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Abstract

BERT (Devlin et al., 2018) is proved to be successful on a variety of NLP tasks,
and its fine-tuning strategies has been extensively discussed in literature. However,
only a few of these discussions focused on multi-task fine-tuning. In this project,
we investigate effects of additional pre-training, the Sentence-BERT structure
with different loss functions, and multi-task training routines on multi-task fine-
tuning. A robust BERT embedding performing well on the three default tasks
simultaneously is obtained using a parallel fine-tuning routine.

1 Introduction

It has been proved that large language model pre-training is an effective approach to solve many
classic problems in the field of Natural Language Processing (NLP) such as sentiment analysis,
question answering, name entity recognition, etc. A common practice is the two-step regime of
unsupervised pre-training on large corpus, aiming to obtain high quality embedding of the text, and
supervised fine-tuning on labeled task-specific data, which allows the model to adapt to downstream
tasks.

Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2018) is one of the
most influential language models ever proposed due to the conciseness of its idea and the impressive
performance it obtained on a variety of natural language understanding (NLU) tasks. Although
the fine-tuning of BERT has been closely studied (Liu et al., 2019b; Sun et al., 2019), most works
focus on single-task fine-tuning, i.e. fine-tuning the model separately for different tasks, and the
idea of multi-task fine-tuning is yet to be fully explored. In most cases, multi-task fine-tuning is not
considered necessary as it cannot enhance the performance of the model on single tasks (Sun et al.,
2019). However, it can potentially deliver a robust embedding which incorporates multiple aspects
of the text and performs well simultaneously on multiple tasks, which is desirable in terms of NLU
and beneficial to domain adaptation when the available in-domain labels are substantially fewer (Liu
et al., 2019a).

In this project, we investigate both single-task fine-tuning techniques and multi-task fine-tuning
routines with the goal of obtaining a BERT embedding performing well on three NLP tasks: sentiment
analysis, paraphrase detection, and semantic textual similarity. In summary, our work consists of
three major parts:

• We implement the Masked Language Model (MLM) pre-training and investigate its effect
on BERT fine-tuning in both single-task and multi-task scenarios;

• We implement a Siamese network architecture named Sentence-BERT with multiple loss
functions, and compare its performance with the vanilla BERT model on sentence-pair
inputs;

• We implement and experiment with two multi-task fine-tuning routines, the sequential and
parallel routines, and discuss their effectiveness on producing robust and semantically rich
BERT embeddings.
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2 Related Work

In this section, we briefly review BERT fine-tuning strategies and variations for downstream tasks,
and the general idea of additional pre-training as a major approach of language model fine-tuning.

2.1 BERT for downstream NLP tasks

BERT has delivered impressive results on a variety of downstream NLP tasks. In the original
paper (Devlin et al., 2018), BERT was fine-tuned for 11 NLP tasks including the General Language
Understanding Evaluation (GLUE) benchmark, which consists of the tasks and datasets in our project.
Sun et al. (2019) provides an exhaustive overview of BERT fine-tuning methodologies and strategies
on multiple text classification tasks. Zhang et al. (2020) studied several fine-tuning techniques in
few-sample scenarios.

Multi-task fine-tuning is a less discussed aspect of BERT fine-tuning. Liu et al. (2015, 2019a)
proposed a framework called MT-DNN to fine-tune BERT on multiple tasks simultaneously, which
achieved state-of-the-art performance on the GLUE benchmark and produced embeddings with
significantly stronger capability of domain adaptation compared to the original BERT embeddings.
Sun et al. (2019) viewed multi-task fine-tuning as an approach to take full advantage of available
data, but there was little evidence that multi-task fine-tuning could help generalization on sub-tasks.

A number of variations of BERT have be proposed to adapt to specific downstream NLP tasks.
Sentence-BERT (Reimers and Gurevych, 2019) used a Siamese network architecture consisting of
two BERT encoders with shared weights and custom loss function designs for sentence-pair inputs.
Gao et al. (2021) proposed a contrastive learning framework called SimCSE for the semantic textual
similarity task. TwinBERT (Lu et al., 2020) is developed in the context of sponsored search and has a
structure similar to Sentence-BERT, but the input pair is not considered symmetric and hence the two
BERT encoders do not share weights.

2.2 Additional pre-training

Many works have shown that further pre-training of language models on specific domains or tasks
can improve the performance on downstream tasks. Domain-adaptive pre-training (DAPT) can help
the embedding better align with the target domain, while task-adaptive pre-training (TAPT) allows
the model to focus on the task-related corpus (Gururangan et al., 2020). In Gururangan et al. (2020),
both DAPT and TAPT are conducted on a RoBERTa model with domain-specific corpus, e.g. news
and reviews, and it is proved that a combination of the two approaches can significantly enhance
the performance of the model. In Sun et al. (2019), it is shown that DAPT or TAPT alone can help
performance on multiple text classification tasks.

The original pre-training techniques for BERT proposed by Devlin et al. (2018) are the masked
language model (MLM) and next sentence prediction (NSP) tasks. Although it is later argued by
several works such as Liu et al. (2019b) and Joshi et al. (2020) that NSP is ineffective or even harmful
to the acquisition of a robust embedding, MLM remains to be a canonical approach to pre-train large
language models such as RoBERTa (Liu et al., 2019b), ERNIE (Zhang et al., 2019), ALBERT (Lan
et al., 2019), etc.

3 Approach

3.1 Masked language model (MLM) pre-training

The Masked Language Model task was inspired by the Cloze task (Taylor, 1953) and was first
introduced to language model pre-training in Devlin et al. (2018). In this task, we mask part of the
input text and require the model to predict the masked text. Intuitively, this forces the model to learn
semantic and grammatical information in the corpus in a holistic way to be able to recover the masked
text solely from its context.

An illustration of the MLM task is shown in Figure 1, where we follow the procedure in Devlin et al.
(2018). First we randomly mask 15% of the input tokens (i.e. replace with the ‘[MASK]’ token) and
unmask some special tokens, e.g. the ‘[CLS]’ and ‘[PAD]’ tokens. It should be noted that there are
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Figure 1: An illustration of the Masked Language Model task

no ‘[MASK]’ tokens in fine-tuning, which might result in an invalid embedding in actual fine-tuning.
To mitigate this effect, we replace 10% of the masked tokens with the original token, and another
10% with random tokens. Then we use the original input tokens as labels and cross-entropy as the
loss function.

3.2 The Sentence-BERT model

Sentence-BERT (Reimers and Gurevych, 2019) is a model proposed to deal with a specific class
of NLP tasks, namely tasks with sentence-pair inputs such as paraphrase detection and semantic
textual similarity. It is based on the idea of Siamese networks, and is claimed to have comparable
performance to vanilla BERT while greatly reducing the inference time (Reimers and Gurevych,
2019).

Figure 2: The Sentence-BERT model structure

The structure of the Sentence-BERT model is shown in Figure 2. It is simply composed of two
identical BERT encoders with shared weights in training, and each encoder handle a sentence in the
pair input. The embeddings of the two sentences are then passed to a cross layer, i.e. a customized
loss function according to the specific task. In comparison, a vanilla BERT model concatenate the
two sentences as the input to the encoder, and uses the embedding of the concatenated pair for
classification or regression in the end.
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3.2.1 Loss functions

The choice of loss function in the Sentence-BERT model has a significant impact on the performance,
and requires careful design according to the nature of the downstream task. Here we list three loss
functions for our paraphrase detection and semantic textual analysis. In the following discussion, li is
the label for the input pair (xi, yi).

Cosine Similarity - Mean Squared Error loss. The cosine similarity - mean squared error loss is
defined as

L(x, y, l) = 1

n

n∑
i=1

(li − SC(xi, yi))
2,

where SC(·, ·) is the cosine similarity defined as

SC(u, v) =
u · v

∥u∥2∥v∥2
.

Reimers and Gurevych (2019) proposed to use this loss for the semantic textual analysis task as the
labels li are already similarity scores. In our case li ∈ [0, 5] and we can simply replace SC(·, ·) with
5 · SC(·, ·).

Contrastive loss. The contrastive loss function was first introduced by Hadsell et al. (2006) in the
context of dimensionality reduction. In our task it is defined as

L(x, y, l) = 1

n

n∑
i=1

[liD(xi, yi) + (1− li)max(0,m−D(xi, yi))] ,

where D(·, ·) is a distance on the space of sentence embeddings, and m ∈ (0, 1) is a margin value.
Here we choose D = DC(·, ·) = 1− SC(·, ·), namely the cosine distance, and m = 0.5. Intuitively,
the loss penalize large distances within similar (li = 1) pairs and small distances within dissimilar
(li = 0) pairs. Empirically we found that for continuous label li ∈ [0, 5], directly replacing li with
li/5 can deliver satisfactory performance.

Multiple Negative Ranking loss. The Multiple Negative Ranking (MNR) loss function was
introduced in Henderson et al. (2017). It’s originally designed for datasets in the form of {(ai, bi)}
where ai and bi are similar while ai and bj are dissimilar for all i ̸= j. For our paraphrase detection
dataset, we need to modify it as

L(x, y, l) = − 1∑n
i=1 I(li = 1)

n∑
i=1
li=1

SC(xi, yi)− log

n∑
j=1
lj=1

eSC(xi,yj)

 .

It can be seen that similarity scores within similar pairs are maximized, and the similarity scores
between a sentence xi and sentences yj in other pairs are simultaneously minimized. It is worth
noting that we are only using li = 1 samples due to this modification, which might result in a
significant performance gap compared to other loss functions. In fact, the discarded pairs (xi, yi)
with li = 0 may include more subtle semantic differences compared to (xi, yj) pairs with i ̸= j.

3.3 Multi-task fine-tuning routines

To fine-tune the BERT model on multiple downstream tasks, we propose two training routines,
parallel training and sequential training. An illustration of the two routines is shown in Figure 3.

In the parallel training routine, we shift between tasks at the end of each batch. Due to the difference
in dataset sizes of different tasks, we cycle through smaller datasets in one epoch on the largest
dataset to produce the same number of batches for all datasets. One epoch on the largest dataset
counts as one global epoch.

In the sequential training routine, we shift between tasks at the end of epochs. To balance the number
of batches on datasets with different sizes, we train Ni sub-epochs on task i such that NiBi ≈ C
for all i, where Bi is the number of batches of one sub-epoch on the dataset of task i. One global
epoch consists of N1 + · · ·+Nk sub-epochs for k tasks. We point out that if we set the number of
sub-epochs on the largest dataset as 1, i.e. min1≤i≤k Ni = 1, then the sequential and parallel training
routines have the same number of batches on each task within one global epoch.
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Figure 3: An illustration of the sequential and parallel multi-task fine-tuning routines

4 Experiments

4.1 Data

We use the datasets specified in the default project handout (CS224N, 2023). Specifically, we used
the SST dataset for the sentiment analysis task, the Quora dataset for the paraphrase detection task
and the STS dataset for the semantic textual similarity task. Inputs for the first task are individual
sentences, while inputs for the other two tasks are sentence pairs.

4.2 Evaluation method

Our evaluation methods follow the requirements of the default project handout (CS224N, 2023). For
the SST sentiment analysis task and the Quora paraphrase detection task, we use the classification
accuracy as evaluation metrics. For the STS semantic textual anlysis task, we use the Pearson
correlation coefficient (PCC) between the true similarity scores and the predicted ones, i.e.

r(y, ŷ) =

∑n
i=1(yi − ȳ)(ŷi − ¯̂y)√∑n

i=1(yi − ȳ)2
∑n

i=1(ŷi − ¯̂y)2
.

4.3 Experiment-1: Investigating additional pre-training

In this section, we perform additional pre-training on the SST and STS datasets with the unsupervised
masked language model task as introduced in Section 3.1. Then, we used the additional pre-training
weights as starting points of fine-tuning, investigating effectiveness of additional pre-training on
fine-tuning by comparing the performances of BERT models with and without additional pre-training
on the two tasks.

We perform 50 epochs of task-adaptive additional pre-training (i.e. pre-train on the dataset corre-
sponding to the task), and 5 epochs of fine-tuning on both SST and STS datasets. For both pre-training
and fine-tuning we use a learning rate of 1e-5. Results with and without additional pre-training
(ADDPRETRAIN) are shown in Table 1. We observe a positive effect of additional pre-training on the
STS dataset, but a negative effect on the SST dataset.

4.4 Experiment-2: Sentence-BERT with different loss functions

As mentioned in Section 4.1, inputs for the second and third tasks are sentence pairs, and both these
two tasks aim to find out the semantic relationship between the two sentences in each pair. Therefore,
we experiment with the Sentence-BERT architecture as introduced in Section 3.2, and compare the
performances with a vanilla BERT model.
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SST STS

Without ADDPRETRAIN 0.524 0.863
With ADDPRETRAIN 0.515 0.870

Table 1: Additional pre-training experiments results

Table 2 shows a comparison between the vanilla BERT model and the Sentence-BERT model with
different loss functions selected according to the specific tasks. All results are obtained with 10
epochs of single-task fine-tuning, with a learning rate of 1e-5. It could be observed that there exists
a significant performance gap between the Sentence-BERT model and the vanilla BERT model,
regardless of the choice of loss functions.

Quora STS

VANILLA BERT 0.889 0.869
COSSIM+MSE − 0.762

SENTENCE-BERT CONTRASTIVE 0.748 0.760
MNR 0.474 −

Table 2: SBERT and BERT results on Quora and STS datasets

4.5 Experiment-3: Investigating multi-task fine-tuning routines

We experiment with the multi-task fine-tuning routines proposed in Section 3.3 and compare the
results with our baseline and single-task fine-tuning. For the baseline we use the BERT-base-uncased
weights and train the final classification/regression layer for 10 epochs with a learning rate of 1e-3,
and the BERT encoder weights frozen. For single-task fine-tuning we run 5 epochs for Quora and 10
epochs for SST and STS (all with a learning rate of 1e-5) to obtain the best result available to our
model. For the sequential and parallel routines we run 5 global epochs (defined in Section 3.3) with a
learning rate of 1e-5; each sequential global epoch consists of 16, 1, and 23 sub-epochs on the three
datasets, respectively. For sequential/parallel routines with additional pre-training, we pre-train for
2 epochs on the full dataset (SST+Quora+STS) and fine-tune with the routines for 3 epochs, with
learning rate all set to 1e-5. The results are shown in Table 3. We also report our results of the parallel
fine-tuning routine on the test sets in Table 4.

SST Quora STS

BASELINE (BERT-BASE-UNCASED) 0.408 0.736 0.540
SINGLETASK (BEST) 0.533 0.889 0.874
SEQUENTIAL 0.387 0.863 0.879
PARALLEL 0.505 0.877 0.863
ADDPRETRAIN+ SEQUENTIAL 0.394 0.821 0.876
ADDPRETRAIN+ PARALLEL 0.505 0.873 0.870

Table 3: Results for different multi-task fine-tuning routines

SST Quora STS

PARALLEL 0.514 0.879 0.859

Table 4: Results for different multi-task fine-tuning routines
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We may observe that the parallel multi-task fine-tuning routine could deliver robust embeddings
leading to performance comparable to single-task fine-tuning on each downstream task. The sequential
routine achieves the best results on the STS dataset, acceptable on the Quora dataset, and results
worse than baseline on the SST dataset, which is somehow expected due to our training sequence. We
also observe different effects of additional pre-training on different datasets in the multi-task scenario.
A more detailed analysis is provided in Section 5.

5 Analysis

We have observed a positive effect of additional pre-training on the STS dataset and a negative effect
on the other two datasets in both single-task and multi-task scenarios. It is possible that the effect of
task-adaptive pre-training is task/data-dependent. Another possibility is that, due to the high quality
of the original BERT-base-uncased weights, an aggressive task-specific pre-training on a small corpus,
which is indeed the case of our dataset, could potentially erase the general semantic or grammatical
knowledge in the pre-trained weights and consequently harm generalization. The phenomenon is
known as catastrophic forgetting (McCloskey and Cohen, 1989), and has also been observed by (Sun
et al., 2019) when fine-tuning BERT with an over-aggressive learning rate.

A significant performance gap between the Sentence-BERT model and the vanilla BERT model
is observed on all three tasks. A similar phenomenon has been observed by Lu et al. (2020) and
their explanation was that BERT can learn through deep interactions between the sentences in the
pair, while Sentence-BERT easily saturate due to the simplicity of its combination layer (merely
one loss function). Here we propose another possible explanation from a different perspective:
the vanilla BERT model can extract semantic relationship information as the embedding, while the
Sentence-BERT model is forced to extract information required for the task from two single sentences.
For different inputs in the dataset, the aspects of single-sentence semantic information relevant to
the task can vary in a considerable range. Taking the paraphrase detection task as an example, some
input pairs might emphasize on understanding certain grammatical structures, while others might
emphasize on distinguishing between notional words. The vanilla BERT model can cover all these
aspects using its powerful encoder structure, while the limited single-sentence embedding size in
the sentence-BERT model can only capture a limited number of these aspects, which becomes a
substantial bottleneck of the model.

We have also observed a huge performance gap between the MNR loss and other loss functions,
which is most likely a consequence of the mismatch between the loss function and the dataset, as
conjectured in Section 3.2.1.

From the experiments on multi-task fine-tuning routines, we observe that the parallel multi-task
fine-tuning routine could deliver robust embeddings leading to performance comparable to single-task
fine-tuning on each sub-task, with a minor performance reduction due to the potential underlying
conflict of different learning goals. In contrast, performance of sequential fine-tuning routine could
easily be affected by designs such as the training sequence and number of sub-epochs on each task in
a global epoch. Specifically, the learned knowledge on tasks appearing earlier in the training sequence
are forgotten in the training process of tasks appearing later. Although a carefully designed schedule
(choices of number of sub-epochs, and ad hoc sequence design) might mitigate this issue, we believe
that it is a intrinsic flaw of the sequential routine when the datasets are moderately large, and hence a
parallel routine should always be advised.

6 Conclusion and Future Works

In this project, we have worked on three major aspects of BERT fine-tuning: additional pre-training
with MLM, the Sentence-BERT structure and loss functions for pair inputs, and multi-task fine-tuning
routines.

In terms of additional pre-training, we have only observed partially positive effects on the performance.
As our current pre-training is limited to task-adaptive pre-training, a main direction of future work is
to introduce other in-domain datasets and increase the dataset sizes to better exploit the potential of
pre-training.
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We have observed a significant performance gap between the Sentence-BERT model and the vanilla
BERT model and provided a possible explanation. According to our conjecture, it could be further
examined whether a larger output embedding size of Sentence-BERT can reduce this gap.

Finally, we have concluded that a parallel multi-task fine-tuning routine can deliver robust embeddings
comparable to single-task fine-tuning on multiple downstream tasks simultaneously. Other routines
can be designed and experimented with, e.g. merging and shuffling the datasets (Liu et al., 2019a), or
using adaptive batch sizes for different datasets, etc.
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