity and find that it improves performance, inspired by work from Jeyaraj and Kasthurirathna
(2021). We append this feature to the BERT embedding difference of our two input sentences and
feed this new embedding through to our feed-forward network. This is visualized in Figure 1 below
by the Yellow Jaccard Similarity segment.

4.2.3 Sharing Weights for Similar Tasks

Another effective strategy is sharing weights between the paraphrase detection and sentence similarity
networks. We recognize that paraphrase detection and sentence similarity are inherently very similar
tasks, and decide to use the same feed-forward network for each, inspired partially by Reimers and
Gurevych (2019). Thus, we pass as input batches of BERT embeddings for the similarity task to the
paraphrase detection network. The backpropagation updates for the network are then influenced by
the loss function of both tasks. The result is a robust network that can perform well on both tasks
simultaneously and learn the underlying similarities between each of the tasks. The only difference is
that we scale the output from 0-1 (used directly for paraphase detection) to 0-5 for semantic textual
similarity.

Figure 1: Shared Network for Paraphrase Detection and Semantic Textual Similarity

Figure 2: Sentiment Classification Specific Network on top of BERT

4.2.4 Weighted Loss Function

We experiment with using a weighted loss in conjunction with shared weights as explained above.
Here, we assign half of the loss to the sentiment task, and a quarter of the loss to both the paraphrase
and similarity tasks. This ensures that updates made to the paraphrase and similarity networks are not

3



disproportionately larger than those to the sentiment network. This also gives us superior performance
compared to leaving the loss magnitudes untouched.

4.2.5 Layer-Wise Learning Rate Decay

Another strategy that we test is updating only the last few layers of BERT in finetuning, since not all
layers necessarily impact learning for downstream tasks Zhang et al. (2021). We find that while this
speeds up training, it does not perform as well as training on the entire BERT model. However, our
final model uses a small learning rate of α = 10−5 for BERT parameters and a larger learning rate for
our layers on top of BERT (α = 10−3), which optimizes task-specific learning without overwriting
important semantic information already learned in the pretrained BERT model.

4.2.6 Random Sampling Training

In our approach to training, we do not train on all data points in each epoch because of our imbalance
in available data (the Quora dataset for paraphrase detection is much larger than our other datasets).
Instead, for each epoch we train on a random set of 4096 samples for each task, and sum up the
losses before making an update to all parameters. This is similar to training on all data points in
expectation and we find that it performs similarly to training on all data points in a single epoch,
while significantly speeding up training to allow for more epochs and ultimately better performance
given a time constraint. It also adjusts the weights of our model parameters in a more balanced way
since updates include loss from each of the tasks instead of sequential updates for a single task at a
time.

4.2.7 Extra Data

There are disparities in the number of training examples for each respective task which we highlight
in Data. The paraphrase detection task contains roughly 130,000 more training examples relative to
the other tasks, thus we gather more data online for the sentiment and similarity tasks, each of which
is further described in Data. The purpose in gathering more data is to improve the generalizability of
these tasks by training the model on more examples so that predictions on unseen data were more
accurate. We find that training on more data from our new data sets does not seem to improve our
performance noticeably and lengthens the time required for training.

4.2.8 SMART

We implement Adversarial Regularization according to Jiang et al. (2020), but find that it does not
aid much in our training since we do not have issues with overfitting to the dev set. Although we do
not use this method in any of our final results, we adapt code from namisan (2023) while working on
this project and bootstrapping our SMART implementation.

5 Experiments

5.1 Data

We use a variety of data sets for each of the downstream tasks of interest. For the sentiment
classification task, we use the Stanford Sentiment Treebank and Amazon Review data sets which
contain 8,544 training sentence examples from movie reviews of varying sentiment rated on a 0 to 4
discrete scale and 18,000 training reviews of different Amazon products rated on a 0 to 4 discrete
scale, respectively (GeeksforGeeks, 2021). For the paraphrase detection task, we use the Quora
data set which has 141,506 training labeled question pairs indicating paraphrase presence. Finally,
for the sentence similarity task, we use the SemEval STS Benchmark data set consisting of 6,041
training sentence pairs of varying similarity on a continuous scale from 0 (unrelated) to 5 (equivalent
meaning). We also use the Sentences Involving Compositional Knowledge (SICK) (4,439 training
samples) Face (2021) data set which has identical structure to the SemEval STS Benchmark. More
data was used for the sentiment and similarity tasks to provide more examples for tasks that had less
data samples.

4



5.2 Evaluation Method

For sentiment analysis and paraphrase detection, we compute the accuracy of our predicted labels
compared to the true labels, with labels yi ∈ {0, 1} for paraphrase detection and labels yi ∈
{0, 1, 2, 3, 4} for sentiment analysis. For semantic textual similarity, we compute the Pearson
correlation which measures the strength of the linear association between our predictions xi and the
true predictions yi.

5.3 Experimental Details

We test a variety of model configurations for our experiments. These include:

• Using the CLS embedding vs. average output embedding from BERT (denoted CLS)
• Sharing weights for the paraphrase and similarity tasks (SW)
• Taking a weighted average of losses across tasks vs. a simple average (WL)
• Using extra data for the sentiment and similarity tasks (ED)

We train our model on each possible configuration of these settings (24 = 16 possible combinations)
for 25 epochs. We fix our learning rate at α = 10−5 for BERT parameters and α = 10−3 for all
parameters post-BERT.

5.4 Results

After running our multitask classifier across these 16 configurations, we find that the best-performing
model uses the average output embedding, shares weights among the paraphrase and similarity tasks,
uses a weighted average loss, and excludes extra data sets for the sentiment and similarity tasks. We
also include our baseline model results for comparison.

*Using extra data takes longer to train since processing large Amazon reviews is more time-intensive,
which is why we break the tie for our best model*

Model SST PARA STS Highest Average Dev Acc.
Milestone model, pretrained 0.206 0.381 0.108 0.232
Milestone model, finetuned 0.433 0.377 0.406 0.405

!CLS, !SW, !WL, !ED 0.493 0.826 0.579 0.633
!CLS, !SW, !WL, ED 0.516 0.835 0.715 0.689
!CLS, !SW, WL, !ED 0.510 0.834 0.575 0.640
!CLS, !SW, WL, ED 0.518 0.840 0.709 0.689
!CLS, SW, !WL, !ED 0.510 0.807 0.852 0.723
!CLS, SW, !WL, ED 0.521 0.808 0.847 0.725
!CLS, SW, WL, !ED 0.527 0.795 0.854 0.725
!CLS, SW, WL, ED 0.500 0.808 0.853 0.720

CLS, !SW, !WL, !ED 0.520 0.787 0.651 0.653
CLS, !SW, !WL, ED 0.511 0.790 0.565 0.622
CLS, !SW, WL, !ED 0.509 0.799 0.526 0.611
CLS, !SW, WL, ED 0.500 0.789 0.567 0.619
CLS, SW, !WL, !ED 0.502 0.765 0.816 0.695
CLS, SW, !WL, ED 0.495 0.759 0.828 0.694
CLS, SW, WL, !ED 0.504 0.773 0.823 0.700
CLS, SW, WL, ED 0.505 0.755 0.831 0.697

After selecting this model, our accuracies and correlation scores on the test leaderboard are as follows:

• SST accuracy: 0.510
• Paraphrase accuracy: 0.809
• STS correlation: 0.860
• Overall score: 0.727

These results show that using the average BERT embeddings performs higher than using the CLS
embedding. Further, we see that across configurations, using extra data does not impact performance

5



significantly. The most salient factor in boosted performance is the use of shared weights for the
paraphrase and semantic similarity tasks. This was quite a surprising finding for us; initially, we
thought it would be beneficial to train two separate feed-forward networks to learn the two different
tasks. Upon intuiting that the two tasks are actually quite similar (both try to see how close in
"meaning" two sentences are), we decided to investigate training a single feed-forward network for
both tasks, which would allow for gradients to be added in the update step (and thereby train faster).
Here we can see that our intuition was correct, as models using shared weights, holding all else equal,
performed several percentage points higher on average.

To verify our model was not overfitting over a training period of 25 epochs, we also plotted the
training and dev loss over time. We confirm that for 25 epochs, the dev loss does not begin to increase
(on average), and thus our model is sound for evaluation on the test set.

Figure 3: Training and dev losses over time for chosen model

6 Analysis

We take a look at confusion matrices and scatterplots for respective tasks below (dev set).

Figure 4: Sentiment Classification (left) and Paraphrase confusion matrices (right)

6



Figure 5: Semantic Textual Similarity Correlation

For the sentiment analysis task, we see that the most accurately predicted categories are 1 and 3. This
is likely because these two categories have the most data points compared to all other categories, and
thereby the networks are more optimized to categorize reviews with those labels. For the paraphrase
detection task, we see that there is a false positive rate of about 0.235 and a false negative rate of
about 0.106. Thus, it seems that the model is more likely to say that two sentences are paraphrases
of one another when they are in fact not. This is interesting considering the fact that there are more
examples of pairs of sentences that are not paraphrases of one another. Finally, for the semantic
similarity task, we see that the line of best fit is under the perfect prediction line. This means that on
average, our model predicts that sentences are less similar than they actually are.

We provide a few examples for each task in which our best model succeeds and where it fails,
highlighting both its strengths and weaknesses.

6.1 Sentiment Analysis

Correct Prediction: A warm, funny, engaging film.
Sentiment Class: 4
Analysis: From this sentence, we can infer that our model can understand the polarity of certain
words and can effectively categorize the strength of how positive they are.

Correct Prediction: It’s fascinating to see how Bettany and McDowell play off each other.
Sentiment Class: 3
Analysis: From this example, we observe that our model can identify relatively neutral sentences
well and picks up on the fact that a positive word ("fascinating") in a neutral sentence is classified
as positive.

Incorrect Prediction: The film’s hackneyed message is not helped by the thin characterizations,
nonexistent plot and pretentious visual style.
Sentiment Class: True: 0. Prediction: 1.
Analysis: As shown by our confusion matrix, the model struggles with predicting negative sentiment
examples. Given that the word "hackneyed" is an infrequently used word, we might conclude that
the resulting embeddings do not contextualize its true meaning.

6.2 Paraphrase Detection

Correct Prediction: Sentence 1: Is wowecoin legal in India? Sentence 2: Is Antarvasna legal in
India?
Paraphrase Class: 0
Analysis: From this pair of sentences, we observe that the model can correctly distinguish between
two different nouns even if the sentences are nearly identical.

7



Correct Prediction: Sentence 1: Does reporting fake names on Quora do anything? Sentence 2: Is
it worth it to report fake names on Quora?
Paraphrase Class: 1
Analysis: From this pair of sentences, we observe that asking the same question with the words
scrambled still results in a correct prediction.

Incorrect Prediction: Sentence 1: What can you get as a customer of Star Alliance? Sentence 2:
What are some ways to register with Star Alliance?
Paraphrase Class: True: 0. Predicted: 1.
Analysis: This example shows that our model may struggle when the verbs are not exactly synonyms
with each other even if the sentences are very similar.

6.3 Semantic Textual Similarity

Since the labels for this task are continuous, we consider predictions within 0.05 to be correct.

Correct Prediction: Sentence 1: A cat is drinking milk. Sentence 2: A kitten is drinking milk.
Similarity Score: True: 4.0. Prediction: 4.03
Analysis: We see that our model is able to detect similarities among nouns that may be different
but still represent very similar ideas.

Correct Prediction: Sentence 1: A chimpanzee is hurting a woman. Sentence 2: A man is driving
a car.
Similarity Score: True: 0.0. Prediction: 0.001.
Analysis: This example showcases the strength our model has in detecting very dissimilar sentences
that clearly are not related.

Incorrect Prediction: Sentence 1: Fire in Russian psychiatric hospital kills 38. Sentence 2: 38
feared dead in Russian psychiatric hospital fire.
Similarity Score: True: 4.2. Prediction: 2.71.
Analysis: We suspect that this error arises because our model has a hard time associating "feared
dead" with "killed". This may be due to the fact that the model struggles to draw similarities
between similar nouns and noun phrases.

7 Conclusion

This paper has showcased effective strategies for extracting meaningful sentence embeddings from
pretrained BERT embeddings. We have shown that strategies such as weight sharing, weighted loss,
and representing sentences by the average of their token embeddings leads to strong performance for
downstream NLP tasks like sentiment analysis, paraphrase detection, and semantic textual similarity.
We also showed that incorporating other techniques such as random sampling in training, adding
Jaccard Similarity for sentence similarity related tasks, and using different learning rates across layers
of our model can improve performance. While some of our methods like SMART (Jiang et al., 2020)
and adding more training data didn’t improve our performance, they still provided important insights
into multitask learning from BERT embeddings. Overall, we were proud of our model because it had
a relatively simple architecture and performed well on the test set.

8



References
Hugging Face. 2021. Sick dataset. Accessed on March 20, 2023.

GeeksforGeeks. 2021. Amazon product reviews sentiment analysis in python. Accessed on March
20, 2023.

Manuela Nayantara Jeyaraj and Dharshana Kasthurirathna. 2021. MNet-sim: A multi-layered
semantic similarity network to evaluate sentence similarity. International Journal of Engineering
Trends and Technology, 69(7):181–189.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
Smart: Robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics.

namisan. 2023. mt-dnn.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks.

Ranjan Satapathy, Shweta Pardeshi, and Erik Cambria. 2022. Polarity and subjectivity detection with
multitask learning and bert embedding.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. 2019.
Glue: A multi-task benchmark and analysis platform for natural language understanding.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q. Weinberger, and Yoav Artzi. 2021. Revisiting
few-sample bert fine-tuning.

9

https://doi.org/10.14445/22315381/ijett-v69i7p225
https://doi.org/10.14445/22315381/ijett-v69i7p225
https://github.com/namisan/mt-dnn
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/2201.05363
http://arxiv.org/abs/2201.05363
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/2006.05987
http://arxiv.org/abs/2006.05987

	Key Information
	Introduction
	Related Work
	Approach
	Baseline
	Main Strategies
	Average Token Embeddings vs CLS Token Embedding
	Jaccard Similarity for Paraphrase Detection and Semantic Textual Similarity
	Sharing Weights for Similar Tasks
	Weighted Loss Function
	Layer-Wise Learning Rate Decay
	Random Sampling Training
	Extra Data
	SMART


	Experiments
	Data
	Evaluation Method
	Experimental Details
	Results

	Analysis
	Sentiment Analysis
	Paraphrase Detection
	Semantic Textual Similarity

	Conclusion

