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Abstract

Generating natural language summaries of charts and graphs is crucial to ensure
accessibility for blind and low vision (BLV) users. Most current approaches to
summarization do not consider the overarching context in which the chart or graph
appears. However, research indicates that people who are BLV often prefer image
descriptions that take context into account. To close this gap, we present a set of
deep learning models that generate summaries for charts and graphs. We compare
the results of models without context to models that incorporate context, and
find that when we train our model on a variety of contexts, our model performs
better on all metrics. Furthermore, we explore which types of context enhance
summary generation by examining how the model generalizes when trained on a
specific type of context. Our results underscore the importance of considering the
communicative purpose of images when generating summaries.
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2 Introduction

Charts and graphs aim to present quantitative data in a visually compelling way. Given the abundance
of charts and graphs, it is important to ensure that people have equal access to the content of these
images, particularly people who are blind or low-vision (BLV). Previous work shows that human-
authored alt text for charts and graphs is often absent or uninformative, and is insufficient to address
the needs of BLV people [1]. Therefore, we focus on the problem of automatically generating natural
language summaries for charts and graphs.

While generating image descriptions is an active subfield in bridging image-text relations, summariz-
ing charts and graphs poses an additional set of challenges [2, 3]. Charts and graphs often contain
textual data in their labels, and generating chart summaries requires the model to parse text within
the image, which is challenging. Studies show that visually inferring key insights from data is a task
that is challenging even for humans, because people need to visually compare and contrast between
many items in the data [4]. In addition, figure captions generally tend to be longer than other types of
image descriptions, so the possibility of a mistake increases [5].

We hypothesize that taking into account the surrounding context of the graph will help create more
informative summaries. Prior work in the field of generating image descriptions shows that what
BLV users want in image descriptions vary with the context in the image appears [6, 7, 8]. We
extend this hypothesis to charts and graphs. We conducted experiments to answer two main research
questions: (1) Does context improve chart summaries when we train a model on different types of
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context (e.g. market graphs, scientific figures, etc)? (2) How does a model trained on one type of
context generalize to other contexts?

To evaluate our hypothesis, we trained context and no-context models. Our context models take in as
input an image and a context, and output a summary of the chart. Our no-context models take in the
image as input, and output a summary of the chart.

We used datasets with naturally occurring charts and graphs in varying contexts: Pew [3], a public
policy research center, Statista [3], an online platform for market and consumer data, Concadia [8],
which is a subset of images of charts and graphs sourced from Wikipedia, and Alt-Text HCI [1], a
dataset consisting of scientific figures in human-computer interaction (HCI) papers.

For our first experiment, we concatenated all the datasets together and found that incorporating
context into our models improves the scores on all metrics, and creates more informative summaries.
In our second experiment, we explored if a model trained on a single type of context (Statista)
generalizes to unseen datasets, and find that although the evaluation metrics of this model are slightly
lower the previous one, it is not significantly inferior, and we can assert that training on Statista
generalizes effectively to the other datasets.

Our key contributions include: (1) defining summaries as an effective method for communicating
insights from charts and graphs, (2) training and evaluating existing context and no-context models
for our purposes, and changing their attention mechanism, and (3) finetuning BLIP [9] to work with
our dataset.

3 Related Work

3.1 Summarizing Charts and Graphs

Xu et al (2015) [10] formulate the problem of image captioning as machine translation, since it
involves "translating" an image into sentences. The encoder extracts features from images, and the
decoder translates the features into natural language sentences. Drawing from this paper, we train
similar encoder-decoder models (ResNet-LSTM, and DenseNet-LSTM) in our own work.

Kantharaj et al (2022) [3] released a large-scale benchmark and dataset for the problem of chart
summarization. The dataset consists of 44, 096 charts from Pew and Statista with a diverse range
of topics and chart types. The researchers also benchmarked a variety of state-of-the-art models on
this dataset, which we use for our project. They address two versions of the problem: the version
where the underlying data table is available, and the other when it isn’t. However, their models do
not consider the underlying context in which the graph appears, which we hypothesize will help the
model generate more informative chart summaries.

Chintalapati et al (2022) [1] conduct a study of the alt text for charts and graphs in papers submitted
to ACM ACCESS and CHI, premier accessibility conferences. They find that while most alt text
about graphs only contains information about basic low-level visual details, such as graph type and
labels of axes [1], only 50% of the alt texts of figures discuss outliers, and 31% discuss trends. They
also released a dataset of these real-world graphs scraped from HCI publications, which we included
in our concatenated dataset.

Lundgard and Satyanarayan [11] describe a framework for understanding semantic content in descrip-
tions of charts and graphs. They characterize four levels of semantic content - (1) Identify low-level
visualization details (e.g. the type of figure, axis labels, etc.), (2) Report statistical concepts and
relations (e.g. outliers, correlations, etc.) (3) Explain high-level patterns in the data (e.g. trends,
patterns, etc.) and (4) Articulate domain-specific insights or the societal context for the data.

The authors conducted studies with BLV people, which showed that users gained the most information
from textual chart and graphs descriptions in semantic levels 1 to 3 [11]. In prior research with
the Stanford NLP Group, we evaluated the datasets collected using four levels of semantic content
criteria and found that the descriptions for Alt-text HCI, Statista, and Pew contain mostly Level 2
data (50 − 67%), with varying percentages of Level 1 and Level 3 data (6 − 36%) and negligible
Level 4 data. These findings indicate a need for a comprehensive dataset that has sufficient levels of
semantic content (1-3) to create more accurate chart-to-text generation models, and show that there
is still more work in order to make chart summaries more informative and relevant. Despite these
limitations, we note that a concatenation of these datasets is appropriate as it is sufficiently large
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(44, 674 datapoints), has fair levels of Level 2 data, and can function as a starting baseline for our
task.

3.2 Incorporating Context in Image Descriptions

Traditionally, generating image descriptions takes a one-size-fits-all approach, using a single descrip-
tion of an image across many different contexts. Stangl et al (2021) [7] propose generating image
descriptions that vary based on context. To support these claims, they conducted a study with 28 BLV
people, and found that the information that people wanted in an image description varied depending
on the scenario they were given [7]. For instance, if an image appeared on an online shopping website,
participants wanted to know more about the clothes. If we extend this idea to charts and graphs, we
can see, for example, how a chart or graph appearing in an online textbook might require different
types of description detail as compared to a chart or graph appearing on a sports analytics website.

Kreiss et al (2022) demonstrated that augmenting image-to-text models with context generates
purposeful captions and descriptions. To measure the impact of context on the quality of text
generation from images [8], the researchers collected data from Wikipedia and assembled a corpus of
96,918 images with corresponding descriptions, captions, and surrounding context. They integrated
the context with the image by concatenating the image embeddings with the context embeddings
from BERT. We adapted their models to work with our dataset of charts and graphs.

Kreiss et al (2022) [8] also draw an important distinction between the phrase caption and description.
A caption is intended to appear alongside the image to add supplementary information, while a
description is intended to replace the image. The field of generating descriptions for charts and
graphs suffers from a paucity of real-world data [1]. Due to this data scarcity, we couldn’t train a
model to generate only captions or only descriptions, and so we had to concatenate together both
caption datasets and description datasets. To avoid confusion, we use the term “summary” broadly
to encompass both descriptions and captions, and to cover all natural language generation of charts
and graphs.

4 Approach

(a) No context model (b) Context model

Figure 1: Model architecture
For the first experiment, we trained and evaluated two models for our chart-summary generation -
DenseNet-LSTM and ResNet-LSTM [10], which are both based on encoder-decoder architecture
with attention. We trained two models for each: a model without context and a model with context.
For the no-context models, we use all-ones vectors in place of the context embeddings.

For our second experiment, we trained DenseNet-LSTM and fine-tuned the Bidirectional Language
Model Pretraining (BLIP)[9] model. BLIP [9] is a vision-language model from Salesforce that can
be used for image captioning, and makes use of a multimodal encoder-decoder architecture. We
considered other pretrained models, such as CLIP [12] and BLIP-2 [13], but based on the work of
Mao et al. [14], we found that CLIP doesn’t generalize well to contextual data, and BLIP-2 required
distributed computing for training, which was not feasible with our limited computing resources (in
both cost and memory).

4.1 Methods

4.1.1 ResNet-LSTM/DenseNet-LSTM

ResNet-LSTM and DenseNet-LSTM are both encoder-decoder architectures that combine either a
ResNet or a DenseNet-based image encoder (from which we remove the last classification layer)
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(a) Multiplicative Attn for DenseNet-LSTM (b) Captioner Decoder and Filter Encoder used in BLIP

Figure 2: Attention for DenseNet-LSTM, Architecture for BLIP

with a recurrent LSTM-based text decoder. We used RoBERTa for context embeddings, which has
been shown to outperform other common pretrained models such as BERT[15]. We implemented
our models in PyTorch, adapting code from previous studies [8, 10]. Our modifications focused on
two principal aspects: (1) the attention mechanism, and (2) modifications of the codebase to suit the
requirements of our datasets. We changed the attention mechanism to use multiplicative attention
instead of additive, as it has been shown to perform better on longer sequences [16].

The multiplicative attention can be represented as:

fatt (hi, sj) = h⊤
i Wsj (1)

where W is a matrix, hi are the decoder hidden states and sj are the encoder states. Our attention
network is straightforward - separate linear layers reduce the encoded image from the Decoder to the
same dimension, namely the Attention size. They are then multiplied and ReLU activated. A third
linear layer reduces this result to a dimension of one, after which the softmax is used to generate the
weights alpha. For the no-context model, the decoder receives all-ones vectors as context, which
eventually get filtered out of the attention scores.

4.1.2 BLIP

BLIP [9] is a pretrained model from Salesforce Research which achieves state-of-the-art results
on vision-language tasks, including image captioning. BLIP uses a multimodal encoder-decoder
architecture, where BERT is the text encoder, and a vision transformer is the image encoder. Cross-
attention asymmetrically combines two embedding sequences, where one serves as query Q and the
other serves as key K and value V inputs.

fatt(qi, kj , Vj) =

N∑
j=1

exp(q⊤i kj)∑N
t=1 exp(q

⊤
i kt)

Vj (2)

where qi is a specific query vector in matrix Q, kj is a key vector in K, and Vj is a value vector in
V where Q, K, V the query, key, and value embeddings respectively, and the RHS represents the
attention weights computed based on the similarity between the query and key vectors. qi is the
i-th query vector in the decoder, kj is the j-th key vector in the encoder, and N is the length of the
encoder sequence [9].

BLIP uses an image-grounded text encoder (filter) and an image-grounded text decoder (captioner),
where the encoder injects a cross-attention layer between the existing self-attention layer and the feed
forward layer for each transformer block, and the decoder replaces the bi-directional self-attention
layers with causal self-attention [9]. The decoder generates synthetic captions as additional training
samples, and the encoder removes noisy captions that don’t match their corresponding images, which
helps BLIP bootstrap captions from noisy image-text pairs.

We fine-tuned the BLIP model with the Statista dataset, training both a no-context model and a model
that incorporates context. For the no-context model, we use the image-description pairs as is, while
for the context model, we concatenated the context embedding with the image embedding for the
input to BLIP.
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4.2 Baselines

Our baseline is the no-context model for each architecture, which takes in the image of the chart or
graph and generates a summary. The with-context model takes in the image and the context, gets
embeddings for each, and then generates a summary for the image of the chart or graph.

5 Experiments

5.1 Data

We combined and preprocessed datasets from Statista, Pew, Alt-Text HCI, and Concadia. We filtered
the Concadia and HCI datasets using a script and visual inspection to extract charts and graphs, and
included context for all datasets. Descriptive statistics about each dataset, such as vocabulary size
and average length, are presented in Table 1. For HCI and Concadia, we used the title and available
context as the actual context. For Pew, we used the underlying data tables extracted with OCR
technology [2] as context - surrounding paragraphs were unavailable. For Statista, we used both the
surrounding paragraphs and the underlying table (which was crawled in [3]) as context. Our original
preprocessing procedure involved filtering, modifying context, and visual inspection, as indicated by
the "Yes" descriptor under Proc in Table 1. See Appendix A for further analysis.

Figure 3: Examples from the datasets we worked with, with the described input/output.

Dataset Images Vocab
Description Caption Context

Proc avg size wordlen Proc avg size wordlen Proc avg size wordlen
Statista 34811 232004 Yes 55.08 4.59 Yes 16.96 4.42 Yes 86.54 4.17

Pew 9285 46261 No 121.9 4.91 Yes 23.07 4.91 Yes 123.79 3.55
Concadia 398 6725 No 22.95 4.51 No 20.46 4.51 Yes 114.39 4.95

HCI 171 5938 No 99.31 4.04 No 33.33 4.45 No 45.21 4.63
Table 1: Datasets with Average Length and Word Size of Description, Caption and Context

5.1.1 Choice of Training and Test Data

For our second experiment, we chose Statista as our training dataset because it is the largest with
34, 811 data points and offers the best-defined context with underlying data tables and surrounding
paragraphs. We used Pew, HCI, and Concadia as test datasets to investigate overfitting and model
generalization. Jaccard similarity is a metric used to measure the similarity between two texts by
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evaluating the number of common words between them. In Figure 4a, we do a 1-1 analysis of
Statista’s description, caption, context to others, and in Figure 4b zoom in to compare just the context
to the test dataset. We hypothesize, using Jaccard similarities in Figure 4, that training on Statista
makes it easier for our model to learn the relevant information and generate more accurate summaries
for each of the test datasets.

(a) Statista’s desc, caption, ctx compared (b) Statista’s ctx compared to desc, caption, ctx

Figure 4: Jaccard similarity between Statista and test datasets

5.2 Evaluation method

Following previous work in charts and graphs, we evaluate with ROUGE, BLEU, and CIDEr scores
[8, 3, 2]. All three metrics compare the summaries generated to human-authored references. The
ROUGE score [17] is a metric used for automatic text summarization, which measures the number
of overlapping words against a set of human referents, calculating precision and recall. The CIDEr
score [18] measures how close a generated sentence is to a set of human-generated references by
calculating the average cosine similarity between the candidate sentence and reference sentences for
each n-gram.

We chose these metrics in order to compare to allow for comparison to existing literature. However,
one limitation with these metrics is that we only have one human-authored reference for each image.
To address this issue, in addition to recording ROUGE, BLEU, and CIDEr scores, we also conducted
qualitative analysis where we measured the semantic distance from the ground truth using cosine
similarity scores from SBert embeddings in Figure 5c.

5.3 Experimental details

We trained a total of 4 models - a no-context and context model each for (1) DenseNet-LSTM and
(2) BLIP. For both architectures, due to cost and memory constraints which caused hurdles with
our model training with our AWS VM, we trained on a subset of the Statista dataset (17, 405 data
points for DenseNet-LSTM and 11, 613 for BLIP), and tested on Pew, HCI, and Concadia.

For DenseNet-LSTM, we used a batch size 32, Adam optimization with cross-entropy loss, decoder
learning rate of 4e− 4, and and a dropout coefficient of 0.5, and trained for 10 epochs. For BLIP, we
reduced our vocabulary size from 30522 to 20522. For our hyperparameters of BLIP, we trained with
a batch size of 4, used AdamW optimizer, a learning rate of 5e− 5, and trained it for 5 epochs.

5.4 Results

In Experiment 1, we see that DenseNet-LSTM outperforms ResNet on all metrics except for BLEU-1
on the no-context model, implying it is better suited for image captioning. However, both models
perform poorly on the test split, indicating that they may be overfitting to the validation set and not
generalizing well to new data. To test this hypothesis, we trained our model using Statista and tested
on Pew, Concadia, and HCI to see how well our models generalize to unseen data.

In Experiment 2, we present two models - DenseNet-LSTM and BLIP. Comparing the results, we see
that the BLIP model outperforms DenseNet on almost all metrics and datasets, albeit with a caveat -
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Experiment 1: Evaluating models trained on all datasets

BLEU-1 BLEU-4 CIDEr ROUGE

Split Model None Ctxt None Ctxt None Ctxt None Ctxt

Val ResNet 0.385 0.585 0.14877 0.360 0.48281 2.260 0.343 0.540

DenseNet 0.4159 0.5799 0.1842 0.3558 0.7125 2.215 0.3774 0.5376

Test ResNet 0.144 0.159 0.025 0.033 0.023 0.047 0.172 0.188

DenseNet 0.134 0.1477 0.026 0.031 0.026 0.04 0.174 0.184

Experiment 2: Evaluating models trained on Statista on test datasets

Dataset BLEU-1 BLEU-4 CIDEr ROUGE

Model None Ctxt None Ctxt None Ctxt None Ctxt

Pew BLIP 0.077 0.034 0.003 0.001 0 0 0.129 0.128

D-LSTM 0.053 0.051 0.001 0.003 0.002 0.004 0.091 0.101

Concadia BLIP 0.112 0.122 0.004 0.003 0 0 0.122 0.125

D-LSTM 0.021 0.069 0.0 0.003 0.0001 0.007 0.020 0.076

HCI BLIP 0.112 0.157 0.004 0.003 0 0 0.108 0.115

D-LSTM 0.021 0.068 0.0 0.004 0.0001 0.031 0.016 0.094

it has a CIDEr score of 0 for all datasets. This could possibly be due to BLIP being pretrained on a
newer, larger corpus of text, and was specifically designed for the purpose of image captioning, while
DenseNet-LSTM comprises of two separate architectures - one specifically for image classification
and one for sequence modelling. That being said, the performance of the finetuned BLIP is poor 1-
given our limited compute, we reduced our vocabulary size from 30522 to 20522, and trained with a
low batch size of 4, which might have contributed to the substandard results.

Regarding the dataset, we can observe that the performance of our model varies across context types.
For example, the Pew dataset performed worse with context, despite the Jaccard similarity in 4
being highest for Pew, while the Concadia and HCI datasets did better. We theorize that since the
availability and quality of context varies across the datasets, this could affect model performance, and
we plan to conduct further ablation studies.

6 Analysis

We first examine how well context has been integrated with our models using Jaccard similarity. As
an example, we pick hypotheses generated by DenseNet-LSTM, and observe in Figure 5a that our
hypotheses from context models are significantly closer to our context than our hypotheses from
no-context models, which is also observed in 5c. We have the best scores for Pew, as examined in
Figure 5a and Table 2, followed by Concadia and then HCI. While our ROUGE score trend confirms
this, our CIDEr score reflects an inverse trend of this order. This could be explained by how these
metrics are calculated - while ROUGE and Jaccard both measure the similarity using overlapping
n-grams, CIDEr relies on multiple references labels and takes into account novelty of the generated
summaries [18], which we lack. We speculate that context models are focusing on the underlying
salient information and not exploring alternative ways of generating it. Further analysis of trends in
our hypotheses has been done in Appendix A.

DenseNet-LSTM performs poorly in Experiment 2. Since our summaries are long, one possibility
is that our LSTM model is unable to capture long-term dependencies in text. There could also be
noise in the Statista dataset, which may have affected the model’s ability to learn relevant information
- DenseNet-LSTM’s dense connectivity may be overfitting. One possible mitigation is to have a

1
Our CIDEr score of 0 may possibly due to only having one reference label, non-generalizability of the test dataset, or human error.
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human-subject experiment where we filter out datapoints that do not have a relevant summary and
context. Another choice is to use a more complex architecture - e.g. with BLIP in Experiment 2.

(a) DenseNet-LSTM: Jaccard Similar-
ity of our contexts with our hypotheses
from both models

(b) Ref image for
Pew example in Ta-
ble 4

(c) Correlation of the hypotheses gen-
erated by the DenseNet-LSTM context
model (in Experiment 1). On the x-axis:
semantic distance to context, y-axis: se-
mantic distance to ground truth. We
observe a weakly positive correlation.

Figure 5: A deeper dive into DenseNet-LSTM’s results

Original Label No Context Context
On balance, Republican and Re-
publican leaners are more likely
to side with Donald Trump over
Republican leaders if there is a
disagreement between them on
an issue. About half (52%) say
they would be more likely to trust
Donald Trump, while only about
a third (34%) say they would be
more likely to trust Republican
leaders in Congress.

This statistic shows the num-
ber of VAT and PAYE based
enterprises in the United King-
dom (UK) in the second quar-
ter of 2020, by age. As of the
second quarter of 2020, there
were approximately 1.15 mil-
lion households in this sector
that year.

This statistic shows the re-
sults of a survey of respon-
dents from the United States
on whether they think that they
would be willing to choose to
vote.

Table 2: DenseNet-LSTM: Example from Pew with original summary, label without context, label with context.
We see how the no-context summary has been overfitted, which reflects in our results from Experiment 2, while
the context summary is more general and reflects the overarching context in which the original summary is
written.

7 Conclusion

7.1 Main findings

In our first experiment, we used ResNet-LSTM and DenseNet-LSTM to generate summaries. For
our second experiment, we used DenseNet-LSTM and BLIP, and trained two models for each - with
and without context. We used an encoder-decoder model with attention to generate summaries. We
hypothesized Statista would generalize well based on its context, so we chose it as the training dataset
and the others as test datasets. We used BLEU-1, BLEU-4, CIDEr and ROUGE metrics to evaluate
the model trained on Statista, and conducted further analysis using Jaccard similarity and cosine
similarities of embeddings. We found that context improves the quality of generated summary in
every model. Although training on Statista resulted in slightly lower scores than on the concatenated
datasets without context, training with context generalizes well to the other datasets.

7.2 Limitations and Future Work

Due to the limitations of our dataset, each chart/graph has only a single human-written reference for
it, which impacts our CIDEr scores and the generation of natural language summaries. Secondly,
there is currently no metric to standardize all four of the chart/graph datasets. In the future, we plan
to conduct human subject experiments to author more references and filter the datapoints that are
relevant for our project. We also plan to conduct more ablation studies with different models, datasets
and hyperparameters, to mitigate issues like overfitting.
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A Appendix

(a) Unigrams (b) Bigrams

(c) Trigrams (d) Length

Figure 6: Analysis of Predictions by DenseNet-LSTM with Context
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(a) Unigrams (b) Bigrams

(c) Trigrams (d) Length

Figure 7: Analysis of Predictions by ResNet-LSTM with Context

(a) Unigrams (b) Bigrams

(c) Trigrams (d) Length

Figure 8: Analysis of Predictions by DenseNet-LSTM with No Context
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(a) Unigrams (b) Bigrams

(c) Trigrams (d) Length

Figure 9: Analysis of Predictions by ResNet-LSTM with No Context
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(a) Statista (b) Pew

(c) HCI (d) Concadia

Figure 10: Wordclouds for our datasets
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