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Abstract

Stanford Medicine’s goal is to reduce the number of preventable visits to the
emergency department (ED) due to many negative effects of ED congestion. This
project’s goal is to leverage robust NLP BERT models predict the probability
that a patient will be admitted to the ED in the next year given their past medical
messages to and from their care providers in the last two years. Our experiments
yielded F1 scores of up to 0.954 and suggest that patient portal messages
can play a vital role in predicting patient healthcare outcomes. With these
novel approaches, we hope to contribute to the growing body of research using
patient portal messages in NLP and show a definitive use case in ED visit prediction.

External collaborators: Dr. Julian Genkins, Stanford Medicine Physi-
cian and Clinical Informatics Fellow. Julian provided medical advice for the
project. Hanna Kiani and Seth Cohen, Stanford Medicine MyHealth application
team members who assisted with problem identification and data extraction.
Mentor: Abhinav Garg.
Sharing project: Not sharing with another class.

1 Introduction

1.1 Motivations

Currently, to predict which patients will visit the ED, Stanford Medicine uses a logistic regression
model developed by Epic Systems Corporation that uses approximately 27 variables including
medications and lab results (Epic, 2016). The replicated Epic V1 model achieves an an F1 = 0.396
and AUROC = 0.725 on our experiment dataset. Therefore, the model is unable to accurately predict
patients who will visit the ED and cannot easily scale to new factors that may be added to the patient’s
electronic health record (EHR) data. Epic’s model shows the need for a more robust technical solution
to decrease demands in the ED.

1.2 Our Contributions

At Stanford Medicine, patients can use the MyHealth application to communicate with their care
team. We hypothesize that leveraging patient portal messages between between patients and health-
care providers will produce more accurate predictions of patients who will be admitted to the ED.
Specifically, we use a dataset from Professor Jonathan Chen’s Health Rex Lab that includes Stanford
Medicine patients, messages they send and receive, and whether or not they visit the ED. Our results
show that finetuning a pretrained Bio_Clinical BERT model and mean pooling over the hidden states
produce the best results with an F1 score of 0.954.
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2 Related Work

Our literature review summarizes the methods that Stanford Medicine currently uses for the ED
prediction task, pointed us to a proof of concept for using patient messages for ED visit prediction,
identified the optimal pre-trained model to base our custom models on, and provided methods for
dealing with clinical texts that are too long for the Bio_ClinicalBERT model.

The current model used by Stanford Medicine for the ED prediction task is a logistic regression model
made by the private company Epic Systems. Its features are not NLP-related and do not include
patient portal messages, but rather variables associated with patient health data such as "insurance
status" and "presence/absence of diagnoses" (Epic (2016)).

The task of using patient portal messages for inference is being explored in different areas of medicine:
Sulieman et al. found that patient portal messages can indicate risk of hospital readmission for patients
with ischemic heart disease (Sulieman (2020)). While this paper did not take a deep learning approach,
this work represents a proof of concept that patient portal messages can be used as indicators for
prediction of hospital readmission, a task that parallels ours.

Previous work has shown promise in using large language models on narrative medical documents
for inference tasks. Indeed, Turchin et al. found that BioBERT and ClinicalBERT outperformed
general BERT on medical concept recognition in outpatient provider notes (Alexander Turchin
(2023)). Although this dataset is not identical to ours, it is a proof of concept of how ClinicalBERT
and BioBERT can be used on narrative-like clinical datasets. Thus, we used this paper to identify
Bio_ClinicalBERT, a model combining the ideas of the 2 separate BERT models mentioned in this
paper, as the foundation of our custom models (HuggingFace) .

Given the long nature of our message data, we also explored the limitations of using transformers on
clinical documents. Gao et al. note that the long nature of clinical texts makes using transformers
difficult given the limited input size of transformers ((Gao, 2021)). With a pretrained BERT baseline
model, they survey methods to resolve this size issue. First, they finetuned a pretrained BERT model
for their classification task by only using the first 510 wordpiece tokens of an input. Then, they chunk
clinical notes into k 510 wordpiece tokens, feed the chunks into the finetuned model, and and max
pool over the k logits outputted by the finetuned BERT base model. Ultimately, this paper found that
a non-transformer hierarchical self attention method was able to outperform this transformer methods.
However, we improve upon their findings using 2 methods. First, we leverage Bio_ClinicalBERT
instead of BERT due to its domain knowledge in the bio-clinical sphere. Second, while this paper
implemented max pooling over logits, we will improve upon this by implementing max pooling over
our last hidden states across our k chunks per patient to minimize information loss. Moreover, we
experiment with other post processing such as mean pooling, max voting and threshold of one voting
(see approach section).

3 Approach

3.1 Tasks

Our task is to use all of a patient’s message data between 8/1/2018-8/1/2020 to make a prediction
about whether or not (true or false) that patient will have an ED visit between 8/1/2020 to 8/1/2021.
We then evaluate whether our approach was accurate using the labels in our dataset. A true label for
an ED visit means that a patient came to an ED and was (1) either discharged or (2) admitted to the
hospital (normal floor or ICU).

3.2 Methods Overview

For our baselines, we used the existing Epic logistic regression model and also finetuned Bio_Clinical
BERT on the first 512-tokens of each message in our dataset. For our advanced work, we finetuned
Bio_Clinical BERT on all our messages by chunking our dataset into 512-token chunks. We then
conducted four experiments where we added additional layers on top of our advanced fine-tuned
Bio_Clinical BERT. Throughout all our experiments, we implemented document-chunking which
was needed given the 512 max-token constraints of Bio_Clinical BERT.
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3.3 Baselines

1. Epic Logistic Regression: For our first baseline, we reference the V1 Epic logistic regres-
sion model. The replicated Epic model achieves an an F1 = 0.396 and AUROC = 0.725 on
our experiment dataset (Epic, 2016).

2. First-512 Bio_Clinical BERT: Our second baseline utilizes the pre-trained Bio_Clinical
BERT model which we finetune to our patient portal message dataset for our downstream
prediction task. We do this using only the first 318 words in the set of all patient messages
for each patient. 318 words corresponds to 512 tokens, which is the max input size of the
BERT model. Before finetuning, Bio_ClinicalBERT was trained on a database containing
electronic health records (EHR) data. The EHR data is a health medium nearly paralleling
patient-clinician message data, but is optimized for shorter text sequences rather than the
long set of messages we attempt to classify. For this reason, we finetune the model on the
full message data by using chunking and pooling techniques to capture the full message text
beyond the first 512 tokens.

Aside from using the pre-trained HuggingFace model and using Hugging Face API calls to finetune
the model, all experiments were coded from scratch and are specific to this work.

3.4 Chunked-512 Bio_Clinical BERT Finetune

To effectively use the content of an entire patient message history for our prediction task, we utilize
the hierarchical approach of splitting each patient’s message history into k chunks of size 318 words,
which translates to approximately 512 wordpiece tokens. We then trained and saved the fine-tuned
implementation of Bio_ClinicalBERT using all k message chunks (unlike our baseline which only
used the first message chunk). In our experiments below, we then utilize various methods to extend
this base architecture and produce one prediction for each patient.

3.4.1 Experiment 1: Chunked-512 Finetuned Bio_Clinical BERT + Max Pooling

Our finetuned Bio_ClinicalBERT for classification on each of the k segments generates k embed-
ding vectors, one for each segment. This segment embedding represents the last hidden state of
our pretrained model. Before the classification step, we apply a max pool operation across all k
embeddings to create one embedding vector representing the most relevant components of a patient’s
message history. This embedding vector is then passed through a linear classification layer to generate
predictions for the patient.

Figure 1: Experiments 1 and 2

3.4.2 Experiment 2: Chunked-512 Finetuned Bio_Clinical BERT + Average Pooling

This experiment replicated the above max pooling experiment, but used the average values of the
stacked embeddings for the classification task instead of the maximum values.
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3.4.3 Experiment 3: Chunked-512 Finetuned Bio_Clinical BERT + Max Voting

This experiment utilized the fine-tuned Bio_Clinical BERT baseline to classify k individual message
chunks independently. As in experiment 3, we used the fine-tuned Bio_Clinical BERT to produce k
embedding vectors, one for each segment. Then, we pass these embeddings through the classification
layer to produce k logit vectors for each of the k chunks, which we used to produce k predictions for
each patient. Using these k predictions, we then found the prediction value that was the most common
(either 1 or 0) across all k predictions, and assigned this value to be the final patient prediction.

Figure 2: Experiment 3

3.4.4 Experiment 4: Chunked-512 Finetuned Bio_Clinical BERT + Threshold of 1 Voting

Because our task involves providing a medical prediction which could affect a patient and their
well-being, we implemented an additional voting strategy that was more sensitive to any risk that
might be apparent in a given message chunk. In this experiment we produced k predictions by
following the sequence of steps in experiment 3. However, rather than take the max occurrence over
predictions as in experiment 3, we used a threshold of 1. Put simply, if any of the k message chunks
is labeled with prediction of 1, then we assign the overall patient prediction to be 1.

Figure 3: Experiment 4

4 Experiments

4.1 Data

Our dataset contains three attributes: the patient id, patient messages text, and ED visit labels (T/F)
from patients using Stanford MyHealth. Our cohort includes adults seen by primary care between
2018/8/1 - 2020/8/1. We initially downsampled our base cohort to a 25k patient cohort with a 20%
prevalence of ED visits. Then, this population was further downsampled in a non-random way to

4



patients who had at least one message sent or received in the 2 years prior to the prediction date so
that we could train our model on message text. Overall, this population still looked similar based on
high-level demographic and disease characteristics.

In selecting our patient cohort, we only considered patients who were (1) 18 and older (adults), (2)
alive at the prediction date, and (3) had at least two encounters with Stanford primary care within the
timeframe with meaningful visits with a provider, specifically: office visit or telemedicine visit. A
true label for ED visit means that within 2020/8/1 - 2021/8/1, a patient came to an ED and was (1)
either discharged or (2) admitted to the hospital (normal floor or ICU).

512 tokens is the maximum number of tokens that the BERT model will take. Thus, we pre-processed
our data by splitting each patient’s messages into chunks of 318 words. In our experiments, we found
that 318 words approximately equates to 512 tokens. In our chunked dataset, each row represents
318 words from a patient message.

Due to GPU limitations, we selected a subsample of our messages as describe in the table. While the
number of rows we used were consistent, the number of messages and prevalence varied.

Table 1: Data Composition of All Methods

Method Train Validation Test
Baseline First-
512 Bio_Clinical
Bert Finetuning

Number of 512-token
chunks: 2000
Number of patients:
2000
Prevalence rate: 21.55%

Number of message rows:
200
Number of patients: 28
Prevalence rate: 21.43%

Number of message rows:
200
Number of patients: 22
Prevalence rate: 18.18%

Chunked-512
Bio_Clinical
Bert Finetuning

Number of message rows:
2000
Number of patients: 244
Prevalence rate: 19.67%

Number of message rows:
200
Number of patients: 28
Prevalence rate: 21.43%

Number of message rows:
200
Number of patients: 22
Prevalence rate: 18.18%

Experiments 1-4 NA NA Number of message rows:
2000
Number of patients: 187
Prevalence rate: 23.52%

We run experiments 1-4 with a test set of 2000 rows because we wanted to verify our custom methods
on a larger number of patients. Furthermore, the extensive computation power required to finetune
the Bio_Clinical BERT model limited the number of test rows to 200 whereas the experiments did
not have this limitation.

4.2 Evaluation method

The ultimate goal of predicting ED visits is for doctors to provide preventative care for at-risk patients.
It is important that the model identifies at-risk patients effectively, so that the medical system can
provide them with necessary care to avoid the ED. On the other hand, due to limited resources in
the medical system, it is important that the model does not over-risk patients, as that would divert
important resources from those who need it most. Thus, it is important to balance precision and recall.
Therefore, we evaluate our models using two main calculations. First, we look at the F1 score, which
reports the model’s balanced ability to identify positive cases (recall) and be accurate with the cases
it does capture (precision) where F1 = 2TP

2TP+FP+FN . F1 score will be our main evaluation metric
as the dataset is imbalanced.

Second, we calculate the AUROC score where a score of 1 means the classifier can perfectly
distinguish between all the positive and the negative points. Let "true probability" represent the
probability that our model predicts that a patient will be admitted to the ED (label of 1). For
experiments 1 and 2, we obtain the logits from the output of the classifier. For experiments 3 and 4,
since we did not perform pooling over the last hidden states, we select the logits for calculating the
true probability. For experiment 3, we select the logits pair with the largest probability for predicting
our max vote value for a given patient. For experiment 4, we select the logits pair with the largest
probability for predicting 1 for a given patient. We then feed the logits in all four experiments into
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the softmax function to calculate the true probability. The true probability is used to calculate the
ROC AUC score.

4.3 Experimental details

Table 2: Bio_Clinical BERT Finetune Training Configurations

Method Model Configuration Evaluation
Metrics (Test
Set)

Training
Time

Baseline First-
512 Bio_Clinical
Bert Finetuning

Epochs: 5
LR: 2e-5
Metric for best model: F1
Train set: 2000 rows

Loss: 1.15
AUROC:
0.678
F1: 0.316

6m

Chunked-512
Bio_Clinical Bert
Finetuning

Epochs: 6
LR: 2e-5
Metric for best model: F1
Train set: 5000 rows
Gradient accumulation steps=8
fp16=True

Out of GPU
memory

NA

Chunked-512
Bio_Clinical Bert
Finetuning

Epochs: 5
LR: 2e-5
Metric for best model: F1
Train set: 2000 rows

Loss: 0.201
AUROC:
0.987
F1: 0.897

1 hour

4.4 Results

Table 3: Quantitative Results on Experiments

Model Configuration Evaluation Metrics (Test Set) Experiment
Time

Epic Logistic Regression Model AUROC: 0.725
F1: 0.396

Unknown

Baseline First-512 Bio_Clinical
BERT Baseline

AUROC: 0.563
F1: 0.213

6 min

Chunked-512 Bio_Clinical
BERT + Max Pooling

AUROC: 0.990
F1: 0.941

20 min

Chunked-512 Bio_Clinical
BERT + Mean Pooling

AUROC: 0.993
F1: 0.954

20 min

Chunked-512 Bio_Clinical
BERT + Max Voting

AUROC: 0.997
F1: 0.938

15 min

Chunked-512 Bio_Clinical
BERT + Threshold Voting

AUROC: 0.985
F1: 0.733

10 min

From the evaluation metrics, we see that the mean pooling experiment produces the best F1 score of
0.954 while the Bio_ClinicalBERT first-512 tokens baseline produces the worst F1 score of 0.213.
This is what we expected because the BERT baseline only takes in the first 512 tokens of each
messages, which means that many words from the messages will not be used for the final prediction.
We also see that both pooling methods do better than the voting methods. This makes sense since
max and threshold voting simply consider whether there is a certain number of true predictions in
the output, whereas the pooling methods filter through all the inputs to make an informed prediction.
Lastly, we see that mean pooling performs better than the max pooling method. We attribute this to
mean pooling’s ability to reduce overfitting by averaging out noise in the input data and preserve the
locality of the input data since we are chunking the message sequentially. Overall, mean pooling’s
ability to capture important features distributed across different chunks of the messages results in the
most accurate predictions.

6



5 Analysis

5.1 Manual Qualitative Analysis of False Negatives and True Positives

Due to the narrative nature of our patient message data, we manually read our true positive examples
to identify trends. We noticed a few key trends:
(1) Patients in the set of true positives often describe in detail the pain that they are going through to
their providers. From a qualitative perspective, it is easy to see that patients have deep concerns for
their health and struggle with pain. As an anonymized example: "my hand was going numb and I
had shooting nerve pain in my fingers...I’m concerned about nerve damage". Additionally, many of
the patients are in conversation with their care providers about pain management of their conditions,
signifying that they have conditions or have had recent procedures. These common patterns suggest
that the model identifies the sentiment of pain levels and factors this into a positive prediction.
(2) Messages indicated that patients had upcoming procedures and included lots of instruction text
about those procedures. However, we cross-checked with our false negative examples and also saw
false negatives referring to procedures, so we conclude that those features are not key to our model
for the prediction task. Additionally, the two procedures mentioned in the false positive cases are also
included in the true positive cases, so the type of procedure learned by the model does not contribute
to a difference in predictions.

Additionally, we manually read all of our 3 false negative examples in the
test set. In each false negative example, the entire patient message history
only included messages sent to the patient - each false negative patient never
responded to a message. This could signify that our model requires data
from patients to accurately infer ED predictions and that patient-provider
message exchanges are the key piece that our model learns. This hypothesis
is supported by analysis of true positives. Indeed, after examining our 31
true positive patients, only 1/31 had a set of messages in which they never
responded to their provider. For example, an anonymized and shortened patient
message history where a patient never responded is shown to the right.

5.2 Latent Dirichlet Allocation Topic Modeling

Additionally, we implemented and ran Latent Dirichlet Allocation Topic Mod-
eling (LDA) to better interpret the model’s classifications. To do this, we ran LDA separately on
positive and negative predictions, and generated the top 10 topics for each. These were not necessarily
correct predictions, but we chose to use all predictions in order to gather information on the patterns
the model used to make distinctions. The two sets of 10 topics were then used to generate the
subsequent word clouds where the word size is represented by their occurrence level.

Figure 4: LDA WordCloud for ED Prediction

In 4, the figures found for positive attributions showed repeated instances of "procedure", "test",
"instructions", "blood", "surgery", and "pain". Depending on when and how these terms appeared in
the patient’s message history, it is possible that the model picked up on worsening health conditions
or medical complications of the patient. Other words that appeared but were not as common in the
topic analysis were "morning" and "prescriptions". Possible hypotheses are that patients might reach
out to providers seeking help in the morning if they are dealing with pain and considering visiting an
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ED. Likewise, patients seeking immediate help getting a prescription might later go to an ED if they
are unable to get support from their primary doctor.

Figure 5: LDA WordCloud for No ED Prediction

As for negative predictions in 5, we saw common words appear in topic analysis such as "day",
"need", "call", "health", "instruction", "questions", "procedure", and "hours". Our takeaway from this
information is that the model may have used messages that were more logistical (involving scheduling,
pre-care/post-care instructions, etc) to indicate decreased risk of having an ED visit. There are words
that appeared in this set of topic as in the first such as "blood", "surgery", and "procedure". We are
unsure what decisions the model made to differentiate these cases; however, refering back to our
manual analysis it is possible the model did not view these words as distinguishing factors. It may
also be that Bio_ClinicalBERT used message context to understand distinctions between these types
of messages. Another hypothesis is that these messages may have been resolved and well managed
at some point during the patient’s message history which put the patient at decreased risk. Other
words that appeared in the topic modeling, although less frequently, were "good", "healthy", "young",
"muscles", and "complete". We interpret these as indications of good health and show that the model
may have been correlating such terms with decreased ED visit risk.

5.3 Evaluation Metrics Across Demographics

Lastly, our data analysis shows that our model is producing accurate predictions across different types
of patients. The figure above represents the composition of the test set predictions for mean pooling
and the respected F1 score for each group. We see that mean pooling produces high F1 scores of 1.0,
0.93, and 0.95 for young, middle-aged, and old adults respectively.

6 Conclusion
In this research project, we used patient portal messages to predict future patient ED visits. We
learned that applying mean pooling on a finetuned pretrained Bio_Clincal BERT model achieved
high F1 and AUROC scores for patients across different age demographics. By analyzing our model
outputs, we learned that certain words when contextualized in patient messages like "pain", and "test"
might indicate increased risk for an ED visit. Manually reading true positive messages confirmed that
many ED-visiting patients mentioned pain management issues. Likewise, there might be cases where
words common to logistical questions and consistent care might indicate lower ED risk. Since our
model performs better than the current Epic V1 logistic regression model used by Stanford Medicine,
we hope to work with doctors at Stanford Medicine to further develop and implement our work.
Specifically, we would like to increase our GPU resources to run on more data, sample different
cohorts, and test our methods to ensure it is not biased against patients from different demographics.
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