
minBERT and Multiple Downstream Tasks
Stanford CS224N Default Final Project

Xianling Zhang
lilyzhng@stanford.edu

Abstract
BERT (Bidirectional Encoder Representations from Transformers) [1] has significantly advanced natural
language processing (NLP) by leveraging transformer architecture to learn contextualized word representations
from large amounts of text data. In this paper, we present the minBERT implementation that simultaneously
performs three tasks: sentiment analysis [2], paraphrase detection [3], and semantic textual similarity (STS) [4].
Rather than fine-tuning BERT on individual tasks, we leverage multi-task learning to update BERT model,
which has been shown to improve performance (Bi et al. [5]). We also apply hyperparameter optimization to
further improve the model's performance. Our results demonstrate the effectiveness of minBERT in achieving
compelling performance on all three tasks, while also providing insights into the optimal hyperparameters for
each task.

1. Introduction

Sentiment analysis, paraphrase detection, and semantic textual similarity are important natural language
processing tasks that have applications in various domains. Specifically, sentiment analysis task is aimed to
understand a given text is classifying its polarity; in a large corpus of passages, paraphrase detection essentially
seeks to determine whether particular words or phrase convey the same semantic meaning; The semantic textual
similarity (STS) task is aimed to measure the degree of equivalence given input texts. These tasks have been
traditionally addressed using separate models trained independently. However, recent advances in multitask
learning have shown that jointly training models for related tasks can lead to better performance and faster
convergence.

Joint training of multiple related tasks is a powerful approach to improve the performance of machine learning
models. However, it is not clear whether joint training is always better than separate training, especially for
tasks that have different objectives and evaluation metrics. For paraphrase detection and semantic textural
similarity task, they share similar intent of seeking for semantic likelihood in given texts. What differentiate
STS from paraphrasing task is that instead of providing a yes or no answer, STS rather uses degrees of similarity.
Among all three tasks, sentiment analysis is the one of distinct objectives comparing to the rest. In this paper,
we compare the performance of joint and separate training approaches for sentiment analysis.

2. Related Work

The BERT model has been pretrained using a large amount of unlabeled text data (sourced from various
publicly available sources such as Wikipedia, Common Crawl [6], and Book Corpus [7]). The input text was
tokenized into subword units using WordPiece [8] tokenization. As depicted in Figure 1, The input embeddings
used in the model are the sum of the token embeddings, the segmentation embeddings, and the positional
embeddings. The token embeddings map the individual input ids into vector representations. The learnable
segment embeddings are utilized to decide whether a word belongs to sentence A or B. Lastly, the positional
embeddings are used to encode the position of different words within the input.

Figure 1: BERT embedding layer.

Figure 2: Scaled Dot-Product and Multi-Head Self-Attention. Figure from [1]

As seen in Figure 2, The transformer layer of the BERT transformer consists of multi-head attention, followed
by an additive and normalization layer with a residual connection, a feed-forward layer, and a final additive
and normalization layer with a residual connection. By attending to different parts of the input sequence, multi-
head self-attention allows BERT to capture both local and global dependencies between words, while also
being able to distinguish between different types of relationships. This is important for tasks such as sentiment
analysis, where understanding the context and meaning of a sentence is critical to accurate predictions.

Figure 3: The original BERT model was trained on two unsupervised tasks, masked token prediction and next
sentence prediction. Figure from [9].

Pre-Training: The BERT pre-training process involves training the model on a large amount of unlabeled text
data in a self-supervised manner. During pre-training, BERT uses a masked language model (MLM) and next
sentence prediction (NSP) tasks to learn contextualized word representations. In the MLM task, some of the
input tokens are randomly masked, and the model learns to predict the original token from the masked context.
In the NSP task, the model predicts whether two input sentences are consecutive or not. By training on these
tasks, BERT learns to generate high-quality, context-aware representations of words and sentences.

Fine-Tuning: After pre-training, BERT can be fine-tuned on a variety of downstream NLP tasks. During fine-
tuning, BERT is adapted to the specific task by training it on a labeled dataset. The weights of the pre-trained
model are frozen, and only the task-specific layers are trained on the labeled data. This approach allows the
model to quickly adapt to new tasks with only a small amount of task-specific training data.

3. Approach

In this section, we explain the model's architecture. We use the same tokenization and architecture as the
original BERT model. We add task-specific classification layers on top of the shared BERT layers to predict
sentiment labels, paraphrase pairs, and semantic texture similarity scores. We jointly train the model using a
multi-task loss function that combines the individual task loss functions. We also perform hyperparameter
optimization to identify the optimal learning rate, batch size, and regularization strength for each task.

3.1 Baseline Model
As indicated in the final project handout [11] and presented in the Figure 1, the baseline sentiment classifier
models are reported to have accuracy of 0.390 and 0.515 for SST dataset using pretraining and finetuning.
Respectively, for CFIMDB [12], the baseline models have 0.780 and 0.966 accuracy on dev dataset. Since there
is no baseline model provided for the multitask BERT model for jointly training sentiment analysis, paraphrase
detection, and semantic textual similarity, this paper will report the model performance using pretraining and
finetuning options, with and without hyperparameters optimization.

3.2 minBERT Sentiment Classifier

After implementing the minBERT model, we performed sentiment analysis on two datasets: the Stanford
Sentiment Treebank (SST) dataset and the CFIMDB dataset. The BERT model was utilized to encode the
sentences to obtain contextualized representations for the sentence classification task. The final step was to
fine-tune the BERT model for the downstream sentence classification task.

3.3 Adam Optimizer

In addition, the Adam optimizer has been implemented based on Decoupled Weight Decay regularization and
Stochastic Optimization. The Adam optimizer is a very helpful component in model training because it
calculates adaptive learning rates with different parameters such as batch size and the number of GPUs
available. The learning rate or step size will be updated throughout the training. With greater updates, the model
can be tuned to speed up or slow down the gradient descent process, based on the magnitude of the gradients.
It can help the learning rate to give quicker updates to those of small gradients, thus contributing to quicker
convergence. The adaptive learning rate is one essential differentiator between Adam and classical SDG, and
the latter uses a single learning rate for all weights, and this learning rate does not change during training time.
In comparison, Adam adjusts the learning rate based on the square root of the gradients in real-time.

3.4 Multitask minBERT

The BERT model has been expanded to carry out three tasks concurrently, namely sentiment analysis,
paraphrase detection, and semantic textual similarity measurement, rather than being restricted to a single task.
The objective of the Multitask BERT model is to optimize the use of BERT embeddings and deliver high
performance across a wide variety of tasks.

Upon importing the weights of a pretrained BERT model, our approach entails predicting the sentiment score
of sentences, verifying the paraphrasing of sentence pairs, and measuring the similarity between the two input
texts. Notably, the experiments conducted with our model solely leverage the pooler output. In addition,
considering that different tasks have different requirements for regularization, we also specialize different ratio
to dropping out neurons for different tasks at training time to prevent overfitting.

During training, we cycle the data for each time, record individual task’s token IDs, attention masks, and labels.
The predicted output for each task is unnormalized (a logit) and undergoes normalization via a sigmoid function.
The sentiment analysis task utilizes cross entropy loss[13], whereas the paraphrase detection task relies on
binary cross entropy loss [14]. Textual similarity measurement employs mean squared error (squared L2 norm)
[15]. Lastly, leveraging the use of multi-task learning to update BERT, we add each loss together to update the
model with the averaged loss from all three tasks. To retain the best model, we use the average dev metric, only
overwriting the old model with the newly saved best model if it achieves better average dev accuracy.

3.4 Hyperparameter Tuning

In order to enhance the overall performance of the model, a series of comprehensive experiments were carried
out to evaluate the impact of various hyperparameters and derive meaningful comparisons. The evaluation
involved exploring different values of dropout, batch size, and learning rates for both individually trained tasks
and multitask BERT models. Despite the time-consuming and computationally intensive nature of this
hyperparameter optimization study, significant improvements in accuracy were observed across all three tasks.
These findings underscore the importance of carefully selecting and tuning hyperparameters to achieve optimal
performance in complex machine learning models.

4. Experiments

4.1 Datasets
For the separately trained sentiment analysis task, both Stanford Sentiment Treebank (SST) dataset and
CFIMDB dataset have been used. However, for the multitask training, the SST dataset was employed for
sentiment analysis, while the Quora dataset was used for paraphrase detection, and the SemEval STS
Benchmark Dataset was utilized for semantic textual similarity measurement. As shown in Figure 4, a dataset
size comparison between the 4 datasets have been presented.

• The SST dataset is comprised of 11,855 single sentences extracted from movie reviews, with a total
of 215,154 unique phrases. Each phrase is labeled as negative, somewhat negative, neutral, somewhat
positive, or positive. The dataset is divided into train (8,544 examples), dev (1,101 examples), and
test (2,210 examples) splits.

• The CFIMDB dataset, on the other hand, contains 2,434 highly polar movie reviews with binary
labels of either negative or positive. The dataset is relatively small compared to the SST dataset, with

train (1,701 examples), dev (245 examples), and test (488 examples) splits. Models trained with
small-scale datasets are at a higher risk of overfitting.

• The Quora dataset[16] is a diverse collection of 400,000 question pairs with labels indicating whether
the instances are paraphrases of each other. The dataset is divided into train (141,506 examples), dev
(20,215 examples), and test (40,431 examples) splits.

• The SemEval STS Benchmark Dataset [17] is composed of 8,628 sentence pairs with varying degrees
of similarity, ranging from 0 (unrelated) to 5 (equivalent meaning). The dataset is divided into train
(6,041 examples), dev (864 examples), and test (1,726 examples) splits.

Figure 4. Dataset sizes comparison for SST, CFIMDB, Quora, STS for train, dev, and test splits.

4.2 Evaluation Metrics
The SST and CFIMDB datasets employ accuracy as the evaluation metric, which quantifies the proportion of
correctly classified instances. The Quora dataset utilizes the F1 score as the evaluation metric, which assesses
the harmonic mean of precision and recall. The SemEval STS Benchmark dataset utilizes the Pearson
correlation coefficient as the evaluation metric, which gauges the linear association between the predicted
similarity scores and the actual similarity scores. In the context of selecting the optimal model for the multitask
minBERT model, the average dev/test metric is used.

4.3 Experiments Details

4.3.1 Different Dropout Ratio

Table 1. For separately trained minBERT sentiment analysis classifier. Different dropout ratios (0.2 – 0.6)
have been applied at training time using the pretraining option. Best model obtained with
hidden_dropout_prob = 0.2 on SST dataset, and hidden_dropout_prob = 0.3 on CFIMDB dataset.

Table 2. For separately trained minBERT sentiment analysis classifier. Different dropout ratios have been
applied at training time using the finetuning option. Best model obtained with hidden_dropout_prob = 0.6 on
SST dataset, and hidden_dropout_prob = 0.4 on CFIMDB dataset.

Regularization techniques play a crucial role in preventing overfitting and improving the generalization ability
of machine learning models. The optimal regularization parameters, such as the dropout ratio, vary depending
on the specific task at hand. Therefore, we employ task-specific dropout ratios during training to enhance model
performance. In the context of sentiment analysis using minBERT, we train separate classifiers for each dataset
and experiment with different dropout ratios. For pretraining, we found that the best model for the SST dataset
had a hidden_dropout_prob of 0.2, while for the CFIMDB dataset, the best ratio was 0.3. On the other hand,
for finetuning, the best ratio was 0.6 for the SST dataset and 0.4 for the CFIMDB dataset. These findings
highlight the importance of tuning the dropout ratio according to the specific dataset and training method. By
doing so, we can improve the performance and robustness of the sentiment analysis classifier, thereby enabling
it to generalize better to new data.

4.3.2 Different Batch Sizes

Table 3. With hidden_dropout_prob = 0.2 fixed on SST dataset, and hidden_dropout_prob = 0.3 fixed on
CFIMDB dataset, different batch sizes (4-64) have been experimented. Best model for SST dataset obtained
using default batch size 8. Best model for CFIMDB dataset obtained using default batch size 8 or smaller
batch size of 4.

Table 4. With hidden_dropout_prob = 0.6 fixed on SST dataset, and hidden_dropout_prob = 0.4 fixed on
CFIMDB dataset, different batch sizes (4-64) have been experimented. Best model for SST dataset obtained
using default batch size 8. Best model for CFIMDB dataset obtained using default batch size 8.

In this study, we examined the impact of varying batch sizes on the performance of the SST task during
pretraining and finetuning. For pretraining, we fixed the hidden_dropout_prob to 0.2 for SST and 0.3 for
CFIMDB and experimented with batch sizes ranging from 4 to 64. The best performing model for the SST
dataset was obtained using the default batch size of 8, while the best model for the CFIMDB dataset was
obtained using either the default batch size of 8 or a smaller batch size of 4. For finetuning, we fixed the
hidden_dropout_prob to 0.6 for SST and 0.4 for CFIMDB, and again experimented with batch sizes ranging
from 4 to 64. The best performing model for both SST dataset and CFIMDB was obtained using the default
batch size of 8. Our results suggest that varying batch sizes during pretraining and finetuning did not have a
significant impact on the model's performance on the SST task.

4.3.3 Different Learning Rate

Table 5. With best sst_hidden_dropout_prob, para_ hidden_dropout_prob, and sts_ hidden_dropout_prob and
batch sizes fixed for each task, different learning rate has been explored.

The study of best hypermeters have also been conducted for multitask minBERT of 3 tasks. Table 5 is one
example of tuning learning rate on minBERT multitask trainig. Note that the default learning rate is 1e-05 for
finetuning, and this is the rate that model achieved best performance.

5 Performance Summarization

5.1 minBERT Sentiment Analysis Best Model

Figure 4. minBERT Sentiment Classifier model performance comparing against baseline models.

For minBERT sentiment classifier model, the baseline model results are reported in the default final project
handout. Both methods are evaluated on the SST/CFIMDB dev datasets respectively. The baseline model
names are denoted as SSP-A, CFP-A, SSF-A, CFF-A. A – baseline type, SSP – pretraining on SST dataset,
CFP- pretraining on CFIMB dataset, SSF - finetuning on SST dataset, CFF - finetuning on CFIMB dataset.
Our optimized models are denoted as SSP-B, CFP-B, SSF-B, CFF-B. B – represents our model of optimization.
As highlighted in blue and our method presents better accuracy comparing against the baseline model
performance (see Figure 4). Note that all models trained for 20 epochs, and the best model is using the below
parameters:
- batch size 8
- learning rate 1e-05
- dropout 0.6 on SST, 0.4 on CFIMB datasets.

5.2 minBERT MultiTask Best Model on Dev

Figure 5. Multitask minBERT model performance with or without hypermeter optimization.

As there are no baseline model results reported, thus we report the model performance before and after
regularization and hyperparameter optimizations. Without optimization, our model names are denoted as
MSSF-A, MPDF-A, MSTF-A, MAVF-A. M - multitask, SS - sentiment analysis, PD-paraphrase detection, ST-
textual similarity measurement, AV – average, F – finetune, A – baseline type. With optimization, our models
are denoted as MSSF-B, MPDF-B, MSTF-B, MAVF-B. B represent our model of optimization. As highlighted
in Figure 5, our model with optimization achieved better performance on all 3 tasks. Note that all models trained
for 20 epochs, the best model is obtained using the following parameters:
- learning rate 1e-05 for all 3 tasks
- batch sizes 4 : 64 : 4 for SST, PD, STS
- dropout prob 0.5, 0.6, 0.5 for SST, PD, STS

5.3 minBERT MultiTask Dev and Test Acc Comparison

Table 6. minBERT multitask dev and test accuracy for the best model.

The performance of a model on both the dev and test data is crucial in assessing its ability to effectively solve
the given problem. The dev data is used during the model development phase for hyperparameter tuning and
to evaluate the model's performance on a subset of the available data. In contrast, the test data is used to evaluate
the performance of the final model on unseen data, which provides an estimate of its true generalization ability.

In this paper, we present the results of our analysis by comparing the dev and test accuracy of our model with
the best performing model. Our findings demonstrate that the test accuracy achieved by our model is marginally
higher than the dev accuracy. This observation is indicative of the fact that the model is able to effectively
generalize and perform well when presented with previously unseen data. The model's performance on the test
data is a reliable indicator of its generalization ability, as it is able to effectively adapt and perform well when
presented with new data. This implies that the model is able to capture the underlying patterns in the data and
is not overfitting to the dev data.

6 Limitation

It is important to note that while our optimization focused on batch size and dropout tuning, other
hyperparameters, such as learning rate and optimizer choice, may also influence model performance. Further
research is needed to investigate the combined effect of various hyperparameters on model performance for
these datasets.

7 Conclusion

There are several potential areas for future work building on the findings of this study. One avenue for future
research is to explore the effectiveness of minBERT on other NLP tasks, such as named entity recognition or
machine translation. Additionally, further investigation could be conducted on how to optimize model
performance for multiple tasks simultaneously in a more efficient manner with reduce compute cost.

In conclusion, this paper presents minBERT, a multi-task learning approach to perform sentiment analysis,
paraphrase detection, and semantic textual similarity tasks. The study demonstrates that leveraging multi-task
learning with hyperparameter optimization can improve the performance of the BERT model on multiple
tasks. The results show that minBERT achieves compelling performance on all three tasks and provides
insights into the optimal hyperparameters for each task. This study contributes to the growing body of
research on multi-task learning in NLP and provides a useful framework for developing more efficient and
effective NLP models.

References

[1] Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language
understanding." arXiv preprint arXiv:1810.04805 (2018).
[2] Medhat, Walaa, Ahmed Hassan, and Hoda Korashy. "Sentiment analysis algorithms and applications: A

survey." Ain Shams engineering journal 5.4 (2014): 1093-1113.
[3] Fernando, Samuel, and Mark Stevenson. "A semantic similarity approach to paraphrase

detection." Proceedings of the 11th annual research colloquium of the UK special interest group for
computational linguistics. 2008.

[4] Han, Lushan, et al. "UMBC_EBIQUITY-CORE: Semantic textual similarity systems." Second Joint
Conference on Lexical and Computational Semantics (* SEM), Volume 1: Proceedings of the Main
Conference and the Shared Task: Semantic Textual Similarity. 2013.

[5] Bi, Qiwei, et al. "Mtrec: Multi-task learning over bert for news recommendation." Findings of the
Association for Computational Linguistics: ACL 2022. 2022.

[6] Smith, Jason R., et al. "Dirt cheap web-scale parallel text from the common crawl." Association for
Computational Linguistics, 2013.

[7] McEnery, Tony, Richard Xiao, and Yukio Tono. Corpus-based language studies: An advanced resource
book. Taylor & Francis, 2006.

[8] Song, Xinying, et al. "Fast wordpiece tokenization." arXiv preprint arXiv:2012.15524 (2020).
[9] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30

(2017).
[11] Stanford CS 224n, final project hand out, 2023,

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1204/reports/default/report25.pdf
[12] Choi, Seungtaek, et al. "C2l: Causally contrastive learning for robust text classification." Proceedings of
the AAAI Conference on Artificial Intelligence. Vol. 36. No. 10. 2022.
[13] Zhang, Zhilu, and Mert Sabuncu. "Generalized cross entropy loss for training deep neural networks with
noisy labels." Advances in neural information processing systems 31 (2018).
[14] Ruby, Usha, and Vamsidhar Yendapalli. "Binary cross entropy with deep learning technique for image
classification." Int. J. Adv. Trends Comput. Sci. Eng 9.10 (2020).
[15] Das, Kalyan, Jiming Jiang, and J. N. K. Rao. "Mean squared error of empirical predictor." (2004)
[16] Sharma, Lakshay, et al. "Natural language understanding with the quora question pairs dataset." arXiv
preprint arXiv:1907.01041 (2019).
[17] Shao, Yang. "Hcti at semeval-2017 task 1: Use convolutional neural network to evaluate semantic
textual similarity." Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017).
2017.

