Multitask Bert with Task Embedded Attentions
(TEA-BERT)

Stanford CS224N Default Project

Chunjiang Mou
Institute for Computational and Mathematical Engineering ICME)
Stanford University
cmou2@stanford.edu

Zifei Xu
Institute for Computational and Mathematical Engineering ICME)
Stanford University
zifei98@stanford.edu

Sally (Hanqing) Yao
Institute for Computational and Mathematical Engineering (ICME)
Stanford University
yaohangi@stanford.edu

Abstract

Well known for its deep bidirectional Transformer architecture and capability of
learning text-pair representations, pre-trained BERT [Devlin et al.| (2018)) models
have been widely adopted to get fine-tuned for different tasks. Given the large size
of BERT models, it is infeasible to store separate parameters when adapting to
each task. Multi-task learning is helpful in extracting meaningful features shared
across tasks, which can provide a robust task representation to improve prediction
accuracy and allow parameter-sharing among different tasks for training time and
resource efficiency. For this project, we aim to improve the vanilla BERT model to a
multi-task model which incorporates task embeddings so that this single model can
flexibly be used to solve various NLP tasks with high accuracy while not increasing
model size too much. In the first stage of the project, we implemented vanilla
BERT and AdamW for the baseline, and experimented on directly adding task
embeddings to input embeddings obtained from BERT to compare the modified
model’s performance with the baseline model. In the second stage of the project,
we experimented with various methods to inject task embeddings into minBERT
model.

1 Key Information to include

* Mentor: Hans Hanley

2 Introduction

BERT (Devlin et al.| 2018) models enable bidirectional self-attention in the encoder by the use of
masked-language models to fuse context from both directions and jointly pre-train with the “next
sentence prediction” task to learn across sentence dependencies. Its deep bidirectional Transformer
architecture and capability of learning text-pair representations allows it to tackle token-level and
sentence-level NLP tasks really well. Because it is very difficult and resource-demanding to construct

Stanford CS224N Natural Language Processing with Deep Learning

a well-performed multi-layer deep neural network model from scratch, people usually use pre-trained
BERT models and adapt the models for different NLP tasks. However, similar to a lot of outstanding
pre-trained models, BERT is very large in terms of a number of parameters. Fine-tuning BERT
for various NLP tasks requires storing a large number of weight parameters for all of these models
separately, which is too time and space-consuming. It is also a fact that many NLP tasks are similar in
nature and many parameters in models aiming for different tasks can actually be shared. So, multitask
learning can be applied to share a large proportion of weights among tasks to spare memory and
space. However, each task still has its own distinct features, which gives the motivation to incorporate
task information into the model.

In the project, we experimented with multiple ways to incorporate task information into the BERT’s
input embeddings layer and multi-head attention layer, allowing the task information to propagate
throughout the neural network. We hope task embeddings can improve our neural network’s adapt-
ability to a wide range of NLP tasks and could hopefully result in state-of-the-art performance with a
negligible increase in the base BERT network size.

3 Related Work

Transformers were first introduced by Google Al in 2017 (Vaswani et al., [2017) and soon became the
top choices in many NLP tasks such as text classification, text summarization, etc. Unlike recurrent
neural networks (RNNs), transformers process the entire input all at once (Vaswani et al., [2017)
which alleviates the problems of long dependency issues and provides steady performance when
long sentences dominate the text. Moreover, the mechanism of self-attention mechanism enables
transformers to better encode (understand) the words and sentences based on their contexts.

Bidirectional Encoder Representations from Transformer (BERT) is a bidirectional transformer that
was trained with masked language modeling (MLM) and next sentence prediction (NSP) objectives.
The model was pretrained on BooksCorpus and English Wikipedia and considered both left and right
contexts (Devlin et al.,|2018) when making predictions. The large training corpus and full context
conditioning provide BERT with a more thorough understanding of the words and phrases. Also,
because the multi-head mechanism in the Transformer enables BERT to model various downstream
tasks, fine-tuning BERT is relatively convenient and less cost-expensive, roughly 3 epochs for simple
fine-tuning (Devlin et al., [2018)). The experiments performed by |[Devlin et al.| (2018)) showed that
both BERTp A5 and BERTT orcE outperformed all the state-of-the-art models around that time
on all tasks by a substantial margin.

However, BERT is a large language model, with BE RT'p 45 having roughly 110 million parameters,
and BERT aArcE having roughly 345 million parameters (Devlin et al., 2018). So, storing the
weights of all the models trained for many different tasks became impractical and inefficient (Maziarka
and Danel, 2021) especially on mobile devices where storage and battery life are constrained
(Stickland and Murray, 2019).

Multitask learning shares parameters between related tasks to reduce the total number of parameters
and thus comes into place (Stickland and Murray, [2019). Saving memory and training time, multitask
learning is widely used in the NLP field. |Stickland and Murray| (2019) introduces the "Projected
Attention Layer (PAL)", which is a low-rank multi-head attention layer added in parallel to normal
BERT layers. PALs act as task-adaptation parameters and enable comparable performance to finetuned
BERTE s (Devlin et al.l 2018) on many tasks with 7 times fewer parameters in total. Another
noticeable contribution to multitask learning in NLP field is |Pfeiffer et al.| (2020)’s research on
AdapterFusion, which combines the knowledge from multiple source tasks to boost the performance
on a target task.

Our main reference paper is Multitask Learning Using BERT with Task-Embedded Attention (Ra;
jpurkar et al.l [2018)). This paper introduces a task embedded attention BERT model (EmBERT)
where information about the task is transformed into task-specific embeddings and inject to the multi-
head attention layers. The EmBERT model only adds in 3 vectors at each self-attention layer per
task, which largely reduces additional trainable parameters and allow task information to propagate
throughout the entire network for performance improvement. The model was able to outperform
the vanilla BERT and three BERT-based multitask models: with task-specific output layer, top task
multi-head self-attention layer, and Projected Attention Layers (PAL) (Stickland and Murray, [2019)
on 4 datasets (QNLI (Rajpurkar et al.| [2016), SST-2 (Socher et al., |2013)), CoLA (Warstadt et al.,

2019), RTE) and shared first place on the QQP (Chen et al.,[2017) dataset, with the least number of
parameters.

However, there are still limitations and motivations pointed to our work in this paper. For example,
the authors |Rajpurkar et al.[(2018)) did not explore the effect of regularization and only considered
injecting task embeddings at multi-head attention layers. Given the promising performance of the
EmBERT model, we want to first replicate the idea from this model and apply onto our tasks, and then
attempt various weight decay hyperparameters for regularization. Also, we would like to improve
on the calculation of @), K, V' by trying different possibilities of activation functions to increase
nonlinearity and experiment on directly adding task embedding information to input embeddings
from BERT.

4 Approach

4.1 Main Approach

Inspired by the EmBERT model introduced by Lukasz et al. in the reference paper Multitask Learning
Using BERT with Task-Embedded Attention |Rajpurkar et al.|(2018) we would like to improve BERT
by incorporating task embeddings and adapt the model to different tasks by adding task-specific
or task-shareable layers. Regarding task embeddings, we want to experiment on different ways to
generate task embeddings and integrate them into the model, and find out which way can provide the
best evaluation metric results as well as adding only limited amount of parameters to the basic BERT
model. The followings are ways of incorporating task embeddings under our consideration I]

Task-Specific Task-Specific |
Prediction Layer Prediction Layer |

T e (e

Dropout Dropout
Residual " X Residual " X
Connection Position-wise Connection Position-wise
Feed Forward | Feed Forward
A ' A
Nx xN
| Layer Norm | Layer Norm
A A
™y T
1 >
Dropout Dropout
Residual | < Residual | q)|
- Multi-head N Multi-head Task
Connc{:lmnl Attention | Connaction Atention -t Embedding
t 1+ r tr 1
Positional E Positional E
\@coding 9 / \@coding B /

Task +__y/ Input Embedding Input Embedding
Embedding from BERT from BERT

Input Input

Figure 1: BERT Model with Task Embedding Injection

1. Task embeddings created at input embeddings layer: Generate task embeddings and integrate
them to input embeddings before passing into the attention layers. For example, we could

use

E =F+ Etask

where F is the original input embedding and F, . is the task embedding.

2. Direct task attention embedding: Create task-embedded attention Qiasks Kiask, Viask
vectors directly from embeddings function and then add them to the original input matrices

@, K,V at the multi-head attention layers to get a new set of Q K , V for scaled dot-product
attention calculations. (Rajpurkar et al.,[2018])

Q:Q+Qtask
K:K+Ktask
V:V+‘/zfask

3. Projected task attention: Create task-embedded attention matrices Qtqsks Ktasks Viask DY
projecting task embeddings and then add them to the orlgmal input matrices @), K, V" at the
multi-head attention layers to get a new set of Q K, V for scaled dot-product attention.

Q Q + taék;Etask
K =K+ WtaskEtask:
V=V + Wt‘gskEtask

4. Task attention with activation: Create task-embedded attention matrices Q¢ sk, Ktask> Viask
by projecting task embeddings and then add them to the original input matrices), K, V at
the multi-head attention layers, then pass into an activation function followed by a projection
layer to get a new set of@, K s V.

Q Wgoj * activation(Q + WtaskEtask)
K= szﬁo] * activation(K + W Eraer)
V= me] * activation(V + WY Erask)

After passing embeddings throughout all the BERT layers, either task-specific layers or task-sharable
layers are further applied to complete different tasks.

1. Task-specific layers: Distinct dropout and linear projection layers are applied to the sentiment
analysis and paraphrase detection tasks to produce the logits. For the sentiment analysis
task, each sentence receives a logit score corresponding to each sentiment category and
the max logit label is assigned as the final predicted sentiment label. For the paraphrase
detection task, sigmoid function and rounding are further applied to the logits to get the final
predictions. For the semantic textual similarity task, we compute the cosine similarity of the
results. The similarity is passed to a ReLU function and multiplied by 5.

2. Task-sharable layers: Distinct dropout and linear projection layers are applied to the senti-
ment analysis task while shared dropout and linear projection layers are applied to paraphrase
detection task and semantic textual similarity task due to their sentence-pair input feature.
For the sentiment analysis task and paraphrase detection task, same procedures as task-
specific layers scenario are used to process logits. For the semantic texture similarity task,
the logits are multiplied by 5 as the final similarity score.

‘ MatMul ‘

Softmax

1

‘ Scale ‘

‘ MatMul ‘

‘ Integrate ‘ ‘ Integrate ‘ ‘ Integrate ‘

r 111 1

Q Quask ! Eqask K Kiagk ! Erask V' Viask / Erask

Figure 2: Modified Attention Layer with Qcimp, Kemp, Vemb

4.2 Baseline

We have two baselines, one is the minBERT model trained only on the sentiment analysis task data
and the other is trained on all tasks (sentiment analysis, paraphrase detection and semantic textual
similarity). Using learning rate of 1e=5, weight decay of 0.01, we get baseline paraphrase detection
accuracy of 0.476, sentiment classification accuracy 0.506, and correlation 0.289 for training only on
sentiment analysis task and paraphrase detection accuracy of 0.378, sentiment classification accuracy
0.692, and correlation 0.483 for training on all tasks.

S Experiments

5.1 Data

1. Stanford Sentiment Treebank (SST) |Richard Socher and Potts| (2013)), 11, 855 single sen-
tences extracted from movie reviews for sentiment analysis task. Each piece of data consists
of id, movie review text, and sentiment score. The sentiment scores have 5 different values:
negative (1), somewhat negative (2), neutral (3), somewhat positive (4), or positive (5).

2. Quora dataset |Chen et al.| (2017), released by Quora contains labels of whether pairs of
questions were paraphrases of each other for the paraphrase detection task. The inputs are
two sentences and the output is whether they are duplicates of each other (1: yes, 0: no)

3. Semantic Textual Similarity (STS) Haoming Jiang|(2013), a dataset that contains pairs of
sentences with their semantic similarity score on a scale from 5 (same meaning) to 0 (not at
all related)

5.2 Evaluation method

We used accuracy for sentiment analysis task and paraphrase detection task, and the correlation
between the predicted and true similarity for semantic textual similarity task.

5.3 Experimental details

After running several trials, we decided to use the following configuration for our experiments. We
trained on the full SST training dataset (8, 544 examples), 6% of the Quora training dataset (8, 490
examples) and 50% of the STS training dataset (3,020 examples). We used a batch size of 16,
10 epochs and a learning rate of e~® [3l We used cross entropy loss for sentiment analysis task,
binary cross entropy loss for paraphrase detection task, and mean-squared errors for semantic textual

similarity task. The experiments were based on varying the method of integrating task information, as
mentioned in the main approach section, and the weight decay rate for AdamW. Evaluation metrics
are reported on the dev set containing 1, 101 SST task examples, 20, 212 Quora task examples, and
863 STS task examples.

Task Embedding at Input Layer with Varied Leamning Rates

0.7
06
L 0S5
S
LA
E 04 —— 55T dewv Accuracy
§ Paraphrase dev Accuracy
E 03 5T5 dev Correlation
w ===- (Owerall dev score
02
01

le-& le-5 1=-4
Leaming Rate

Figure 3: Task Embedding at Input Layer with Varying Learning Rates (1e~° provides the highest
accuracies and is thus adopted for running all models)

5.4 Results

The results of our experiments using task-specific layers are summarized in Table 5.4}

Weight | SST dev | Paraphrase dev STS dev Overall dev
Decay | Accuracy Accuracy Correlation score

| Baseline (sst) | 0.010 | 0.476 | 0.506 | 0.289 | 0.424 |

| Baseline (all) | 0.010 | 0.378 | 0.692 | 0.483 | 0518 |
. 0.000 | 0.483 0.706 0.627 0.605
T:fll‘nE‘l‘l‘th‘;dg‘,g 0.001 | 0.484 0.688 0.575 0.582
put Lay 0.010 | 0.444 0.647 0.568 0.553
) 0.000 | 0.469 0.699 0.574 0.581
af‘f::‘ti‘t‘;gﬁdf;‘fr 0.001 | 0510 0.698 0.552 0.587
y 0.010 | 0.445 0.707 0.515 0.556
. 0.000 | 0.480 0.709 0.590 0.593
emii‘ggig"izﬁ;on 0.001 | 0.442 0.710 0.596 0.583
0.010 | 0.441 0.647 0.489 0.526
Task-embedded 0.000 | 0.392 0.615 0.511 0.506
Attention with 0.001 | 0.374 0.683 0.489 0.515
ELU 0.010 | 0.289 0.662 0.421 0.457
Task-embedded 0.000 | 0.366 0.603 0.411 0.460
Attention with 0.001 | 0.366 0.692 0.444 0.501
Tanh 0.010 | 0.318 0.632 0.367 0.439
Task-embedded 0.000 | 0.369 0.694 0.543 0.535
Attention with 0.001 | 0.390 0.667 0.449 0.502
SeLU 0.010 | 0.330 0.668 0.358 0.452

\ Test leaderboard \ 0.000 \ 0.486 \ 0.705 \ 0.623 \ 0.605 \

Barplot] compares task embeddings at input layer model accuracies obtained under task-specific
layers structure against under task-sharable layers structure.

Task Specific Layer vs Task Sharable Layer

Evaluation Metrics
mm SST dev Accuracy
s Paraphrase dev Accuracy
W STS dev Correlation
Em Qverall dev score

07

0.6

05

=
=

value_numbers

03

0z

01

00

Model

Figure 4: Task-Specific Layer VS Task-Sharable Layer under the Best Performance Model

6 Analysis

As shown in barplot] although reducing the amounts of added parameters, task-sharable layers
structure failed to do as well as task-specific layers structure under the task embeddings at input layer
model, especially for the semantic textual similarity task (0.442 correlation coefficient against 0.605).
This is probably because the task-sharable layers concatenated the sentence-pair embeddings for
projection instead of calculating the cosine similarity between sentence-pair embeddings, which is
more suitable for semantic textual similarity task.

Comparing the baseline model against models with task information incorporated, we can see that
the inclusion of task information is helpful for improving the performance. Task embeddings at
input layer was found to be the approach that produced the highest accuracy, while the best accuracy
scores for task embedding at attention layer and projected task embedded attention was slightly
lower (<0.02). However, the accuracies for task embedded attention with activation are significantly
lower (>0.05). This might be due to lacking reasoning on why activation layers are needed and how
specific activation functions are chosen. It does not really make sense why negative values of Q.
K and V should be treated differently or why the input to scaled dot-product attention should be a
value between —1 and 1. Moreover, task embeddings at input layer adds the least amounts of extra
parameters (in total # Tasks « Hidden Size many) compared with task embedding at attention layers
adding three times more parameters and projected task embedded attention adding exponential more
(in total Hidden Size® many).

We also found that using larger weight decays inhibits the performance of the model. This might be
because we are using a large training data set and our model is not complex enough for overfitting to
happen.

7 Conclusion

In this project, we tested different approaches to integrate task information to the vanilla BERT Model
for the purpose of multitasking. We found that injecting task information at the input layer gives the
best accuracy and adding activation functions impedes performance. We also found out that larger
weight decay rates for AdamW optimizer lower the accuracies.

For future work, we would like to test our model on SuperGLUE dataset, which contains more diverse
tasks such as coreference resolution and question answering tasks. We think that the tasks used for
this project are too similar, thus the minBERT is already performing relatively well. With more
diverse tasks, we are expecting a big improvement in accuracy after integrating task information.

References
Zihang Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi Zhao. 2017. Quora question pairs.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: pre-training of]
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

Weizhu Chen Xiaodong Liu Jianfeng Gao Tuo Zhao Haoming Jiang, Pengcheng He. 2013. Smart: Ro-
bust and efficient fine-tuning for pre-trained natural language models through principled regularized
optimization.

Lukasz Maziarka and Tomasz Danel. 2021. Multitask learning using bert with task-embedded
attention. In 2021 International Joint Conference on Neural Networks (IJCNN).

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé, Kyunghyun Cho, and Iryna Gurevych. 2020.
Adapterfusion: Non-destructive task composition for transfer learning. CoRR, abs/2005.00247.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. Know what you don’t know: Unanswerable
questions for SQuAD. In Association for Computational Linguistics (ACL).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100,000+
questions for machine comprehension of text. Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing.

Jean Wu Jason Chuang Christopher Manning Andrew Ng Richard Socher, Alex Perelygin and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631-1642, Seattle, Washington, USA. Association for Computational Linguistics.

Asa Cooper Stickland and Iain Murray. 2019. BERT and pals: Projected attention layers for efficient
adaptation in multi-task learning, CoRR, abs/1902.02671.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. CoRR, abs/1706.03762.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. 2019. Neural network acceptability
judgments. Transactions of the Association for Computational Linguistics, 7:625-641.

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2005.00247
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/1902.02671
http://arxiv.org/abs/1902.02671
http://arxiv.org/abs/1706.03762
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.1162/tacl_a_00290

	Key Information to include
	Introduction
	Related Work
	Approach
	Main Approach
	Baseline

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

