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Abstract

In this paper, we propose an NLP-based Multi-Choice Machine Reading Compre-
hension (MRC) solution which can fill out the CANS© assessment form by reading
vignettes of patients with a semi-supervised approach. The solution comprises
(1) a self-supervised encoder based Pre-trained Language Model (PrLM), such
as bert-base-uncased (Devlin et al., 2018) and its other flavors, along with
a fine-tuning process using CANS© dataset, and (2) a matching network, such
as DCMN (Dual co-matching network) which was implemented by Zhang et al.
(2020) and supposedly capture the relationships among the triplets of passage
(P), question (Q), and answering options (O). In our baseline model we imple-
mented and tested part (1) of the solution, achieving 62% during training, and
59% during testing. We also implemented the complete solution (1) + (2), with
DCMN and DUMA (Zhu et al., 2022) matching networks. We achieved 73.0%
/ 60.0% and 74.0% / 72.0% for training/testing sets, respectively. Nevertheless,
our results demonstrated that the best results were achieved with the PrLM Albert
(Lan et al., 2019) albert-xxlarge, without a matching network: 78.0% / 72.0%
for training/testing. Based on these results, we performed a qualitative analysis to
understand some reasons for such a performance, and other alternatives that can
improve our training results.

1 Key Information to include
• TA mentor: David Huang; External collaborator: Joshua Adams

2 Introduction
The World Health Organization (WHO) states that mental health is an essential component of a
healthy human life (Gabín, J.; Pérez, A.; Parapar, J, 2021). In this paper, we describe a Natural
Language Processing (NLP) solution that can have a positive impact on mental health. The CANS©

/ANSA assessment is a comprehensive mental health evaluation tool consisting of a multi-category
four-option questionnaire (Lyons, 2009). This assessment is comprised of fifty question sets and
serves as an efficient communication mapping tool, with a reliability score above 0.90 with real-world
case scenarios answered in a ‘realistic manner’ mimicking real-responses (Lyons, 2009), where
a score of 1.00 means no errors. Each question is relevant for service planning, focused on the
child/youth, and indicates if an action is required. Additionally, the exam monitors outcomes, i.e., if
question set responses rated ‘2’or ‘3’ moved to rating ‘0’ or ‘1’ over the treatment time.

The NLP solution here was designed to complete the exam based on machine reading comprehension
(MRC) to understand a passage of text and then answer the questions naturally (P,Q) → A. Natural
and accurate responses to questions, in general, have been an active and challenging problem not
entirely solved yet. There have been various benchmarking datasets, such as RACE (Lai et al., 2017)
and SQuAD (Sun et al., 2019a), as well as models, such as DrQA (Chen et al., 2017), BERT (Devlin
et al., 2018), DCMN (Zhang et al., 2020) and DUMA (Zhu et al., 2022) used as attempts to solve the
problem.

For a specific MRC task, it can be classified as generative or selective, according to Baradaran et al.
(2020). In generative tasks, the model will generate answers not limited to the spans of the passage.
In selective tasks, on the other hand, the model will select the best alternative given candidate answers.
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The focus of this paper is a selective task, Multi-choice MRC. Table 6 shows one example of the
CANS© dataset, whose task is to select the best answer option among four options given a particular
tuple of passage and question. The NLP solution designed can complete the four-option CANS©

questionnaire, based on a patient vignette, with 70% accuracy. Relevant to this, that training and
certification with a reliability of at least 0.70 on a test case vignette is required for certification and
compliance in ethical use. A reliability equals to 1.00 means no wrong answer.

The core method for solving the selective MRC problem is based on a two-level hierarchical process,
1) representation encoding, which is done by an encoder PrLM, such as bert-base-uncased
(Devlin et al., 2018) and its other flavors, and 2) capturing the relationship among the triplet of
passage, question and answer, which has to be handled by a matching network such as OCN (Ran
et al., 2019a), DCMN (Zhang et al., 2020) and DUMA (Zhu et al., 2022). With the advancements
of PrLMs, design of efficient matching networks become more difficult. Table 1 shows that newer
PrLMs such as ALBERT (Lan et al., 2019) is efficient even without a matching network.

Table 1: Performance of several models on RACE Dataset sorted by releasing time

without
matching

OCN DCMN DUMA

BERTbase 65.0* 66.8** 67.0* —

BERTlarge 72.0* 71.7** 75.4* —

ALBERTxxlarge 86.1*** — 85.7*** 88.0***
*(Zhang et al., 2020); **(Ran et al., 2019a); ***(Zhu et al., 2022)

We established a baseline model focusing on representation encoding only using different PrLMs.
Then reproduced the matching network using as references DCMN (Zhang et al., 2020) and DUMA
(Zhu et al., 2022). In the DCMN approach, the matching module calculated attentions scores
and representations from encoded passage-question, passage-option, and question-option pairwise
relationships bidirectionally for each triplet {P,Q,A}, totaling six combinations, exploiting the gated
mechanism to fuse the representations from two directions.

In the DUMA approach, based on multi-head attention, the matching module calculated attention
representations using encoded passage tokens HP as query and encode question-option HQO as key-
value, and then HQO as query and HP as key-value (bi-directional way, totaling two combinations),
to finally fuse both representations. Intuitively two combinations (DUMA) is less complex than
six (DCMN), and the use of multi-head (DUMA), i.e., multiple blocks for many encoded words
simultaneously seems to indicate a simpler and better approach. It is possible to observe that, when
both models are pre-trained with ALBERT, only DUMA surpasses the basic pre-trained model by 2
percentage points(see table 1).

However, in our experiment, we observed that ALBERT surpassed DUMA performance during
training, 78% over 74%, and both of them achieved the same performance in testing, i.e., 72.0%. It
showed us that matching networks could achieve same results, and eventually better ones by a small
amount, but, to our understanding, this depends on the size of the dataset. This result also motivated
us to look at other alternatives than matching networks, e.g, perform qualitative and error analysis to
further identify potential better ways to improve the quantitative results.

3 Related Work
Reading comprehension can be seen as an important test bed for evaluating how well computer
systems understand human language. Lehnert, in 1977, as stated by Manning et al., (2023) that

‘the ability to answer questions is the strongest possible demonstration of understanding’ (Manning
et al., 2023). Furthering research in challenging computer systems to understand human language,
Chen et al. (2017) demonstrated a minimal, highly successful architecture for machine reading
comprehension (MRC) and question answering, which became the Stanford Attentive Reader. In this
model, the passage’s paragraphs token pi are represented as feature vectors p̃i ∈ Rd, and encoded via
a bidirectional LSTM becoming. The question is also encoded, and the model predicts, at paragraph
level, the span of tokens (start and end) that is most likely the correct answer. It achieved 79.4%
F1 scores on the test set, matching the top performance SQuAD 1.1 leaderboard at the time of this
research.
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A large-scale deep PrLM, Bert, has led the field of NLP to a new stage. It introduced a bi-directional
transformer encoder pre-trained on large amounts of text (Wikipedia + BookCorpus), and it was based
on two training objectives: masked language model (MLM) and next sentence prediction (NSP).
bert-base has 12 layers, 768 hidden-dim and 110M parameters, bert-large has 24 layers, 1024
hidden-dim and 330M parameters. Since initial Bert was released, other PrLMs were proposed, such
as Robustly Optimized BERT Pre-training approach, RoBERTa (Liu et al., 2019)), which applies
many techniques for better training, and Lite Bert ALBERT (Lan et al., 2019)), which proposes to
share parameters among the modeling layers. While roberta-base has 12 layers, 768 hidden-dim
and 123M parameters, albert-xxlarge has 12 layers, 4096 hidden-dim and 223M parameters.

BERT was applied to the MRC to solve open questions where the answer was a span of the passage.
The question-passage was encoded by the model following the template: [CLS] Question tokens
[SEP] Passage tokens ..., and a cross-entropy loss function was used to train the model and highlight,
based on the probability assigned to each token, and predict the start and end token indexes in
the passage to answer the question. In 2018, Google’s Bert achieved 91.8% F1 on SQuAD 1.1.
leaderboard, surpassing human performance, 91.2%.

Despite the great success of a PrLM as Bert, it has been shown that the ability to solve MRC problems
could be further improved with a well-designed matching network. For a selective Multi-Choice
MRC task, RACE, a collection of approximately 28,000 passages and 100,000 questions from middle
and high school English exams, was used as a benchmark dataset. It is worth noting that RACE is a
four-option questionnaire that contains five category types of questions (Sun et al., 2019b), which
can increase the challenge of the MRC task: 1) detail (facts and details), 2) inference (reasoning
ability), 3) main (main idea or purpose of a document), 4) attitude (author’s attitude toward a topic
or tone/source of a document), and 5) vocabulary (vocabulary questions). DCMN (Zhang et al.,
2020) and DUMA (Zhu et al., 2022) proposed matching networks, using attention concepts, to relate
the triplet {P,Q,A} obtaining better results, by a small margin, than plain PrLMs (see Table 1).
Besides adding a matching module, different authors proposed methods to improve results, e.g.,
relating and/or excluding answering options. Ran et al. proposed a method to model relationships and
interactions among answer options to the benefit of distinguishing them (Ran et al., 2019b). Kim and
Fung (2020) integrated a model that learns to select the wrong answer. Zhang et al. (2020) considered
interactions among options to select the best one. This last author also proposed to select the more
important paragraphs from the passage to improve the matching representations.

The models in DCMN, and especially in DUMA, solved Multi-Choice MRC exams by means of a
PrLM fine-tuned with the RACE dataset, and a matching network. Gabín, Pérez, and Perapa applied
almost the same reasoning, without the matching network, to complete a multi-choice depression
severity questionnaire, made up by twenty-one questions (Gabín, J.; Pérez, A.; Parapar, J, 2021). One
extra step was necessary: after fine-tuning with RACE, they repeated with a very small dataset, eRisk
2019 (Losada et al., 2019), made up by social networking posts from twenty users. They achieved
similar results of best models on the overall depression level, but not on the individual questions. It
exemplifies that a model, with great performance in one dataset, does not automatically generalize
well to another one.

It is also important to note that although some models already surpassed human performance on
SQuAD leaderboard, in terms of accuracy, it can’t be assumed that MRC is solved yet. Ribeiro
et al. (2020) concluded that although useful, accuracy on benchmarks is not sufficient for evaluating
NLP models. For example, he shows that bert-large, although can achieve good accuracy levels
on MRC tasks, often fails to properly grasp intensity modifiers and comparisons/superlatives. In
the passage-question: ‘Anna is worried about the project. Matthew is extremely worried about the
project’, ‘Who is least worried about the project?’, the failure rate of the system is 91.3%. Manning
(2011) indeed did a salient analysis, concluding that at a certain level improvements in NLP, which
can be extended to MRC, do not come from machine learning alone, but from linguistic resources
and associated error analysis.

Current related work indicates that a well-chosen PrLM seems to drive the path forward to solve a
Multi-Choice MRC task. As some authors advocated the use of a matching network to improve the
results, we experimented with it however with small gains. Most importantly, we replicated multiple
authors’ suggestions in analyzing the problem from the linguistic perspective in the mental health
assessment scenario. This was essential for us to understand the successes and errors of our model,
as well as to identify alternatives to improve the model’s performance.
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4 Approach
4.1 Baseline
The experimented PrLM models were: (1) bert-base-uncased (Devlin et al., 2018)
with BertForMultipleChoice, (2) bio_clinicalBERT (Alsentzer et al., 2019) with
SequenceClassification and (3) distilbert-base-uncased (Sanh et al., 2019) with
SequenceClassification. Bert-base-uncased was first, fine-tuned with CANS© dataset. For
pre-processing, each word of the dataset (5.1) was tokenized and mapped to indexes of a vocabulary
(around 30,000 words). Texts were lowercased and tokenized using WordPiece technique. The
bert-base-uncased model follows a masking procedure in which 15% of the tokens are masked. In
80% of cases, the masked tokens are replaced with [MASK]. In 10% of cases, the masked tokens are
substituted with a different random token from the original. The remaining 10% of cases leave the
masked tokens unchanged. Then manually converted and truncated to a feature of a Bert expected
template: [CLS] passage [SEP ] question + option [SEP ]. This formed the embedding, along with
masks (equal to one for all tokens), segment ids (equal to 0 for passage and 1 to question + option),
correct answer question, passage, and option lengths. After conversion to torch tensors, they were
encoded by the Bert model, and a linear layer was applied to the pooled_output to calculate the
logits. These logits were reshaped to the number of options(four), indicating the final predicted
answer and allowing the calculation of the cross entropy loss, using AdamW as the optimizer for
training. We observed that bio_clinicalBERT model gave better results compared to vanilla base
BERT because it has better medical language representation. We implemented the baseline code from
scratch and located at github (Kalikant Jha, 2023). The used references were: Huggingface, DCMN
code (Qzsl123, 2020) and bert_race code (Kegang Xu, 2019). The process is depicted in Fig. 1.

Figure 1: The architecture of baseline model.

We observed that Bert has a max-size-length limitation of 512 tokens. To overcome that, we
experimented with tweaking the model a little bit, with our implementation, dividing the passage into
two parts. First, we divided passages into two equal sizes, and then we encoded both and combined
the pooled_output of both, applying a linear layer trying max and mean combinations before softmax.
Other than this approach, we also tried eliminating tokens at the start, and end by truncating the
passages to accommodate only 512 words. We achieve better results when truncating the end of
passages.

4.2 Dual Co-Match Network (DCMN)

Figure 2: High-level DCMN and DUMA architectures.

We kept the original DCMN architecture, done by Zhang et al. (2020), which is depicted in Fig.
2, and implemented our solution using the original code as a reference (Qzsl123, 2020). We only
modified the original code to load our dataset, which resembles the RACE template. Similar to the
baseline, the first step was to encode the embeddings using a PrLM, the base-large-uncased in
our experiment.

Next, the encoded embeddings were fed into a matching module to better relate encoded passage
HP ∈ R|P |×d, question HQ ∈ R|Q|×d and answering options HOi ∈ R|Oi|×d, with i ∈ {1, 2, 3, 4},
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the last layer outputs by the encoder (see Fig. Fig. 6). Considering the passage-option relationship,
we had two bidirectional alternatives:

GPOi = softmax(HPW1H
Oi

⊤
) ∈ R|P |×|Oi| and GOiP = softmax(HOiW2H

P⊤
) ∈ R|Oi|×|P |

with learnable parameters W1,W2 ∈ Rd×d, similar to calculating attention scores and distribution
using multiplicative attention to relate the two alternatives. Then:

EP = GPOiHP ∈ R|P |×d, EOi = GOiPHOi ∈ R|Oi|×d

i.e., multiplication of previous attention distribution by the original encoded values, and:

SP = ReLU(EPW3), S
Oi = ReLU(EOiW4)

application of a ReLU layer to add non-linearity to the model, with W3,W4 ∈ Rd×d as learnable
parameters. SP _Oi and SOi_P applied a row-wise max pooling layer in SP and SOi

, respectively, to
capture most important activation. And:

g = σ(SP _OiW5 + SOi_PW6 + b)

with W5,W6 ∈ Rd×d and b ∈ Rd as learnable parameters. This variable g worked as a gate to weigh
the influence of each pair-wise representation. Then the equation to match representations from
opposite directions were:

MP _Oi = gSP _Oi + (1− g)SOi_P ∈ Rd

The same reasoning was applied to passage-question and question-option pairs. Finally, we con-
catenated MP _Oi , MP _Q and MOi_Q into Ci ∈ R3d for each option, i.e., i = {1, 2, 3, 4}, applied a
linear layer, making it possible to get a prediction and to use a cross-entropy loss to train the model.

4.3 DUal Multi-head co-Attention (DUMA)
We kept the original DUMA architecture, done by Zhu et al. (2022), similar to DCMN one (see Fig.
2). The differences between the two were the PrLM, albert-xxlarge in DUMA, and the matching
network. It is important to clarify that we implemented our solution using the original code as a
reference (pfZhu, 2022), only modifying it to load our dataset, which resembles the RACE template.

Then the encoded embeddings were fed into the matching module, being HP ∈ R|P |×d the encoded
passage and HQO ∈ R|QO|×d the encoded question-option. This matching module reused the archi-
tecture of multi-head attention, and the attention representations were calculated in a bi-directional
way, i.e., 1) HP as Query, HQO as Key and Value; and 2) HQO as Query, HP as Key and Value (see
Fig. 7). The used equation for multi-head attention one MHA1 is:

outputℓ = softmax(
Query(Key)⊤√

d/h
)Value = softmax(

HPWQ
ℓ (HQOWK

ℓ )⊤√
d/h

)HQOWV
ℓ

with ℓ ∈ {1, 2, ..., h}. It is important to observe that WQ
ℓ ∈ Rd×d, WK

ℓ ∈ Rd×d and WV
ℓ ∈ Rd×d

were added by the authors as learnable parameters. The final of all heads were combined by
output = [output1, ..., outputh]Y , with Y ∈ Rd×d. In a similar way, the MHA2 is calculated, and
we can express the final result by:

DUMA(HP , HQO) = Fuse(MHA1,MHA2)

The Fuse function first used mean pooling to pool the sequence outputs of both multi-head attentions,
and then aggregated the two pooled outputs by element-wise multiplication. The model took the
outputs of DUMA and computed the predicted answering option, and it was possible to use a
cross-entropy loss to train the model.

5 Experiments
5.1 Data
For training, we obtained openly accessible data from pre-trained models: bert-base-uncased,
bert-large-uncased (Devlin et al., 2018), bio_clinicalBERT (Alsentzer et al., 2019),
distilbert-base-uncased (Sanh et al., 2019) and albert-xxlarge (Lan et al., 2019) for pre-
training. Our data for analysis, the CANS© dataset comprised of fully proprietary realistically
completed exams: 18 CANS© (15 with 50 questions and 3 with 40 questions) and 6 ANSA (49
questions), totaling 1164 examples. These samples are not patient-specific data, but rather proprietary
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developed and answered based on real-world scenarios, so an IRB approval is not needed. It is also
important to mention that we added four entire completed questionnaires after baseline runs. We pre-
processed and transformed them into JSON/CSV files to feed into PrLM models. Each example has
an id, a passage/vignette, a question, an answer, and an answering option (see. Fig. 8). We observed
that the data is skewed (fewer counts for option D) hence we performed resampling using the class-
balancing technique to mitigate the biased behavior of the model. The distribution of correct answers
in training set is {A : 597(51.29%);B : 165(14.17%);C : 255(21.91%);D : 147(12.63%); }.

The average number of words in a passage before encoding is {P : 621.52}, the average number of
words in a question is {Q : 26.71}, and the average number of words in answer options is {O : 63.82}.
The total average number of words in a text is approximately 712.06, which is calculated by adding the
average passage size, average question size, and average options size together {P +Q+O : 712.06}.

5.2 Evaluation method
In our model, we have used two major approaches for evaluation 1) performed train-dev-test split of
(0.8-0.1-0.1) with random sampling for training and sequence sampling for testing, and 2) we trained
using 20 entire exams from CANS© dataset (see Section 5.1). Dev and test sets were composed of 2
entire exams each, and sequence sampling was chosen because correct positions of item predictions
were needed for analysis. For the gold exam set accuracy calculated percentage of correctly answered
questions using following formula:

accuracy =
number of correct answers
number of total questions

We also calculated precision, recall, and F1-score. The precision metric measures the accuracy of
the positive predictions made by the model, using the formula: precision = TP

TP+FP , where TP are
true positives and FP are false positives. The recall metric measures the model’s ability to correctly
identify positive cases, and is calculated as recall = TP

TP+FN , where FN are false negatives. The
F1-score is a balanced metric that takes into account both precision and recall and is calculated as
F1-score = 2 precision·recall

precision+recall .

We considered a qualitative evaluation, based on the fact that CANS© can be used to monitor
outcomes, i.e., patients can be monitored over time by the results of the assessment, using both
item or dimension scores. The dimensions scores can be generated by summing up individual items
within six specific domains: Behavioral Emotional Needs, Life Domain Functioning, Risk Behaviors,
Cultural Factors, Strenght Domain, and Caregiver Resources and Needs (see Table 7 and Table 5).

5.3 Experimental details
Table 2: Details about experiments until reaching best accuracies

Model Hyperparameters GPU Time Obs

Baseline batchSIZE = 8,
gradientACC_STEPS = 8,
*α = 5.0× 10−6

7.2 GB 70 min for
each run

10 epochs in 8
attempts using
Colab

DCMN batchSIZE = 4,
gradientACC_STEPS = 2,
*α = 1.0× 10−5

**23.4 GB 120 min for
each run

20 epochs in
12 attempts us-
ing Colab

DUMA batchSIZE = 2,
gradientACC_STEPS = 1,
*α = 3.0× 10−6

**36.7 GB 600 min for
each run

20 epochs in 5
attempts using
Colab

Albert batchSIZE = 2,
gradientACC_STEPS = 1,
*α = 5.0× 10−6

**39.1 GB 600 min for
each run

20 epochs in 4
attempts using
Colab

*α ∈ {1.0× 10−4, 2.0× 10−5, 1.0× 10−5, 5.0× 10−6, 3.0× 10−6};
**Not possible to run on AWS due to 24GB GPU memory limit

5.4 Results
The initial expectation was to obtain random answers (around 50% choosing A option - see 5.1), but
we achieved 62%/59% (dev/test) in the baseline (see Table 8). It is possible to observe the loss and
accuracy learning curves for our baseline model in Fig 9. The final results can be observed in table 3.
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We expected DUMA to be better than sole Albert, but Albert achieved 78%-72% accuracy on dev-test
sets, being our best model. We believe improved results can be obtained with more computational
budget, i.e., more GPU memory. We assume that because during training we observed that in Colab
(40 GB) it was possible to double the batch size, whilst in AWS (24 GB) we could not. That gave us
higher accuracies in DUMA. If it was possible to double batch size again, we assume better results
would be achieved. Not only that, but we also believe that our dataset was small. We indeed observed
that it did not generalize well to the test set, as it can be seen in the training curves (Fig. 10).

Table 3: Final results (see 5.1 for distribution of correct answering options)

Model Training #train #dev-test* Accuracy

DCMN
bert-large-uncased

BertForMultipleChoiceWithMatch 964 100-100 73%-60%

DUMA
albert-xxlarge

AlbertDUMAForMultipleChoice 964 100-100 74%-72%

ALBERT
albert-xxlarge

AlbertForMultipleChoice 964 100-100 78%-72%

*For comparison analysis, we utilized the same test set for all models

Table 4: Precision, Recall and F1-Score for the test results

DCMN ALBERT DUMA
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

A 0.80 0.77 0.78 0.88 0.80 0.84 0.78 0.92 0.84
B 0.08 0.10 0.09 0.23 0.30 0.26 0.25 0.10 0.14
C 0.35 0.32 0.33 0.57 0.63 0.60 0.64 0.37 0.47
D 0.55 0.60 0.57 0.80 0.80 0.80 0.60 0.80 0.70

Avg 0.61 0.60 0.61 0.74 0.72 0.73 0.68 0.72 0.68

6 Analysis
In order to perform our qualitative analysis, we used the same testing set, containing the same patient’s
vignettes across all the models.

6.1 Precision, Recall and F1-score
The results in table 4 indicated that there were very few false positive predictions for class A and
class D across all models. We inferred that the model was able to correctly assess extremes, i.e.,
A and D classes, but comparatively did not succeed in predicting in-between values, i.e., B and C
classes. More data to train and a solution for long texts could leverage F1-Scores achieved: 0.61 for
DCMN, 0.73 for Albert, and 0.68 for DUMA, improving its class-wise predictive skills.

6.2 CANS domains
Table 5: Correct model predictions over CANS domains for the patients belonging to the test set

DCMN ALBERT DUMA
Domain Patient 1 Patient 2 Patient 1 Patient 2 Patient 1 Patient 2

Behavioral / Emotional Needs 67% 44% 100% 67% 78% 78%

Caregiver Resources & Needs 80% 90% 60% 40% 50% 90%

Cultural Factors 100% 67% 100% 100% 67% 100%

Life Functioning 45% 45% 45% 27% 18% 55%

Risk Behaviors 13% 13% 38% 50% 50% 13%

Child Strengths 22% 11% 22% 22% 22% 22%

Table 5 indicates that for the Cultural Factors category, which had the highest values, we achieved
100% accuracy in most experiments. However, further examination revealed that there was minimal
discussion about this topic in the passage, implying that the model may be inclined towards the most
biased response (i.e. 0) in the training dataset. We also noticed that the model tended to predict
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high ratings (e.g. 3) for suicidal behavior and depression in the Risk Behaviors and Behavioral &
Emotional Needs categories, despite their preferred rating is very low (i.e. 0) and there is no mention
in the passage about these topics. Further investigation revealed that the presence of related tokens in
either questions, answers, or options has led the model to build some co-relation attention link to the
respective class. In contrast to Cultural Factors category, the Child Strengths consistently received
a very low score because the corresponding answers were typically at the end of the passage. As
we used BERT as the base model for tokenization and attention mechanism, possibly truncating the
token (P+Q+O) beyond 512 counts, resulted in insufficient syntactical or contextual information
available for this category to answer the questions.

6.3 Types of Questions
Some questions were challenging to answer accurately because of the linguistic complexity of
answers. Adequate inference needed to be applied and few questions were open-ended, such as the
inquiry "How does the extended family communicate with each other?" To enable the model to
respond to such questions, it must comprehend the entire context of the passage. However, due to the
truncated passage being encoded into the model, the number of tokens available was insufficient for a
comprehensive understanding. We noticed that the attention link between open-ended questions and
answer was weak, kindly refer Fig 11 and 12, (Vig, 2019).

6.4 Albert
Sole Albert boosted DCMN performance in 4 p.p. (dev set) - due to a better pre-trained language
representation. By dividing the vocabulary embedding matrix into two small ones, and allowing
cross-layer parameter sharing, fewer parameters were required and faster training was achieved,
which really indeed improved our results.

Figure 3: ALBERT Figure 4: DCMN Figure 5: DUMA

7 Conclusion
We created a strong baseline model for a Multi-Choice MCR task from scratch using a PrLM. We
tested different alternatives and considered we reached a baseline threshold due to our dataset size.
With the aid of Dr. Lyons (2023) and his collaborative team, we received more data to work on
the final models. And inspired by DCMN and DUMA matching modules, we tested more robust
models, with bigger PrLMs, such as ALBERT, and matching modules. After running such models,
we concluded that plain ALBERT was our best model, achieving 78%-72% accuracies in dev-set,
respectively. From Fig. 3, it is possible to see the correct answering options, 0-3, in the diagonal. We
consider that our architecture, based on BERT, as the foundation for token encoding and attention
mechanisms, was fundamental to achieve such results. We must also stress out our disappointment
with the matching modules, which should increase the final scores. We believe that such modules
can indeed improve the model’s accuracy, but with more training data, such as RACE, which is
approximately 100 times bigger than ours. Although the gains were small, around 2 percentage
points, previous authors demonstrated its value. In our case, these matching modules were able only
to achieve same performance as a sole PrLM, i.e., 72% accuracy on test set. After these results with
matching models, we invested some time to overcome a known limitation of BERT in handling longer
paragraphs containing over 512 tokens, trying to tweak the models with simple approaches in order to
achieve good results. It was necessary since our average combination of {P,Q,O} triplet sequence
tokens length was 712. To our surprise, the longest truncation approach, i.e., truncating the passages,
which is a simple solution, gave us better results. Simplicity seems to be related to efficient and
elegant solutions. For future work, we can consider increasing the computation budget, and we can
also test other PrLM with different strategies, e.g., Chat-GPT, which instead of the Encoder approach
of Bert uses a Decoder approach. Actually, some authors, such as Jiang et al. (2021), already applied
to Multi-Question. It is worth the search since the most beneficiaries will be children, who will be
able to treat with utmost care. Our code is hosted at Kalikant Jha (2023).
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A Appendix

Table 6: An example of CANS© dataset to assess the presence of limited cognitive capacity or
developmental disabilities that challenges the caregiver’s ability to parent (DEVELOPMENTAL).

Excerpt of
Passage

Mike is a 15 year-old boy who is currently living with his grandparents. He
is not in contact with his mother who has a serious substance dependence
disorder. The identity of his father is not known.

Question Does the caregiver have developmental challenges that make parent-
ing/caring for the child/youth difficult?

Answer
Options

0. No evidence of caregiver developmental disabilities or challenges.
1. Caregiver has developmental challenges.
2. Caregiver has developmental challenges that interfere with the capacity
to parent the child/youth.
3. Caregiver has severe developmental challenges that make it impossible to
parent the child/youth at this time.

Figure 6: The architecture of the matching module, named dual co-matching network (DCMN).

Table 9: Baseline Results (see 5.1 for distribution of correct answering options)

Pre-trained Model Fine-tuning Model #train #dev-test Accuracy

bert-base-uncased BertForMultipleChoice 794 100-100 62%-59%

Bio_ClinicalBERT BertForSequenceClassification 795 199 (test) 57% (test)

distilbert-base-uncased DistilBertForSequenceClassification 795 199 (test) 33% (test)
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Figure 7: The architecture of the matching module, named dUal multi-head co-Attention (DUMA).
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Figure 8: On top it is an example of CANS© question, with four alternatives. On the bottom, it is
possible to observe how the json format of input data is. Adapted with permission from Dr. Lyons
(2023)

Figure 9: Best baseline model. After each epoch, the dev_loss was calculated (left) and the accuracy
measured, both using a dev set, composed of two entire completed questionnaires.
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Table 7: Domains of CANS©

Domain CANS© Items

BEHAVIORAL EMO-
TIONAL NEEDS (9)

Psychosis, Impulsivity/Hyperactivity, Depression, Anxiety, Oppo-
sitional, Conduct, Anger Control, Substance Use, Adjustment to
Trauma

LIFE DOMAIN FUNC-
TIONING (11)

Family Functioning, Living Situation, Social Functioning, Develop-
mental/Intellectual, School Behavior, School Achievement, School
Attendance, Medical/Physical, Sexual Development, Sleep

RISK BEHAVIORS (8) Suicide Risk, Non-Suicidal Self-Injurious Behavior, Other Self-
Harm, Danger to Others, Sexual Aggression, Delinquent Behavior,
Runaway, Intentional Misbehavior

CULTURAL FACTORS
(3)

Language, Traditions and Rituals, Cultural Stress

STRENGTHS DOMAIN
(9)

Family Strengths, Interpersonal, Educational Setting, Tal-
ents/Interests, Spiritual/Religious, Cultural Identity, Community Life,
Natural Supports, Resiliency

CAREGIVER RE-
SOURCES AND
NEEDS (10)

Supervision, Involvement with Care, Knowledge, Social Resources,
Residential Stability, Medical/Physical, Mental Health, Substance
Use, Developmental, Safety

Table 8: Baseline Results (see 5.1 for distribution of correct answering options)

Pre-trained Model Fine-tuning Model #train #dev-test Accuracy

bert-base-uncased BertForMultipleChoice 794 100-100 62%-59%

Bio_ClinicalBERT BertForSequenceClassification 795 199 (test) 57% (test)

distilbert-base-uncased DistilBertForSequenceClassification 795 199 (test) 33% (test)

Figure 10: Final training for best model, Albert.
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Figure 11: Patient 1 Figure 12: Patient 2
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