
Prototypical Pre-Training for Robust Multi-Task
Learning in Natural Language Processing

Stanford CS224N {Default} Project

Rohan Sikand
Department of Computer Science

Stanford University
rsikand@stanford.edu

Andre Yeung
Department of Bioengineering

Stanford University
ayyeung@stanford.edu

Abstract

Multi-task learning (MTL) is an efficient approach for jointly training models to
perform multiple related tasks all at once. BERT is a general purpose transformer
model which is capable of producing embeddings for sequence inputs, as well as
serving as a backbone for natural language processing tasks. In this paper, we
propose a novel pre-training method to produce robust sentence embeddings for
downstream multi-task fine-tuning. Our proposed method, coined prototypical
pre-training, harnesses the concept of prototypical networks (Snell et al., 2017) to
learn a feature space. We use BERT to act as an embedding function to map input
vectors into this feature space. We then fine-tune the overall multi-task model in
a jointly optimized fashion and compare our pre-training method to several other
methods including a supervised, no pre-trained baseline. Our proposed method
was the most performant, achieving an average score of 0.724 on the dev set, and
improved upon the supervised baseline which achieved an average score of 0.552
across the three tasks. We argue that prototypical pre-training introduces a new
paradigm to produce robust sentence embeddings and offers a new avenue for
pre-training which can be further built upon in the future.

1 Key Information to include

• Mentor: Xiaoyuan Ni

• External Collaborators (if you have any): n/a

• Sharing project: n/a

2 Introduction

In this project, we aim to construct and implement a general purpose, BERT transformer model
that is able to learn robust sentence embeddings which are useful for improving performance across
downstream tasks of different domains including sentiment analysis, paraphrase prediction, and
semantic textual similarity analysis. This work helps to better characterize language models, which
have gained significant traction in recent times, and shed light on their inner mechanisms to potentially
improve them. To this end, we explore multiple methods and the subspace of their hybridization in an
attempt to improve their performance beyond our baseline results. This traditionally supervised multi-
task learning baseline is constructed from the pre-trained and featurized BERT embeddings, layered
downstream with one multi-task perceptron head for each task. While this performs moderately
well on sentiment analysis and boolean paraphrase prediction (over 50%), it lacks in the semantic
similarity task and generally has room for improvement across all three tasks.

We conjecture that, by combining different methods such as optimizing for cosine similarity and a
new pre-training method that we introduce, we can improve these results of the fine-tuned language

Stanford CS224N Natural Language Processing with Deep Learning

model in downstream multi-task learning. Multi-task learning (MTL) is an efficient approach for
jointly training models to perform multiple related tasks all at once. In this paper, we propose a
method for multi-task learning to learn a feature space with BERT using a method termed prototypical
pre-training. Specifically, our proposed method harnesses the concept of prototypical networks Snell
et al. (2017) which have the ability to learn task-specific embeddings and prototype representations.
We train the BERT backbone to act as an embedding function. We use this embedding function
to compute prototypes for each class over the course of training. A new data point is classified by
measuring the euclidean distance between each class prototype and the latent vector representation
obtained by the embedding function. We conduct pre-training using this method a in supervised
fashion which gives us initial parameters for the BERT embedding function for which we harness in
downstream fine-tuning.

We evaluate our proposed method on NLP tasks including sentiment analysis, sentence similarity, and
paraphrase detection in a multi-task fashion. We then compare the results of our proposed approach
to all other methods, including our baseline which is traditional supervised multi-task learning.

3 Related Work

Prototypical networks The main paper for which we build off of is (Snell et al., 2017) which first
introduces the general concept of prototypical networks. Specifically, (Snell et al., 2017) propose a
neural network architecture called Prototypical Networks (ProtoNets) for few-shot learning, where
the goal is to learn from very few examples of a new class. The proposed architecture learns a metric
space where distances between samples can be used to classify new instances. It represents each class
by the mean of the embedding of its samples in the metric space, and during training, it learns to
minimize the distance between the embedding of each sample and its class mean. During inference,
the network is given a few labeled examples of a new class, and it computes the class means for
each example. It then predicts the label of a test instance as the label of the closest class mean in the
embedding space, which the authors demonstrated to exceed the performance of other state-of-the-art
few-shot algorithms.

We take inspiration from this paper to formulate our novel method. Specifically, we adapt prototypical
learning for pre-training instead of for few-shot learning. That is, we harness the general metric-
based idea for learning a robust feature embedding function instead of for performing few-shot
classification. To the best of our knowledge, no method exists in literature that uses prototypical
learning for pre-training to produce robust sentence embeddings for multi-task learning.

ProtoTransformers While it seems that no previous literature exists regarding using prototypical
learning for pre-training explicitly, there are several papers that harness the concept of prototypical
networks for few-shot learning in natural language processing tasks. One such paper is (Wu et al.,
2021), which introduces the concept of ProtoTransformers for the few-shot learning task of providing
feedback to students in natural language. While this paper involves using prototypical networks and
BERT, it uses these concepts for few-shot learning on natural language rather than for explicitly
pre-training to produce a sentence embedder as we do in this project.

4 Approach

The goal of this project is to construct and implement a multi-task model that harnesses BERT to
learn sentence embeddings and model parameters that are robust across several downstream tasks of
different domains. To this end, we propose several methods, including a novel one (defined below),
and compare this method to a supervised baseline. Thus, the goal of this project is to improve upon
the standard supervised baseline across the tasks of paraphrase detection (PARA), semantic textual
similarity (STS), sentiment analysis (SST).

4.1 Baseline

To serve as a baseline, we implement traditional multi-task learning for the tasks of paraphrase
detection, semantic textual similarity, sentiment analysis. Our baseline is supervised fine-tuning of
the multi-task model that uses BERT as a backbone. Specifically, we define f as BERT which serves
as a feature extractor to produce sentence embeddings. We then define several multi-layer perceptron

2

heads for each of the three tasks (one MLP for each of PARA, STS, SST). Let p be the MLP head
for PARA, s be the MLP head for STS, and t be the MLP head for SST. Thus, each forward pass
is m(f(x)) where m is the respective MLP head and x is the input. For the baseline, we freeze
the parameters of f and jointly optimize the parameters of p, s, and t using the training data in a
supervised fashion. Specifically, for each batch, we compute the loss for each of the three tasks
and sum them up to make one loss for which we optimize throughout the course of training. The
architecture details of each MLP head are enumerated in appendix A.1.1.

4.2 Modifications to the baseline

In addition to the above method, we tested methods with slight modifications to the supervised
baseline. In this section, we describe these altered methods.

Unfrozen fine-tuning. In this approach, we perform the same method as described in the baseline,
but do not freeze the parameters of the pretrained BERT backbone f . That is, we let the parameters
of f be updated during the course of training.

Cosine Similarity for STS. In this method, we forego the use of a linear head t for the STS task.
Instead, we pass the embeddings through a cosine similarity function which calculates the cosine
similarity between sentence a and sentence b. From here, we push the unnormalized output through a
rectified linear unit (ReLU) to enforce the output to be between 0 and 1 instead of between -1 and
1. Then, we scale the values by 5 such that the final output is between 0 to 5. Thus, the ReLU and
scaling combination enforces the final output to be between 0 and 5 which matches the range of the
labels for the STS task. We also note that we keep the parameters of f unfrozen in this method.

Weighted Multitask Loss. In this method, instead of summing the three losses together on each
update, we perform a weighted summation of the three. Specifically, we define the weighted
summation loss, L, as

L = λ1lp + λ2ls + λ3lt

where ls is the loss for SST, lp is the loss for PARA, and lt is the loss for STS. In our experiments,
we tried three weight combinations: (SST weighted: λ1 = 0.98, λ1 = 0.01, λ1 = 0.01), (PARA
weighted: λ1 = 0.01, λ1 = 0.98, λ1 = 0.01), and (STS weighted: λ1 = 0.01, λ1 = 0.01,
λ1 = 0.98). We also keep the parameters of f unfrozen in this method.

Sharing Layers. Since the MLP heads for STS and PARA have hidden linear layers of the same
dimensions, we experimented with sharing these layers between the two MLP heads. That is, the
same parameters are used for the hidden layers in STS and PARA. Theoretically, we are learning
a common representation space between the two tasks for the linear hidden layers. We keep the
parameters of f unfrozen in this method.

Concatenation Before Encoding In the previous methods, for the sentence pair tasks where there
is two inputs (PARA and STS), we first encode the inputs using the BERT backbone f . Before the
last linear layer in the MLP heads, we concatenate using multiplication. However, we hypothesize
that encoding the two inputs separately via BERT results in no cross-attention between the two inputs
which can result in lower performance. To test this hypothesis, in this approach, we concatenate the
two inputs, separated by a [SEP] token, before passing the inputs into the BERT encoder f . Thus,
cross-attention is now being performed between the two inputs in the BERT encoder.

4.3 Proposed approach: prototypical pre-training

We harness the concept of prototypical networks (protonets) Snell et al. (2017) and adapt this metric
learning technique for the multi-task setting in natural language processing tasks. We note that the
raw form of protonets only works for classification problems. As such, we only use protonets on the
tasks of PARA and SST. For STS, we attach a trainable MLP head as defined in the baseline. At a
high-level, the main difference between the baseline (traditional supervised multi-task learning) and
this new approach is that we compute the logits differently. From here, cross entropy is applied for

3

the loss and everything else in the training remains the same. In this section, we will introduce the
general concept of prototypes and then we will describe the method for computing the logits for each
task, mathematically, below.

Prototypical networks Snell et al. (2017) offer a technique to produce a learned feature space that
is divided into regions based on classes. Specifically, the idea behind prototypical networks is
to learn embeddings and prototype representations, which capture the similarities and differences
between the different classes explicitly. Specifically, prototypical networks learn a prototype for
each class by computing the mean of the embeddings of the training examples belonging to that
class. During inference, the input is embedded using the learned feature extractor and assigned to the
closest prototype, which serves as the prediction for the corresponding task. We now describe this
mathematically.

Let fϕ be an embedding function (feature extractor), with learnable parameters ϕ, which maps input
vectors xi to latent vectors in Rd where d is the hidden dimension of the embedding function. The
goal of prototypical networks is to learn optimal parameters ϕ such that inputs of the same class,
when transformed by fϕ, are close together in this latent space. In this setting, we use BERT as fϕ,
the embedding function. For each task, we compute a prototype, ck for each class over the course
of training on a per-batch basis. This is computed by averaging all of the embedded inputs (after
being transformed by fϕ) for each class (in the batch) in latent space. Specifically, each protoype is
calculates as follows:

ck =
1

|Sk|
∑

xi∈Sk

fϕ (xi) .

this produces a d-dimensional representation for each class. Sk is defined as all of the vectors
belonging to class k in the current batch. From here, to produce the logits for some input vector xi,
we first calculate the latent vector q as follows:

q = fϕ (xi) .

Then, we take the negative euclidean distance between q and each prototype ck defined as follows:

−∥q − ck∥2 .

Combining these values into a set gives us the unnormalized logits. We can then apply softmax over
this set to produce a proper probability distribution which gives us the prediction probabilities for
each class:

P (yi = k | xi) =
exp (−∥q − ck∥2)∑
k′ exp (−∥q − ck′∥2)

For PARA and SST, we harness this concept of prototypical networks to compute the predictions
for each new input point after training. However, since protonets are not able to perform non-
classification based tasks, we modify the STS task by rounding the continious values to discrete
values. In this sense, we modified the STS task to be a classification task such that we can use
prototypical pre-training on this task as well. From here, we jointly optimize the entire model by
summing together the three losses across the tasks and backpropogating through this loss via the
AdamW optimizer (Loshchilov and Hutter, 2017). This phase represents the prototypical pre-training
phase of the pipeline which gives us an initial set of parameters for f , the BERT backbone. We then
fine-tune the linear heads p, t and keep f ’s parameters unfrozen. Also, we chose to concatenate the
inputs before passing the inputs into the BERT encoder f for STS and PARA for both the prototypical
pre-training and the fine-tuning phases.

In sum, using metric-based prototypical networks gives us a way to compute the classification of
specific examples explicitly (via euclidean distance) instead of via fully-connected neural network
layers. We hypothesize that this constraint offers a way to learn a sentence-level feature space where
semantically similar sentences are close together, measured by euclidean distance. By enforcing
similar sentences to appear close together in this learned space, we are effectively learning "sentence

4

embeddings" using BERT. By performing this method, we can effectively "pre-train" the parameters
of our BERT backbone f in a supervised manner such that downstream fine-tuning of the entire model
performs more robustly. We argue that this is a fundamentally different and novel way of pre-training
as, traditionally, BERT is trained in a self-supervised manner using techniques like masked language
modeling.

5 Experiments

5.1 Data

We harness the three datasets given for each task. For SST, we use the Stanford Sentiment Treebank
(SST) dataset. For PARA, we use the Quora dataset. For STS, we use SemEval STS dataset. We
follow the default configured train/dev/test splits.

For the SST task, the model is given an input sentence and classifies the discrete sentiment of the
sentence as either negative (0), somewhat negative (1), neutral (2), somewhat positive (3), or positive
(4).

For the PARA task, the model is given a pair of sentences and must classify whether the sentences
are a paraphrases of each other. Thus, this is a binary classification task given two inputs.

For the STS task, the model is given a pair of sentences and predicts how similar the two sentences
are on a continious scale from 0 to 5.

5.2 Evaluation method

We evaluate the approaches separately for each task. For STS, we calculate the Pearson correlation
between true similarity values against the predicted similarity values. For PARA and SST, we use
accuracy as the metric since these are both classification tasks.

5.3 Experimental details

For all experiments, we standardize various hyperparmaters to keep the experiments constant which
allows us to compare the methods more equally. Specifically, we use:

• Batch size: 64 (for all three tasks, SST, PARA, STS)

• Optimizer: AdamW optimizer with 1e− 5 learning rate

• Individual losses: for SST, we used cross entropy. For PARA, we used binary cross entropy
with a sigmoid activation. For STS, we used Mean Squared Error (MSE).

• Epochs: 20. Experiments marked with a star were trained for 10 epochs1

Furthermore, we also experimented with two different data loading strategies. The first approach
involved zipping together the three dataloaders for PARA, STS, and SST. However, zipping results in
an iterable whose length is the shortest of the three dataloaders. Thus, we changed our approach to
sample from each dataloader at each iteration of the epoch to yield the batches. One epoch is then
defined as performing this n times where n is the length of the longest dataloader.

5.4 Results

In this section, we enumerate the experiment results of the methods described in section 4, as depicted
in Table 1.

.

We tested each method described in section 4 on the dev set. We found that our proposed prototypical
pre-training approach resulted in the best overall performance across the three tasks. We also

1Due to time and compute constraints.
2Experiments marked with a ∗ denotes that this experiment was run for 10 epochs instead of the default 20

epochs due to time and compute constraints

5

Table 1: Dev set evaluations for all experiments and methods for each task and overall (average) 2.

Method SST Acc (%) PARA Acc (%) STS Corr Overall
Baseline 32.7 64.8 0.264 0.413
Unfrozen Baseline 49.0 78.2 0.383 0.552
Cosine Similarity STS 49.0 75.9 0.702 0.650
SST Weighted ∗ 50.2 62.9 0.465 0.532
PARA Weighted ∗ 32.1 72.7 0.369 0.472
STS Weighted ∗ 29.6 63.9 0.571 0.502
Shared Layers ∗ 47.9 69.4 0.259 0.477
Concatenation Before Encoding 49.6 80.5 0.833 0.711
Prototypical Pre-trained 49.0 82.5 0.857 0.724

Table 2: Test set evaluations for prototypical pre-trained method.

Method SST Acc (%) PARA Acc (%) STS Corr Overall
Prototypical Pre-trained 51.3 82.2 0.849 0.728

evaluated this approach on the test set and saw near identical overall performance (0.670 on the dev
set and 0.672 on the test set).

In general, we found that the modifications to the baseline, described in section 4, generally improved
the overall performance.

Overall, the sequential performance increases across the tested methods makes sense since each new
method was constructed to explicitly add a new dimension to the solution or remedy a shortcoming
of the previous methods tested. We further analyze the results and behavior of the methods in the
section 6.

6 Analysis

Figure 1: Class visualization using t-SNE (Van der Maaten and Hinton, 2008) embeddings of 100
samples for each task, before and after prototypical pre-training.

6

As we can see from the evaluation results, there were several ways to improve upon the supervised
baseline. We see that keeping the parameters of f , the BERT backbone, during the course of fine-
tuning improved upon the initial baseline which has the parameters of f frozen. This performance
increase is expected in all methods since none of the methods were explicitly pre-trained on the given
datasets except for the prototypical pre-trained experiment. However, even then, we empirically saw
that the performance increased when keeping the parameters of f unfrozen. We hypothesize that
pre-training, including prototypical pre-training, gives the entire model a more robust and accurate
starting point for its parameters which enabled faster convergence and better results.

Next, was the use of cosine similarity instead of a linear MLP head for the STS task. We saw
performance jump up from 0.383 on the unfrozen baseline to 0.702 on the STS task. Thus, for the
remaining experiments, we chose to use the cosine similarity approach for STS over the linear MLP
head. We hypothesize that the cosine similarity approach worked better than the linear head because
cosine similarity explicitly tracks the "similarity" between vectors. Moreover, the linear MLP head
does not have any explicit similarity inducing methods and thus, must learn which inputs are similar
implicitly.

Another set of experiments we tried was weighting the individual losses to form the final weighted
summation loss that we backpropogate with. As described in section 4, we tested three combinations
where we weighted one of the three tasks much more heavily (by 98%) than the other tasks for
each combination. As expected, we saw performance decrease in the tasks with low weight (0.01)
and performance increase the in the heavily weighed task for each combination. For example, the
STS weighted approach produced an STS correlation score of 0.571 which was higher than the STS
correlation score in the other weigthed combinations. However, this same method produced a score
of 29.6% on the SST task which was well below the other methods. This pattern held true across
all combinations. We argue that this occurs due to destructive interference during training Yu et al.
(2020). That is, if we weight one of the tasks more heavily, the optimization process will heavily
favor that particular task and thus, destroy the gradients of the other tasks.

Another method we tried was sharing the linear layers between the PARA and STS MLP heads (s
and p). Note that to enable this method, we use a linear MLP head for the STS task instead of the
forementioned cosine similarity approach. Compared to the unfrozen baseline, we saw performance
drop across all three tasks with this method. We hypothesize that this occurs because the parameters
in the linear layers must now accommodate for learning useful representations for two separate tasks
which makes the layers less robust. Thus, performance decreases. We also argue that, if the tasks
were more similar to each other, then sharing layers can possibly improve performance.

Finally, we tried concatenating before encoding and found that this improved performance across the
board. We hypothesize that this was due to cross-attention between the two inputs in PARA and STS.

Lastly, we tested our proposed prototypical pre-training method. We see that the average (overall)
performance across all three tasks was the highest. Specifically, the method performed better than the
both of the baselines and also the cosine similarity baseline. This method achieved the highest PARA
accuracy and STS correlation and the second highest SST accuracy.

We hypothesize that, by explicitly learning a lower-dimensional feature space during prototypical
pre-training, downstream fine-tuning of the overall model was more robust and performant. To
further understand why this was the case, we decided to inspect the learned feature space across the
three tasks using the t-SNE embedding visualization method Van der Maaten and Hinton (2008).
Specifically, we encode 100 inputs using our prototypical pre-trained BERT backbone f to produce
100 latent vectors for each task. Each vector has a label associated with it denoting what class it
belongs to. We then scatter plotted all of these vectors after t-SNE to produce a visualization of the
learned latent space. This is shown in figure A.3.

Amazingly, as can be seen in the figure, the latent space for the SST task became almost linearly
dividable by class. However, interestingly enough, this did not result in direct performance gains
for the SST task, but the overall performance across the three tasks improved. We see a potential
opportunity to improve performance by optimizing the number of additional information-rich di-
mensions we can re-anneal while maintaining this semblance of clustering. Alternatively, we can
make use of UMAP graphs instead of t-SNE. This is increasingly preferred for making a fuzzy, but
topologically representative graph of higher dimensions before compressing to lower dimensions and
retaining higher-dimensional relationships, whereas t-SNE moves individual points from high-to-low

7

dimensional space. This visible clustering was not as evident for the STS and PARA tasks. We
hypothesize that, during the jointly optimized pre-training phase, this method learned a shared feature
latent space between all three tasks. Thus, we should not expect the performance to specifically
increase in just one task but rather, that the generally learned feature space is more robust than the
raw input space across multiple tasks. We hypothesize that this was the reason for why we saw a
performance jump overall but not drastically in one specific task. We note that future work could be
done to analyze the theoretical underpinnings to better explain the yielded results in more detail.

7 Conclusion

The goal of this project was to produce and evaluate methods for learning robust sentence embeddings
that are performant across multiple tasks in downstream fine-tuning. Here, we successfully introduced
the novel prototypical pre-training method for producing a robust learned feature space. Our proposed
method saw performance gains overall, compared to several baselines and all of the other methods
tested.

We highlight that there is a need to further analyze why prototypical pre-training works the way
it does. Future work would include such an analysis, as well as testing different variations of
prototypical pre-training. Such variations may include weighted ensembling during the pre-training
and/or fine-tuning phase or computing the prototypes on a per-epoch basis rather than a per-batch
basis. Overall, the main contribution of this project is introducing a novel pre-training method for
multi-task learning which can be built upon and further analyzed to improve results in the future.

8

References
Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization. arXiv preprint

arXiv:1711.05101.

Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for few-shot learning.
Advances in neural information processing systems, 30.

Mike Wu, Noah Goodman, Chris Piech, and Chelsea Finn. 2021. Prototransformer: A meta-learning
approach to providing student feedback. arXiv preprint arXiv:2107.14035.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. 2020.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836.

9

A Appendix

A.1 Model details

A.1.1 MLP Architectures

For the supervised baseline described in section 4.1, we constructed three multi-layer perceptron
heads for PARA (p), STS (s), SST (t). Each of three MLP head layers are denoted in the following
tables.

Number Layer PyTorch Code

1 Dropout (p = 0.3) nn.Dropout(0.3)
2 Linear nn.Linear(BERT_HIDDEN_SIZE, N_SENTIMENT_CLASSES)

Table 3: SST (t) MLP head architecture.

Number Layer PyTorch Code

1 Dropout Sentence 1 (p = 0.3) nn.Dropout(0.3)
1 Dropout Sentence 2 (p = 0.3) nn.Dropout(0.3)
2 Linear Sentence 1 nn.Linear(BERT_HIDDEN_SIZE, BERT_HIDDEN_SIZE)
2 Linear Sentence 2 nn.Linear(BERT_HIDDEN_SIZE, BERT_HIDDEN_SIZE)
3 Mult torch.mul(Sentence 1, Sentence 2)
4 Linear nn.Linear(BERT_HIDDEN_SIZE, 1)

Table 4: PARA (p) MLP head architecture.

Number Layer PyTorch Code

1 Dropout Sentence 1 (p = 0.3) nn.Dropout(0.3)
1 Dropout Sentence 2 (p = 0.3) nn.Dropout(0.3)
2 Linear Sentence 1 nn.Linear(BERT_HIDDEN_SIZE, BERT_HIDDEN_SIZE)
2 Linear Sentence 2 nn.Linear(BERT_HIDDEN_SIZE, BERT_HIDDEN_SIZE)
3 Mult torch.mul(Sentence 1, Sentence 2)
4 Linear nn.Linear(BERT_HIDDEN_SIZE, 1)

Table 5: STS (s) MLP head architecture.

A.2 Prototypical Step Pseudocode

The following is code for producing the logits from the inputs using prototypes (i.e., the prototypical
"step"), as described in section 4.

def proto_step(self, input_ids, attention_mask, labels):
"""
Runs the protonet approach to produce the logits for
the given input for the given task.
"""

only do this for "classification" tasks
assert labels.dtype == torch.int64

embed into feature space (will be of shape [batch_size, hidden_size])
latents = self.encode(input_ids, attention_mask)

note that if sentence pair is input, we'd do combine them first:
latents = self.encode(input_ids_1, attention_mask_1) +

10

self.encode(input_ids_2, attention_mask_2)

compute class vectors
label_map = self.create_label_map(labels)
new_labels = self.transform_labels(labels, label_map)
class_vectors = self.create_class_vectors(latents, new_labels)

get mean for each class
prototypes = {}
for key in class_vectors:

prototypes[key] = torch.mean(torch.stack(class_vectors[key]), dim=0)

proto_list = [prototypes[key] for key in sorted(prototypes.keys())]
protos = torch.stack(proto_list)

move protos and new_labels to device
protos = protos.to(self.device)
new_labels = new_labels.to(self.device)

logits = -torch.cdist(latents, protos)
loss_val = F.cross_entropy(logits, new_labels)
accuracy_val = self.calculate_score(logits, new_labels)

return loss_val, accuracy_val

A.3 Prototypical Pre-training and Fine-tuning Diagram

Figure 2: Overview of the prototypical pre-training and fine-tuning approach described in section 4.

11

	Key Information to include
	Introduction
	Related Work
	Approach
	Baseline
	Modifications to the baseline
	Proposed approach: prototypical pre-training

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Appendix
	Model details
	MLP Architectures

	Prototypical Step Pseudocode
	Prototypical Pre-training and Fine-tuning Diagram

