
Pals for PALs: Exploring Extensions to Projected
Attention Layers for Sentence-Level Tasks

Stanford CS224N Default Project

Lainey Wang
Department of Computer Science

Stanford University
lyw0015@stanford.edu

Abstract

In this project, I implement a multi-task model for the SST-5, QQP, and STS-B
tasks that improves upon the performance of the BERT baseline from Devlin et al.
(2018). I implement the projected attention layers (PALS) model as proposed in
Stickland and Murray (2019), along with several additional variations: freezing
BERT weights during training, pretraining BERT with sentence embeddings before
finetuning, and adding SMART regularization Jiang et al. (2020). With a majority
voting ensemble comprised of all these models, I achieve a significant performance
increase over the baseline, reaching 3rd place on both the test and development set
leaderboards.

1 Key Information to include

My mentor is Manasi Sharma. I have no external collaborators nor am I sharing projects.

2 Introduction

In this project, I address the NLP challenge of multi-task fine-tuning. Specifically, I focus on a
model’s ability to classify sentence sentiment (SST-5), predict paraphrase pairs (QQP), and detect
semantic textual similarity (STS-B) while sharing BERT word embeddings.

The current state-of-the-art approach for these tasks relies on transfer learning, where a
large language model is pre-trained on a language modeling objective to learn general semantic
and syntactic information. That model is then fine-tuned on smaller, supervised downstream tasks
like SST-5, QQP, or STS-B to produce state-of-the-art results (Liu et al., 2019; Yang et al., 2019).
However, typical fine-tuning approaches require a new set of weights for each task and, if trained on
multiple tasks, can suffer from catastrophic forgetting, where weights from the previous task are
forgotten when training a new task, and consequently the old task’s performance suffers (Mccloskey
and Cohen, 1989). Thus, the main aim of this project is to implement a multi-task model fine-tuned
on one set of BERT weights that can perform well across all three tasks.

My first attempt to improve upon the base BERT model is the projected attention layers
(PALs) model proposed by Stickland and Murray (2019), which adds a task-specific, low-dimensional
multi-head attention layer in parallel to each normal BERT layer. I also implement their proposed
training scheduler, which samples tasks proportional to their training set size early in training before
gradually evening out. Together, these two changes result in a huge improvement over default
multi-task trained BERT.

I then experiment with the following techniques to further improve upon the PALS model:

Stanford CS224N Natural Language Processing with Deep Learning



1. Freezing most BERT weights during training so that the only layers trained are the output
layer normalization layers, the pooling layer, and the task-specifc PALs functions. This is
an original contribution, but is inspired by the performance of Adapter BERT from Houlsby
et al. (2019).

2. Pretraining BERT on the MNLI and SNLI datasets with cosine similarity sentence embed-
dings before PALs fine-tuning. This pretraining approach is inspired by the Sentence-BERT
(SBERT) models from Reimers and Gurevych (2019), but the addition of PALs layers is an
original contribution.

3. SMART regularization from Jiang et al. (2020), which uses adversarial regularization and
Bregman proximal point optimization to manage complexity and reduce overfitting.

Of these modifications, all lead to similar performance to the original PALs model when tested in
isolation, with the SBERT model performing better on the SST-5 task, but worst on QQP and STS-B.
Finally, we assemble an ensemble of all these models and the original PALs model to achieve our
highest performing model.

3 Related Work

The primary advantage of multi-task learning is that models can take advantage of transfer learning
effects where by training on one task, we can improve the model’s performance on a second task
and vice versa. Subsequently, many multi-task learning architectures focus on related tasks in
similar domains to maximize the benefit from transfer learning. In Peng et al. (2020), the authors
train a model specific to the biomedical and clinical text domains and outperform state-of-the-art
transformer models by 2.0% and 1.3% respectively. Likewise, in Bi et al. (2022), to get better
news recommendations, the authors train a model on the main new recommendation task and two
additional auxiliary tasks, news category classification and named entity recognition, to result in
improved performance.

However, in our case, the transfer learning benefits from multi-task learning may be less
clear, since our tasks are in different domains. The Projected Attention Layers (PALs) model by
Stickland and Murray (2019), which also operated in this setting, was very effective at using a single
large base model to work with multiple less-related tasks. By adding a low-dimensional multi-head
attention layer in parallel to each normal BERT layers, they were able to achieve performance on the
GLUE benchmark comparable to finetuned BERT. However, Stickland and Murray found that while
some tasks (like RTE) benefited from transfer effects and some tasks were agnostic to it (QQP, MNLI,
QNLI), the two single sentence tasks suffered the greatest drop in accurancy (SST and CoLA),
indicating that there was likely some learning interference. Since this project is not interested in
the transfer effects for the RTE task and wants to maximize SST performance, I wanted to explore
architectures that could reduce the effects of interference while keeping the multi-task fine tuning
performance.

One approach which aimed to minimize task interference with success was the Adapter
BERT model proposed by Houlsby et al. (2019). Adapter BERT adds task-specific linear
adapter modules within each BERT layer and freezes the BERT weights, so that training only
affects the task-specific adapter modules. The authors find that this approach is able to reach
performance comparable to fully fine-tuned BERT, with a GLUE score of 80.0, compared to 80.4 for
fine-tuning. An additional benefit of this architecture is that since all tasks are independent, the model
can be trained on one task at a time, and tasks can be added or removed without influencing the model.

Finally, since our tasks are all sentence-based, I thought it may be worth exploring further
pretraining BERT for sentence-level embeddings instead of the default word-level embeddings to
improve performance. Reimers and Gurevych (2019) propose sentence-level embeddings for BERT
in their model Sentence-BERT (SBERT), which is trained on the MNLI and SNLI datasets for cosine
similarity loss. They find that SBERT outperforms other state-of-the-art sentence-level models on the
STS and other transfer learning tasks.

2



4 Approach

4.1 Baselines

I use two baselines to evaluate my model. The first is fine-tuned BERT, which in the absence
of transfer effects represents an upper bound on our performance since it requires tuning all
BERT parameters to perform well on each task individually. To fine-tune our model, we add a
classification head in the form of two feedforward layers with GELU (Hendrycks and Gimpel, 2016)
as the activation function. The size of the intermediate linear layer is chosen arbitrarily to be dl = 256.

The second baseline is what I refer to as frozen BERT. Frozen BERT is trained on all three
tasks, but with frozen BERT weights so that the only training is on the top classifiction head which is
comprised of the same two feedforward GELU layers. Frozen BERT represents a lower bound on our
performance, since there is no change to the underlying model embeddings.

In both baselines, the BERT architectures are kept the same as in Devlin et al. (2018). Pre-
trained BERT weights are from HuggingFace’s bert-base-uncased model. For more details on the
BERT architecture, we refer readers to the CS224N default project handout.

4.2 Projected Attention Layers (PALs)

I implement the PALs model architecture from Stickland and Murray (2019) from scratch, but
reference their original code at parts which are indicated in my code.

The main idea behind PALs is to add a task-specific low-dimensional multi-head attention
layer in parallel to each BERT layer. In the original BERT layer from Devlin et al. (2018), which
is depicted in Figure 1a, the input hidden states (h) to each BERT layer are first transformed
by a multi-headed self-attention operation (SA) which allows the model to attend to each word
embedding in the sequence. The resulting attention scores are then given a residual connection
and layer normalized (LN ), followed by another two feed-forward GELU layers (FFN), residual
connection, and a final layer normalization. We can thus represent a BERT layer (BL) with the
following equations:

hatt = LN(h + SA(h)) (1)

BL(h) = LN(hatt + FFN(hatt)) (2)

Figure 1: Side by side comparison of BERT and
PALs layers.

To modify the original BERT layer into our
PALs layer, we add a task-specific attention
layer in parallel with the second residual connec-
tion and feedforward network right before the fi-
nal layer normalization as in Figure 1b. The task
specific function takes as input the hidden states
to the BERT layer and downsamples it through
a linear encoder layer (VE) of size ds = 204,
which is again arbitrarily chosen (and consis-
tent with Stickland and Murray). The encoded
input is then transformed by a multi-headed self-
attention operation and decoded back to the orig-
inal hidden size dh = 768 through a linear de-
coder layer (VD). Unlike the self-attention lay-
ers, both the encoder and decoder weights are
shared across PALs layers, but not by task. We
can represent the new PALs layer (PL) with the
following equations where the last term repre-
sents the additional task-specific PALs layer (PA):

PA(h) = VD(SA(VE(h))) (3)

PL(h) = LN(hatt + FFN(hatt) + PA(h)) (4)

3

https://huggingface.co/bert-base-uncased
https://web.stanford.edu/class/cs224n/project/default-final-project-bert-handout.pdf
https://github.com/AsaCooperStickland/Bert-n-Pals


By stacking 12 of these PALs layers on top of each other like in the original BERT model, we have
the completed PALs model. PALs uses the first pooled [CLS] token embedding for downstream
fine-tuning tasks as Devlin et al. (2018) recommend.

4.3 PALs Extensions

I implement several PALs extensions on top of the base model. Frozen PALs is implemented from
scratch, SBERT PALs references the SBERT implementation found on this website (link), along
with the official repo and documentation, and SMART references this Github implementation (link),
which I repurpose for our use case by referencing the MT-DNN-SMART repo implementation.

Frozen PALs After seeing some potential task interference when fine-tuning the original PALs, I
wanted to experiment with freezing the BERT weights and only training task-specific layers during
fine-tuning to prevent task interference.

Frozen PALs is an original contribution inpsired by Houlsby et al. (2019), which also
freezes BERT layers during training. Frozen PALs uses the normal PALs architecture but freezes
most BERT layers during training. Only the second layer normalization layers, the final pooling layer,
and the task-specific PALs functions are trained on the downstream tasks. The second layer norm and
final pooling layers are chosen to be trained as well because they directly affect the PALs layers,
and I didn’t want the layer norm and pooling to be inaccurately based on the old BERT weights.
By sharing BERT weights completely and focusing training on the task-specific layers (with the
exception of layer norm), I hoped to minimize interference between tasks and improve performance.

SBERT PALs Since our tasks (sentiment classification, paraphrase detection, and semantic
similarity) rely more on sentence-level meanings, there may be a large gap between the learned
embeddings from pretraining, which are word-embeddings from BERT, and embeddings useful for
the tasks.

To pretrain my SBERT model, I use the sentence-level pretraining method from SBERT
proposed by Reimers and Gurevych (2019). Instead of using only the [CLS] token embedding for
our downstream tasks, I mean-pool all word embeddings in the sequence to form a sentence-level
embedding. Since the model is being trained to perform classification tasks, I use multiple negatives
ranking (MNR) loss to train sentence embeddings. I use MNR loss instead of the softmax loss
originally proposed in the paper, since the authors find that MNR loss yields better performance (see
author’s note on the official Github repo (link).

MNR loss (Henderson et al., 2017) takes sets of K sentence pairs [(a1, b1) , . . . , (an, bn)]
where ai, bi are labeled as similar sentences and all (ai, bj) where i ̸= j are not similar sentences.
MNR loss simultaneously minimizes the distance between ai, bi and maximizes the distance (ai, bj)
where i ̸= j. Specifically, training minimizes the approximated mean negative log probability
(cross-entropy) of the data. For a single batch, this is calculated as:

J (x, y, θ) = − 1

K

K∑
i=1

logPapprox (yi | xi)

= − 1

K

K∑
i=1

S (xi, yi)− log

K∑
j=1

eS(xi,yj

 (5)

where θ represents the sentence embeddings and neural network parameters used to calculate S, a
scoring function.

More specifically for our training, I use the positive entailment pairs from the combined
SNLI and MNLI datasets as our similar sentence pairs. Each other sentence in the training batch
is considered a dissimilar pair. Each sentence pair is fed into the BERT model individually and
mean-pooled into sentence embeddings u, and v. We then take the cosine similarity between the
embeddings, where a score of 0 indicates no similarity and 1 indicates equivalent sentences.

Cosine similarity (u, v) =
u · v

max (∥u∥2 · ∥v∥2)
(6)

4

https://www.pinecone.io/learn/fine-tune-sentence-transformers-mnr/
https://github.com/UKPLab/sentence-transformers
https://www.sbert.net/
https://github.com/archinetai/smart-pytorch
https://github.com/namisan/mt-dnn/blob/master/mt_dnn/perturbation.py
https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/nli


Finally, the model trains on the cross-entropy loss between the original batch indices as ground truth
pairs and the cosine similarity scores. Through this method, we can pretrain the BERT model to use
sentence embeddings.

When fine-tuning the SBERT model on downstream tasks, we replace the BERT layers
with PALs layers and keep the SBERT weights. This combining of SBERT with PALS is an original
contribution to my knowledge.

To train SBERT PALs, each sentence pair is passed individually to SBERT to produce two
sentence embedding and we return the squared cosine similarity of these two embeddings as our
prediction for the QQP and STS-B tasks. For the SST-5 task, I chose to use the [CLS] token
embedding instead of the mean-pooled sentence embedding for two reasons. First, since SST-5 is a
single sentence task, it is impossible to use cosine similarity to output a corresponding sentiment
score with the sentence embeddings. Second, since the sentence-embeddings are trained on cosine
similarity, using them purely for a sentiment classification metric creates a large training gap which
may hurt performance. With better sentence embeddings, I hope to improve the performance of our
model on our sentence-level tasks.

SMART Regularization Because our datasets have such widely varying sizes (140k+ exam-
ples for QQP but only around 6k for STS), aggressive fine-tuning for the larger QQP dataset
could cause more overfitting for the smaller SST and STS datasets. To avoid such an effect
and reduce overfitting generally, I experiment with adding SMART regularization to the PALs training.

SMART regularization adds smoothness-inducing adversarial regularization to the model
by injecting the word embeddings with small amounts of noise. The model is then trained to output
similar predictions even with that noise, so it is more robust to small amounts of change. Bregman
proximal point optimization is used to solve the smoothness optimization equations. For more details
about the SMART algorithm, review Appendix A.1.

5 Experiments

5.1 Data

We use the SST-5, QQP, and STS-B datasets provided by CS224N.

SST-5: Stanford Sentiment Treebank consists of single sentences from movie reviews each
with the label of negative, somewhat negative, neutral, somewhat positive, or positive. We have 8,544
train, 1,101 development, and 2,210 test examples (Socher et al., 2013).
QQP: QQP consists of question pairs with labels indicating whether particular instances are
paraphrases of one another. We have 141,506 train, 20,215 development, and 40,431 test examples.
STS-B: STS-B consists of sentence pairs of varying similarity on a scale from 0 (unrelated) to 5
(equivalent meaning). We have 6,041 train, 864 development, and 1,726 test examples (Agirre et al.,
2013).
SNLI + MNLI: Together, SNLI and MNLI consist of 1 million sentence pairs annotated with the
labels contradiction, eintailment, and neutral. After filtering for entailment pairs only, we have
314,315 train examples (Bowman et al., 2015; Williams et al., 2017).

5.2 Evaluation method

We use the metrics specified in the CS224N default project handout. For SST-5 and QQP, we use
accuracy, a binary measure of whether the answer matches the ground truth exactly. For STS-B, we
use the Pearson correlation of the true similarity values against the predicted similarity values.

5.3 Experimental details

Unless otherwise noted, all models were trained with a learning rate of 2 ∗ 10−5 and a batch size of
16 for 10 epochs (with 6,000 training steps per epoch). All models used the AdamW optimizer with
β1 = 0.9, β2 = 0.999, ϵ = 10−7, and no weight decay. There was a learning rate warmup over the

5

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://web.stanford.edu/class/cs224n/project/default-final-project-bert-handout.pdf


first 10% of training, and linear decay of the learning rate after this, going down to zero at the end of
training. Only the frozen BERT baseline used a learning rate of 10−3.

BERT BERT was run with the default configuration used by Devlin et al. (2018). The size of each
hidden layer was dh = 768, with 12 attention heads per layer and 12 BERT layers in all.

PALs PALs was run with the default configuration used by Stickland and Murray (2019). The size
of each PALs attention layer was ds = 204, with 12 attention heads per layer.

SBERT Pretrained SBERT used a batch size of 32 and was trained for 1 epoch. SBERT PALs used
the same settings as PALs.

SMART SMART used Tx̃ = 1, σ = 10−5, ϵ = 10−6, and η = 10−3 in the notation used by Jiang
et al. (2020).

5.4 Results

I present the compiled results of our models on the development set in Table 1. All the PALs
models we test represent a significant improvement from the baseline frozen BERT model. However,
compared to the original PALs model in Stickland and Murray (2019), all our modifications perform
equally or worse on all tasks, with the exception of SBERT PALs on the SST-5 task, indicating that
our changes to the architecture are not useful for improving performance. This could be because
there is already enough complexity in the original PALs, and it is already sufficiently accounting for
the interference, smoothing, and sentence-level embeddings that I try to encourage. Fortunately, the
drops in performance are relatively minimal and all of the models perform relatively close to the
individually fine-tuned BERT baseline models that represent an upper bound.

The SBERT PALs model has the most differential in performance from original PALs. SBERT PALs
performs better than PALs on the SST-5 task, but worse on QQP and STS-B. The performance boost
in SST-5 could be because the sentence-based weights we learn from the pretraining are actually
more useful for sentiment analysis despite not using the sentence embeddings themselves. The
performance decrease could be because SBERT PALs does not have the ability to attend between
sentence pairs, unlike PALs.

Finally, none of the multi-task models are able to perform better than the individually fine-
tuned BERT baselines on any task, indicating that there is likely very little transfer learning potential
between these three tasks, which is what I expected.

Table 1: Development set results for all models. Note that the fine-tuned BERT baseline is actually
three separate models which are each individually fine-tuned.

METHOD SST-5
(dev)

QQP
(dev)

STS-B
(dev)

Av.
(dev)

BASELINES FINE-TUNED BERT 0.543 0.884 0.886 0.771
FROZEN BERT 0.389 0.697 0.456 0.514

PALs ORIGINAL PALs 0.509 0.883 0.884 0.759
FROZEN PALs 0.5 0.883 0.878 0.754
SBERT PALs 0.52 0.862 0.855 0.746
SMART PALs 0.501 0.881 0.872 0.751

ENSEMBLE PALS ENSEMBLE 0.524 0.892 0.897 0.771

I present the ensemble model’s performance on the test set in Table 2. For the test set I submit two
models (one submission contained an error). Expectedly, the ensemble performs the best, but overall
both models perform very similarly to the test set as on the development set with two exceptions.
First, both models actually improve in SST-5 performance on the test set which perhaps indicates that
our model performance is more variable than shown here. Second, the original PALs model performs
much more poorly on the STS-B test set (0.884 to 0.825). This is because I erroneously applied a

6



sigmoid function to the test prediction set but not while training. If the sigmoid were removed (which
it was in all other tests), I hypothesize that the STS-B test score would be more similar as well.

Table 2: Test set results for the original PALs and ensembled models.

METHOD SST-5
(test)

QQP
(test)

STS-B
(test)

Av.
(test)

ORIGINAL PALs 0.535 0.882 0.825 0.747
PALS ENSEMBLE 0.534 0.893 0.891 0.773

6 Analysis

To analyze each of the PALs modifications, I use the t-SNE technique proposed by van der Maaten
and Hinton (2008) to visualize the models’ sentence embeddings on the SST-5 dataset. t-SNE
projects high-dimensional vector embeddings into a low-dimensional space so they can be easily
visualized. In Figure 2, using t-SNE, I project 1,000 development examples from the SST-5 dataset
onto a 2-dimensional graph for each model, and annotate them with their sentiment labels so we can
see different clustering patterns. I omit analysis of the QQP and STS-B datasets because the sentence
embeddings outputs for paired-sentences are more difficult to visualize at scale with the same
clustering labels (we need to group sentences by pairs as well as whether they are paraphrases or not).

(a) PALs SST-5 dev set embeddings (b) Frozen PALs SST-5 dev set embeddings

(c) SBERT PALs SST-5 dev set embeddings (d) SMART PALs SST-5 dev set embeddings

Figure 2: Low-dimensional t-SNE projections of SST-5 sentence embeddings from all PALs models
with their sentiment labels 0 (negative) to 4 (positive).

It’s important when analyzing t-SNE graphs to not place too much attention on the relative

7



density/thickness of the clusters or inter-cluster distance, since these can easily change with different
perplexity hyperparameters and more iterations. Likewise, t-SNE output is rotation-invariant
and can be flipped across axes (van der Maaten and Hinton, 2008), so the flip from positive to
negative X-dimensions we see from PALs and Frozen PALs to SBERT PALs and SMART PALs is
also inconsequential. We can pay attention to the shapes of the embeddings and their clusters however.

Overall, we see that no model has very clear clustering between labels. It is very hard for
the models to tell the difference between a 4 (very negative) and 3 (negative) sentence, a 3 and a 2,
etc. Since accuracy measures exact matches of our model predictions to the ground truth labels, these
embeddings graphs help explain why our accuracy scores hover around only 0.50, since our model is
unable to consistently match the exact fine grained label. However, the clusters indicate that the
models are at least getting the positive/negative sentiment of the sentences right most of the time.

Another interesting observation is the shapes of the embeddings curves. While the PALs
curve has an sharp bend on the right side and a curve inwards on the left side, the SMART PALs curve
has no such bends on its respective sides, indicating that even though the SMART regularization did
not improve performance in this task, it still seems to have a smoothing effect on the embeddings
overall.

The Frozen PALs embeddings, on the other hand, seem to be rather unsmooth, with many
holes within clusters and jagged boundaries. This lack of smoothness could be a reason for why
Frozen PALs performs the worst on the SST-5 task. I hypothesis that this lack of smoothness could
be the result of freezing the BERT-level layers, which created word embeddings that don’t quite align
with the changing PALs weights for each task. As a result, the training gap between the BERT layers
and the PALs layers creates worse embeddings and performance, disproving the initial hypothesis
that freezing BERT layers might allow better multi-task training without interference.

Finally, it’s surprising that the SBERT PALs and SMART PALs embeddings have similar
beaker-like shapes, since they are pretrained on completely different objectives. This could indicate
that the SBERT cosine similarity pretraining task actually encourages some sort of smoothing
regularization effect in the down-stream PALs training akin to SMART. Additionally, SBERT PALs
is able to handle the sharp bend on the right side of the PALs embeddings much better than SMART
PALs, resulting in the smoothest and most cohesively clustered graph overall. This extra smoothing
effect on the embeddings could explain why the SBERT PALs model performs the best on the SST-5
tasks.

7 Conclusion

In this project, I implement the PALs model and explore several modifications to it, like freezing
only BERT layer weights during training, SBERT cosine similarity pretraining, and SMART regu-
larization. I show that these changes in model architecture are relatively ineffectual at improving
model perfomance, although they may have smoothing effects on the underlying embeddings. In
addition, I create an ensemble of our models which achieves strong results on the three tasks, with
an average score of 0.771 on the dev set and 0.773 on the test set. The primary limitation of this
work is the inability to find any architectural change that meaningfully improves task performance.
It can’t say where to look for better performance; only where not to look. In future work, it may
be interesting to explore how interference can be minimizing without creating training gaps from
freezing layers. Additionally, I didn’t observe any transfer learning effects from these three tasks, but
there could be tasks or datasets that help encourage more transfer learning for these tasks and thus
better performance. It could also be promising to explore the SBERT cosine similarity pretraining
task more, since it resulted in better performance for the SST-5 task.

References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. *SEM 2013

shared task: Semantic textual similarity. In Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic
Textual Similarity, pages 32–43, Atlanta, Georgia, USA. Association for Computational Linguistics.

8

https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004


Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. 2022. Mtrec: Multi-task
learning over bert for news recommendation. In Findings of the Association for Computational
Linguistics: ACL 2022, pages 2663–2669.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large
annotated corpus for learning natural language inference.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding.

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun hsuan Sung, Laszlo Lukacs, Ruiqi Guo, Sanjiv
Kumar, Balint Miklos, and Ray Kurzweil. 2017. Efficient natural language response suggestion for
smart reply.

Dan Hendrycks and Kevin Gimpel. 2016. Bridging nonlinearities and stochastic regularizers with
gaussian error linear units. CoRR, abs/1606.08415.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning for
NLP. CoRR, abs/1902.00751.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
SMART: Robust and efficient fine-tuning for pre-trained natural language models through princi-
pled regularized optimization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized BERT
pretraining approach. CoRR, abs/1907.11692.

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605.

Michael Mccloskey and Neil J. Cohen. 1989. Catastrophic interference in connectionist networks:
The sequential learning problem. The Psychology of Learning and Motivation, 24:104–169.

Yifan Peng, Qingyu Chen, and Zhiyong Lu. 2020. An empirical study of multi-task learning on bert
for biomedical text mining. arXiv preprint arXiv:2005.02799.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Asa Cooper Stickland and Iain Murray. 2019. Bert and pals: Projected attention layers for efficient
adaptation in multi-task learning.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. 2017. A broad-coverage challenge corpus
for sentence understanding through inference.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. 2019. Xlnet: Generalized autoregressive pretraining for language understanding. CoRR,
abs/1906.08237.

9

https://doi.org/10.48550/ARXIV.1508.05326
https://doi.org/10.48550/ARXIV.1508.05326
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
http://arxiv.org/abs/1705.00652
http://arxiv.org/abs/1705.00652
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1902.00751
http://arxiv.org/abs/1902.00751
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.48550/ARXIV.1908.10084
https://doi.org/10.48550/ARXIV.1908.10084
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://doi.org/10.48550/ARXIV.1902.02671
https://doi.org/10.48550/ARXIV.1902.02671
https://doi.org/10.48550/ARXIV.1704.05426
https://doi.org/10.48550/ARXIV.1704.05426
http://arxiv.org/abs/1906.08237


Figure 3: SMART algorithm from Jiang et al. (2020).

A Appendix (optional)

A.1 SMART

I use the SMART algorithm as presented in Figure 3. ls indicates symmetrized K-divergence
for classification tasks and mean squared loss for regression tasks. To do the smoothness-inducing
regularization, I inject noise vi into our embeddings to get noised logits for each task. For classification
tasks, our loss is the symmetrized KL-divergence between the original logits and the noised logits;
for regression tasks, our loss is the mean squared error between the original scalar output and the
noised output. We then do a gradient update on the noise to move it adversarially towards increasing
the difference between the two logits. To solve the smoothing function, I use the iterative Bregman
proximal point optimization method the authors propose, as seen in the for-loop.

10


	Key Information to include
	Introduction
	Related Work
	Approach
	Baselines
	Projected Attention Layers (PALs)
	PALs Extensions

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Appendix (optional)
	SMART


