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Abstract

While large language models (LLMs) have shown incredible performances over
natural language understanding (NLU) tasks, a question that remains to be solved is
whether they are pragmatic listeners that can reason over ambiguous scenarios and
act optimally. In this project, we test the pragmatic reasoning capabilities of GPT-3
models in ambiguous scenarios under the Rational Speech Act (RSA) framework
in a reference game setting. Testing the models with zero-shot, few-shot, and few-
shot chain-of-thought (CoT) prompting, we find that although few-shot prompting
produces little performance improvement, and indeed often worsens model perfor-
mance, few-shot CoT prompting dramatically improves the performance of davinci
models.
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2 Introduction

Human communication is largely affected by its context. When we speak and when we listen, our
utterances as speakers and our interpretations as listeners are inevitably sensitive to the expectations
of the others involved in our communication and the context of the communication. For example,
if you asked someone "Do you want to grab dinner?", and they say "I have work to do.", without
them explicitly saying no, you know that the answer is implicitly no; this is because we use a skill
called pragmatic reasoning, where we can glean information from context. The example above is
an implicature, where a person means to convey something that is not explicitly said (Maru and
Bevilacqua, 2021).

In the era of ChatGPT and models from the GPT family, large language models (LLMs) exhibit
astonishing performance over NLU tasks, and start to serve as daily agents that help humans to
accomplish various tasks. They are clearly literal listeners in the sense that they can understand human
questions or conversations and generate utterances that communicate faithfully. One big question
that remains to be solved is whether they are pragmatic listeners that can reason over ambiguous
scenarios and act optimally. Among other intricacies of human language such as idioms, ambiguous
scenarios, like the one depicted in Figure 1, are difficult for computers to model and understand.
While these ambiguous scenarios are similar to implicatures, the presence of a misleading choice
requires additional reasoning for one to arrive at the correct conclusion. In the example, the listener
has to reason about the speaker’s specific choice of choosing "glasses" to describe her friend, noting
although two options wear glasses, had the speaker intended to refer to the option on the right, it
would have been clearer to describe her friend as wearing a hat. Thus, the middle option is the option
the speaker refers to.
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Figure 1: Ambiguous scenario illustration
adapted from Goodman and Frank (2017)

Figure 2: Hyperbole reasoning illustration
adapted from Goodman and Frank (2017)

We test the pragmatic reasoning abilities of GPT-3 models under the well-studied Rational Speech
Act (RSA) framework in a reference gaming setting, specifically using ambiguous list comprehension
prompts. What distinguishes our work is the application of RSA to to these ambiguous scenarios.

As human communication frequently invokes the use of pragmatic reasoning to deduce understandings
that cannot be gleaned from just literal interpretations. This can occur in the form of literal ambiguous
scenarios with choices, like scheduling, for example, or more implicit ambiguous scenarios that appear
in human language like hyperboles (Figure 2). For LLMs to more effectively evaluate and understand
human communication, they have to be able to pragmatic reasoning themselves, a development that
would have a wide variety of applications among conversational agents.

3 Related Work

Monroe et al. (2017) conducted research that is analogous to this project in the sense that it similarly
focuses on utilizing the RSA framework for its models. The main differentiators are the models being
used (their own novel models vs GPT-3 models) and the specifics of the tasks (visual and language
based vs just language based); their tasks focus on ambiguous color references.

Ruis et al. (2023) investigates whether LLMs have the ability to make this type of implicature
inferences, finding that despite only evaluating on utterances that require a binary inference (yes or
no), most perform close to random. While this work similar establishes a baseline for evaluating
language in context, while they focus on implicatures, we will have models evaluate explicitly
ambiguous prompts.

4 Approach

4.1 Task

We focus on applying the RSA framework in a reference gaming setting, focusing on tasks that have
speaker and listener agents. After creating our datasets, as our initial task, we test to see if the GPT-3
and GPT-.5 models understand and respond accurately to non-ambiguous tasks. Specifically, we
start with literal list comprehensions. For example, given the scenario in Figure 3 where a speaker
presents several lists in a prompt, can the model, acting as the listener, identify which list the speaker
is referring to when the answer is non-ambiguous? We then see if the GPT-3 models can accurately
reason through similar pragmatic list comprehensions where the answer is ambiguous via recursive
reasoning about the speaker’s intentions. We then experiment with providing varying amounts of
in-context examples of pragmatic list comprehension tasks (few-shot prompting) to see if they evoke
any improvement in reasoning ability. Following experimenting with few-shot prompting, we include
answer rationales in our in-context examples, chain-of-thought (CoT) reasoning in an effort to elicit
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better model performance. Across all of these tasks, we evaluate individual models’ performances to
see if successive generations of GPT are better at pragmatic reasoning.

Figure 3: Example of ambiguous pragmatic reasoning task

4.2 Methods

To the best of our knowledge, there are currently no datasets that exist for us to test pragmatic
reasoning of ambiguous tasks under the RSA framework. The most similar benchmark that was
found was created by Auther and Author, but it tests for understanding of conversational implicatures,
which are similar but differ in complexity to the ambiguous scenarios we propose. Thus, we have
constructed our own datasets. Our datasets contain list comprehension prompts within the RSA
framework, and they vary in terms of ambiguity, number of in-context examples, and whether or not
these examples include CoT reasoning. The dataset construction process is further elaborated upon in
Section 5.1.

4.3 Baselines

Since there is no currently existing benchmarks on the specific task we will be focusing on, our
baseline will be the models’ performance on non-ambiguous prompts. A model’s performance on
non-ambiguous prompts will indicate whether it can faithfully understand our prompt and act as
literal listeners.

4.4 Models

The models we plan to use are various generations of GPT-3 models. More specifically, we will be
using text-davinci-003, text-davinci-002, text-curie-001, text-babbage-001, and text-ada-001 The use
of all 5 models will allow us to test the emergence abilities of LLMs.

5 Experiments

5.1 Dataset Types

We constructed 6 different datasets: non-ambiguous, ambiguous 0-shot, ambiguous 5-shot, ambiguous
10-shot, ambiguous 5-shot with CoT reasoning, and ambiguous 10-shot with CoT reasoning. Each
dataset consists of 1000 prompts. Every prompt is a list comprehension problem that is presented
with a set of instructions (Figure 4) that set the RSA framework. Each prompt has 3 list choices, two
list choices with two numbers, and one list choice with one number. A minimum of 1 and maximum
of 100 were set to determine the range of these numbers. The numbers for the lists were chosen by
randomly sampling without replacement from this range using random.sample().

Parameters There are 3 parameters that distinguish our datasets’ prompts from each other: ambi-
guity, number of in-context examples, and whether or not these examples include rationales. All of
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the datasets have prompts with ambiguous answers except one, a non-ambiguous prompt data set
which is used to test the baseline literal listener reasoning abilities of the models. A non-ambiguous
prompt (Figure 5) has list choices that are clearly distinct, with only one list choice containing the
target number mentioned in the speaker’s instructions, meaning there one obvious answer. Similar to
a non-ambiguous prompt, an ambiguous prompt (Figure 6) has 3 list choices, but two of them contain
the target number mentioned by the speaker, creating ambiguity. The way to arrive at the target list
choice is to evaluate the reasoning behind the speaker’s specific choice of target number (Figure 6),
which is how the RSA framework is utilized within the context of our ambiguous prompts.

For the datasets that include in-context examples (ambiguous 5-shot, ambiguous 10-shot, ambiguous
5-shot with CoT reasoning, and ambiguous 10-shot with CoT reasoning), the examples closely mimic
the structure of the prompts except that the answer is provided. Where a prompt would end with "The
answer is List", an example would be completed with "The answer is List A." For the datasets that
include rationales with their examples, the rationales precede the ending of "The answer is List...".

Figure 4: Instructions attached to each prompt

Figure 5: Example of non-ambiguous prompt

Figure 6: Example of ambiguous example with CoT reasoning

5.2 Prompt Engineering

There were several ways that we purposefully engineered the prompts in our datasets.

Ordering Each of our list comprehension problems has 3 choices: the target answer, a misleading
choice that technically could be correct due to ambiguity, and an obviously incorrect choice. If we
were to present prompts or examples where the 3 choices appeared in the same order each time, we
were concerned that the GPT-3 models would attach a relevance to the sequencing of the choices, and
choose answers off of that. Thus, we were cautious to avoid that potential scenario by randomizing
the orders of the choices. Since there are 6 possible orderings for these 3 choices (3!), this was
accomplished by randomly generating an integer from 1-6 using random.randint() each time a prompt
or example was generated to determine the ordering.

Open-Endedness One other concern of ours was the lack of regularity that could come with
prompts that were too open ended. For example, after being instructed to pick a list containing a
certain number, there are a number of responses that the model could generate. We were especially
cautious about avoiding a scenario where a model would answer as the listener by returning not
just one, but two lists, effectively avoiding reasoning and selecting both ambiguous answers (i.e.
returning "List A and List B"). To combat this issue, we ensured that the last portion of each prompt
leading up to the model generated answer was "The answer is List", with the is implying only one
choice should be returned as the answer (The choices being "A", "B", and "C"). For ease of answer
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detection, we also ensured that "List" was the final word of each prompt so that the model would
generate a response that was a letter that would refer to the list name rather than the list itself ("A"
vs "[1, 3]"). The exception to this was generated answers to prompts that included rationales. In
those cases, generated answers followed the structure of the rationale, but typically ended in the same
sentence as the generated answers to prompts without rationales.

Rationale To elicit reasoning, each rationale starts with "Let us think step by step", a phrase shown
to have improved CoT by ?. The rationale then explains the correctness of a choice by exploring
the speaker’s intentions, providing reasoning for the specific selection of given target number and
illustrating why that specific selection implies a certain choice, before stating that the misleading
ambiguous choice is incorrect and that the target choice is the answer.

5.3 Evaluation method

We have casted our problem as a classification task, for which we report on precision, recall,
accuracy,and F1 scores. There are currently no existing benchmarks regarding the specific task of
reasoning through written prompts within a RSA framework. Monroe et al.’s (2017) Colors in Context:
A Pragmatic Neural Model for Grounded Language Understanding can be seen as analogous to this
study, but a direct comparison cannot be made due to the inherently different natures of the tasks
(visual vs. linguistic). Thus, we rely on the baseline of random accuracy to judge the accuracy or our
models. In an unambiguous case, the baseline random accuracy will be 1/n, where n is the number of
choices, as we expect the model to return one token as its response. We originally anticipated having
to define a metric to incorporate situations where the model returns more tokens than expected in an
ambiguous case. For example, if there are three choices, A, B, and C, and A B are the ambiguous
choices, the model could return "A or B." However, we avoided this complication by adjusting our
prompts to ensure only one choice was returned each time. This method was effective, with only 5
extraneous answers from a total of 30,000 generated answers.

5.4 Experimental details

Across all models, we set the parameters to be the same. Temperature was set to 0, as classification
tasks should have no ambiguity, maximum length was set to the default of 256, as each response
should be quite short, and Top P was set to 1.

5.5 Results

The quantitative accuracy measures of the models’ performances on the datasets are pictured in the
graphs below (Figures 7-12). A dotted green line indicating baseline measure of random accuracy
was included for understanding. To see all of the metrics in tabular form, Figures (15-20) in the
appendix.

Even on non-ambiguous prompts with a clear answer, text-ada-001, text-babbage-001, and text-
curie-001, henceforth referred to as older GPT-3 models, performed poorly. Improvement remained
poor for the older models across all datasets. This is exemplified by the oldest model, text-ada-001,
which achieves around .333 accuracy for all of the datasets. The text-davinci-002 and text-davinci-
003 models, henceforth referred to as the newer models, however, achieved 100% accuracy on the
non-ambiguous dataset.

All models performed poorly on the ambiguous 0-shot dataset, although the newer models tend
to do slightly better. As in-context examples are added into ambiguous prompts, models do not
perform significantly better; at times they perform worse, as shown by the decreases in accuracy from
text-curie-001, text-davinci-002, and text-davinci-003 when going from evaluating on the ambiguous
0-shot dataset (Figure 8) to the ambiguous 5-shot dataset (Figure 9).

For the older models, there were no significant increases in performance when going from evaluating
on ambiguous prompts with examples (Figures 9 and 10) to evaluating on ambiguous prompts with
examples are provided with CoT reasoning (Figures 11 12). However, newer models perform much
better on datasets where prompts are given examples with CoT reasoning (Figure 11), and this
performance improvement increases with additional provided examples with CoT reasoning (Figure
12).
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Figure 7: Non-ambiguous dataset results Figure 8: Ambiguous 0-shot dataset results

Figure 9: Ambiguous 5-shot dataset results Figure 10: Ambiguous 10-shot dataset results

Figure 11: Ambiguous 5-shot w/ CoT reasoning
dataset results

Figure 12: Ambiguous 10-shot w/ CoT reasoning
dataset results

While there were still generated answers that returned more than the desired number of tokens, across
all of the generated answers (total 30,000 answers), only 5 generated answers fell outside of this
norm, and the maximum number of extraneous generated answers from one dataset was 2. Four
of the five extraneous generated answers were produced by text-ada-001, while 1 was produced by
text-davinci-002.

*Example of extraneous answer*

6 Analysis

Understanding of non-ambiguous prompts From the results, it seems like older models cannot
even be considered literal listeners. Even when presented with a prompt with one clear answer, they
barely perform better than baseline random accuracy. Closer looks at the generated answers showed
that all of the older models had a baseline tendency towards generating the answer of "C." In fact,
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text-ada-001, text-babbage-001, and text-curie-001 generated almost all "C"’s in response to the
non-ambiguous and ambiguous 0-shot datasets, indicating that they required in-context examples
to even really start considering other potential answers. The older models start producing a slightly
more diverse answers across once examples are provided in-context, but a bias towards "C" is still
apparent.

Lack of performance improvement with few-shot None of the models showed significant perfor-
mance improvements with added in-context examples, except for a slight uptick in text-davinci-002’s
performance when going from ambiguous 5-shot prompts to ambiguous 10-shot prompts. This is
distinct from results of past work that show performance improvements with added examples. This
leads to the conclusion that providing in-context examples is not enough to significantly improve
model performance when it comes to ambiguous prompts.

Understanding of CoT reasoning The older models start producing a much more even set of
answers across "A", "B", and "C" once rationales are provided with the examples, but this doesn’t
improve their accuracy. This indicates that the older models don’t really understand the CoT reasoning
to the point of being able to reach the right answer, and that they are likely just imitating variances in
the correct answers in the examples or another non-apparent pattern. The lack of understanding of
the rationales is apparent when looking at individual examples of generated answers.

A prompt and answer generated by text-curie-001 that the model got wrong is depicted in Figure 13.
Not only is the model unable to detect which lists actually share the target number, it also incorrectly
states that List B has a unique number of 27. The model then gives an answer of List A, which wasn’t
even mentioned in any of the prior reasoning steps. Answers with the same errors were produced
from text-ada-001 and text-babbage-001.

Figure 13: Prompt that both text-curie-001 and text-davinci-002 classified incorrectly

Figure 14 shows a prompt and answer generated by text-curie-001 that the model got right, however,
despite producing the correct list answer, the rationale provided by the model clearly indicates that it
did not utilize CoT reasoning to reach the answer, and likely produced the right answer by chance.

On the other hand, text-davinci-002 and text-davinci-003 indicate a better understanding of CoT.
When producing answers, most correct answers follow CoT reasoning with sound logic, such as
depicted in text-davinci-002’s generated asnwer in Figure 14. Even when these models product
incorrect answers, the errors in their rationales are much less significant that the ones in the older
models’ incorrect rationales. In Figure 13, we see that although text-davinci-002 produced an
incorrect answer, the model was still able to correctly identify which two lists had the target number
in the first line of reasoning. In addition, unlike the final incorrect answer generated in Figure 13
by text-curie-001, the final incorrect answer generated by text-davinci-002 is at least mentioned in
earlier reasoning steps.
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Figure 14: Prompt that both text-curie-001 and text-davinci-002 classified correctly

7 Conclusion

In this project, we built a benchmark for evaluating pragmatic reasoning in ambiguous scenarios
under the RSA framework, and we tested GPT-3 models on our benchmark. We find that the
baseline performances of the models on ambiguous 0-shot prompts are poor. When evaluating on
ambiguous scenarios, models do not perform better with in-context examples alone. It is only when
CoT reasoning is provided with examples that any model’s performance improves significantly; this
happens with text-davinci-002 and text-davinci-003. In light of these results, it would be interesting
to further investigate if models can understand ambiguous prompts in more day to day contexts, for
example, with meeting scheduling instead of list comprehensions. Several papers have also recently
been released regarding multimodal CoT reasoning (Zhang et al., 2023) (Huang et al., 2023). Running
experiments with multimodal CoT reasoning with ambiguous multimodal prompts would be antoher
exciting avenue to explore. It would also be interesting to explore experiment with more in-depth,
descriptive CoT reasoning to see if that elicits better results or to have our datasets evaluated by
humans for the construction fo a human baseline.
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Figure 15: Non-ambiguous dataset results

Figure 16: Ambiguous 0-shot dataset results

Figure 17: Ambiguous 5-shot dataset results

Figure 18: Ambiguous 10-shot dataset results

Figure 19: Ambiguous 5-shot with CoT reasoning dataset results
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Figure 20: Ambiguous 10-shot with CoT reasoning dataset results
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