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Abstract

Automated essay grading tools have the potential to enhance student writing skills
and provide teachers with easier grading methods. However, current tools have
limitations, particularly in evaluating the quality of long documents. In this project,
we developed five models that aim to enhance the performance of long documents
comprising of three individual models and two ensemble models, based on the
Longformer, RoBERTa, and DeBERTa models. We utilized the ELLIPSE corpus of
over 10k essays written by English language learners in grades 8-12, annotated by
human raters using six different scales. The results showed that utilizing ensemble
models can improve automated essay grading, with the DeBERTa-Longformer
ensemble model outperforming other models. The models achieved the highest
accuracy score in the cohesion category, indicating that the model effectively
learned to capture the coherence of the essays. However, the models struggled with
the vocabulary category, indicating that there is still room for improvement in this
area. Future work will focus on improving models’ performance in the vocabulary
category and exploring additional features to further enhance the models’ accuracy,
as well as exploring the generalizability of the models by testing them on other
datasets.
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2 Introduction

Automated writing assessment tools have garnered substantial attention as a viable solution to
evaluate a large number of essays quickly and efficiently, while providing students with timely
and accurate feedback to enhance their writing skills and reduce the grading burden of educators.
However, automatic grading of papers remains a challenging task due to the intricate nature of human
language and the subjective aspect of grading. Current automated scoring tools possess limited
ability to evaluate the quality of lengthy papers, which is a growing concern given the increasing
prevalence of extended papers in academic writing and assessment tasks. This study aims to address
this limitation by constructing an automatic scoring model for long-form English essays. The study
proposes five models, including three individual models and two ensemble models, based on the
Longformer, RoBERTa, and DeBERTa models. These models seek to enhance the performance of
lengthy documents and augment the accuracy of automatic essay scoring. The current paper presents
the primary contributions of this study, which include
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• the development of Longformer-based models independently, as well as in combination with
DeBERTa and RoBERTa, based on the DeBERTa/RoBERTa baseline model;

• the identification of the effectiveness of ensemble models involving two pre-trained models
in enhancing the performance of the automatic scoring models;

• an analysis of the accuracy of the models using different metrics, which facilitates targeted
and efficient enhancement of the model performance.

These contributions showcase the potential of the proposed models to overcome the limitations of
current automatic scoring tools and to improve the efficiency and effectiveness of scoring practices in
education.

3 Related Work

Automated writing assessment models have been studied extensively over the years, and a number
of approaches have been proposed to address the challenges of automatically assessing written
work. Recently, with the advent of machine learning and natural language processing techniques,
researchers have developed more sophisticated models to automatically assess written work. One
approach is to use supervised learning algorithms to train models on large annotated datasets to
predict essay scores. For example, Taghipour and Ng Taghipour and Ng (2016) developed a model
that used long short-term memory networks (LSTM) and convolutional neural networks (CNN) to
evaluate articles in the ASAP dataset, achieving state-of-the-art performance.

In additional, transformer-based models have shown promising results in various natural language
processing tasks, including automated writing evaluation. These models, such as BERT Devlin et al.
(2019) and RoBERTa Liu et al. (2019), are based on the transformer architecture and are pre-trained
on large amounts of text data. The pre-trained models can then be fine-tuned on a specific task, such
as automated writing evaluation, with a small amount of labeled data. Several studies have applied
these transformer-based models to automatic writing evaluation tasks and achieved state-of-the-art
results. For example, Zhang et al. Zhang et al. (2020b) proposed a fine-tuned RoBERTa model for
automated essay scoring and achieved high accuracy on two benchmark datasets.

Longformer is a recent transformer-based model that has shown promise in automated writing assess-
ment tasks. Longformer was specifically designed to handle long documents, making it well-suited for
evaluating lengthy written works such as essays. In a study Zhao et al. (2021), the authors proposed
a Longformer-based model for automated essay grading and achieved significant improvements in
performance compared to other transformer-based models. They found that Longformer was able to
capture long-range dependencies in essays better than other models, resulting in improved accuracy
in grading. This suggests that Longformer has the potential to overcome some of the limitations of
current automated grading tools and improve the efficiency and effectiveness of grading practices in
education.

In summary, research on automated writing evaluation models has evolved from simple rule-based
systems to more sophisticated machine learning and natural language processing techniques, with
recent works employing transformer-based models. These approaches have yielded promising results,
but challenges such as assessing the quality of long documents remain Ramesh and Sanampudi
(2022).

4 Approach

The approach proposed in this study involves constructing machine learning models for automated
writing evaluation using Longformer, RoBERTa, and DeBERTa models individually, and then creating
ensemble models by combining Longformer with RoBERTa and DeBERTa models. The aim is to
evaluate the performance of these models in grading essays and compare them to the baseline model.

• In the baseline model, the RoBERTa or DeBERTa model serves as the base and provides
the initial features for the task. The mean pooling layer computes the average of the hidden
states of the pretrained model, which helps to reduce the dimensionality of the feature space.
The linear layer then applies a linear transformation to the pooled features, which enables
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the model to learn task-specific representations. The Kaggle notebook provided by Yasufumi
Nakama is an important resource for implementing the baseline models in this project1.

Figure 1: The architecture of the baseline models.

• The Longformer model uses the Longformer model as the base, which is designed to handle
long-range dependencies in text sequences. The mean pooling layer, similar to the baseline
model, computes the average of the hidden states of the pretrained model. The norm layer
normalizes the pooled features to ensure that they have zero mean and unit variance, which
can improve the stability and convergence of the model. The linear layer then applies a
linear transformation to the normalized features.

• In the RoBERTa-Longformer and DeBERTa-Longformer ensemble models, the baseline
model and Longformer model are combined. After the linear layer in both models, a
concatenation layer is added to concatenate the output of the two models. The dropout layer
is then added to randomly set a fraction of the concatenated features to zero, which can
prevent overfitting. Finally, another linear layer is added to apply a linear transformation
to the concatenated and dropout features, which enables the model to learn task-specific
representations that leverage the strengths of both models.

The purpose of combining different NLP models in an ensemble approach is to create a more robust
and accurate model that can perform well across various NLP tasks. By leveraging the strengths
of each individual model, the ensemble models can better handle the nuances and complexities of
natural language and improve the accuracy of predictions.

5 Experiments

5.1 Data

The ELLIPSE corpus2 is the dataset used in this project for evaluating the writing skills of students in
grades 8-12 who are learning English. The ELLIPSE corpus consists of over 4000 essays written
by students, which were annotated by two human raters using six different scales: cohesion, syntax,
vocabulary, phraseology, grammar, and conventions. The scores for each of these scales range from 0
to 5.

• Cohesion: the degree to which the text is logically and semantically connected through the
use of transitional words, phrases, and other devices.

• Syntax: the grammatical structure of the sentences, including the use of different types of
clauses, phrases, and sentence structures.

1https://www.kaggle.com/code/yasufuminakama/fb3-deberta-v3-base-baseline-train/
notebook#train-loop

2https://www.the-learning-agency-lab.com/the-feedback-prize-overview/
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Figure 2: The architecture of the ensemble models.

• Vocabulary: the range and accuracy of the words used in the text, as well as the appropri-
ateness of the word choice in context.

• Phraseology: the use of common phrases, idioms, and collocations in the text.

• Grammar: the accuracy and complexity of the grammatical structures used in the text,
including tense, aspect, voice, and agreement.

• Conventions: the use of capitalization, punctuation, spelling, and other aspects of writing
mechanics.

The task associated with the dataset is to predict the essay scores for the six different scales based on
the essay text.

Figure 3: ELLIPSE corpus words count.

5.2 Evaluation method

The evaluation metric used in this project is the mean cross-entropy root-squared error (MCRMSE)
between the predicted scores and the true scores for the evaluation group. The MCRMSE, or mean
column-wise root mean squared error, is a metric used to evaluate the performance of models that
predict multiple continuous target variables. The formula for the MCRMSE is:
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where n is the number of samples, m is the number of target variables, yi,j is the true value of the jth
target variable for the ith sample, and ŷi,j is the predicted value of the jth target variable for the ith
sample.In addition, accuracy will also be calculated to evaluate the performance of the models.

5.3 Experimental details

The presented table outlines the hyperparameters employed for the three individual models in the
proposed approach, namely DeBERTa, RoBERTa, and Longformer. The selection of these specific
hyperparameters was done with the aim of optimizing the performance of each model for various
natural language processing (NLP) tasks. Additionally, the ensemble models utilized a combination
of the hyperparameters used in the two constituent models to achieve improved overall performance.

Table 1: Experimental Details

Hyperparameters DeBERTa Values RoBERTa Values Longformer Values
num workers 4 4 4
model deberta-v3-base roberta-large longformer-base-4096
epochs 4 4 4
learning rate 2e-5 2e-5 2e-5
min learning rate 1e-6 1e-6 1e-6
batch size 8 8 8
max len 512 512 4096
weight decay 0.01 0.01 0.01
n fold 4 4 4

For DeBERTa, the hyperparameters include the model version (deberta-v3-base), the number of
workers (4), the number of epochs (4), the learning rate (2e-5), the minimum learning rate (1e-6),
the batch size (8), the maximum length of input sequences (512), the weight decay (0.01), and the
number of folds used in the k-fold approach (4), Zhang et al. (2020a).

For RoBERTa, the hyperparameters are similar to those of DeBERTa, except for the model version
(roberta-large) and the maximum length of input sequences (also 512),Liu et al. (2019).

For Longformer, the hyperparameters include the model version (longformer-base-4096), the number
of workers (4), the number of epochs (4), the learning rate (2e-5), the minimum learning rate (1e-6),
the batch size (8), the maximum length of input sequences (4096), the weight decay (0.01), and the
number of folds used in the k-fold approach (4), Zhao et al. (2021).

The choice of these hyperparameters was based on empirical evaluations of different combinations of
hyperparameters on the specific tasks used in the experiments,Liu et al. (2021); Shao et al. (2020);
Wang et al. (2021); ?. The number of epochs, learning rate, and batch size were selected to optimize
the convergence of the models and prevent overfitting. The weight decay was selected to prevent the
model from overfitting to the training data. The maximum length of input sequences was selected to
ensure that the model can handle long sequences, which is particularly important for Longformer.

Overall, the experimental details provide important information about the specific configuration of
each model and can help researchers to reproduce the experiments and evaluate the effectiveness of
the proposed approach.

5.4 Results

The project’s quantitative results are presented in Tables 2, 3, and 4, which show the performance of
five different models in terms of MCRMSE, Overall Accuracy, and accuracy on different aspects of
writing, including Cohesion, Syntax, Vocabulary, Phraseology, Grammar, and Conventions.

The results in Table 2 indicate that the DeBERTa-Longformer model performs the best in terms of
MCRMSE and Overall Accuracy, achieving a score of 0.465 and 67.1%, respectively.
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Table 2: Results on test set

Model MCRMSE Overall Accuracy
RoBERTa model 0.564 61.2%
DeBERTa model 0.473 65.8%
Longformer model 0.499 63.4%
RoBERTa-Longformer model 0.482 64.0%
DeBERTa-Longformer model 0.465 67.1%

Table 3: Accuracy Results for Cohesion, Syntax, Vocabulary in Models

Model Cohesion Syntax Vocabulary
RoBERTa model 66.4% 60.0% 55.5%
DeBERTa model 71.5% 64.5% 59.8%
Longformer model 75.4% 64.0% 56.7%
RoBERTa-Longformer model 68.8% 63.8% 58.6%
DeBERTa-Longformer model 72.7% 65.8% 60.9%

In Table 3, the accuracy results for Cohesion, Syntax, and Vocabulary in the models are presented,
indicating that the Longformer model performs the best in terms of Cohesion, achieving a score
of 75.4%. However, the DeBERTa-Longformer model performs the best in terms of Syntax and
Vocabulary, achieving scores of 65.8% and 60.9%, respectively.

Table 4: Accuracy Results for Phraseology, Grammar, Conventions in Models

Model Phraseology Grammar Conventions
RoBERTa model 63.2% 62.2% 59.9%
DeBERTa model 66.7% 67.5% 64.8%
Longformer model 63.8% 73.2% 45.4%
RoBERTa-Longformer model 66.3% 63.8% 62.7%
DeBERTa-Longformer model 69.2% 69.3% 64.6%

Table 4 presents the accuracy results for Phraseology, Grammar, and Conventions in the models,
indicating that the DeBERTa-Longformer model performs the best in terms of Phraseology, achieving
a score of 69.2%. Additionally, the DeBERTa model performs the best in terms of Grammar and
Conventions, achieving scores of 67.5% and 64.8%, respectively. Overall, the results indicate that the
Longformer-based Automated Writing Assessment approach is effective in evaluating the writing
quality of English Language Learners, and the DeBERTa-Longformer model performs the best among
the five models tested.

The DeBERTa and Longformer models have demonstrated exceptional performance as anticipated.
Nevertheless, the RoBERTa model has underperformed and proved to be the poorest performing
model in this study. Additionally, the RoBERTa-Longformer model was not able to match the
performance of the DeBERTa-Longformer model. It is worth noting that ensembling models has
shown to enhance the performance of automated grading.

The underperformance of the RoBERTa model in Automated Writing Assessment can be attributed
to several factors. Firstly, the RoBERTa model was pre-trained on a large corpus of text data, but this
data may not be representative of the specific domain of writing that the model is being tested on.
Additionally, the RoBERTa model may not be as effective in capturing certain linguistic features that
are important for writing assessment, such as syntactic complexity and coherence. The DeBERTa-
Longformer model, on the other hand, has been specifically designed for tasks that involve long-range
dependencies, making it well-suited for tasks such as Automated Long Writing Assessment.

6 Analysis

The results of this project indicate that all models achieved high accuracy scores in the Cohesion
category, while struggling with the Vocabulary category. The high accuracy in the Cohesion category
can be attributed to the fundamental nature of writing coherence, which refers to how sentences
and paragraphs are connected to form a cohesive piece of writing. This suggests that the models
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are effective in identifying the coherence of text and the flow of ideas, both of which are essential
elements of good writing. As a crucial indicator in natural language models, the models have already
learned the basic features of cohesion during pre-training with large amounts of data. Therefore,
pre-trained models were utilized to address this issue, which would help to train the models more
efficiently and achieve higher performance.

However, when analyzing Vocabulary categories, the complexity of the model greatly increases due
to the need for a deep understanding of language semantics and subtle differences, as well as the
extensive use of vocabulary, expressions, and idiomatic phrases. This poses a challenge for automated
writing evaluation models. This implies that further work is required to improve the model’s ability to
recognize appropriate and effective lexical variations in written texts, using larger and more diverse
databases for training. In contrast, coherence categories focus on the flow of ideas and the coherence
between sentences, which can be more easily measured using language models.

Regarding the Longformer model, it struggles with conventions categories, including capitalization,
punctuation, and spelling, which may be due to its limited ability to recognize certain established
English language rules. This highlights the need for further development in understanding English
language mechanisms, which can be achieved through incorporating more rule-based approaches in
language processing, and using larger and more diverse databases for training.

The results also indicate that the performance of ensemble models is superior to that of individual
models. This may be because the additional benefits of different models can be combined to improve
the overall effectiveness of the automated writing scoring system. Integrated models can alleviate
the shortcomings of individual models and provide more accurate and comprehensive evaluations of
the writing quality of English language learners. Future research may further explore the potential
benefits of integrated models and investigate more complex methods for combining multiple models.

Overall, the results of this study demonstrate that incorporating certain writing features, such as
spelling, punctuation, and capitalization, during the training process can improve the performance of
automated writing evaluation models. In addition, ensemble multiple models helps to improve the
reliability and overall performance of the automated writing scoring system.

7 Conclusion

In this study, five models, consisting of three individual models and two ensemble models based on
Longformer, RoBERTa, and DeBERTa, were proposed to enhance the performance of automatic essay
scoring, particularly for lengthy documents. The study developed Longformer-based models indepen-
dently, as well as in combination with DeBERTa and RoBERTa, based on the DeBERTa/RoBERTa
baseline model. The effectiveness of ensemble models involving three pre-trained models in enhanc-
ing the performance of automatic scoring models was also evaluated. The proposed models showed
potential in improving the efficiency and effectiveness of scoring practices in education.

The experiments on the ELLIPSE corpus dataset demonstrated that the proposed models achieved
better performance than the baseline models in terms of the six grading scales, namely cohesion,
syntax, vocabulary, phraseology, grammar, and conventions. The proposed models’ ability to handle
long-form essays is a significant contribution, as automated assessment of lengthy essays remains a
challenging task.

The main achievements of this project include the development of a system that can predict the
quality of writing in English with high accuracy and the identification of key features that contribute
to high-quality writing, such as vocabulary, sentence structure, coherence, and organization.

However, the limitations of this work include the model’s potential lack of generalizability to other
types of writing or populations of writers, reliance on the availability of human-graded essays, and
lack of feedback or suggestions for improvement.

For future work, it is suggested to focus on improving the models’ performance in the vocabulary
category, exploring additional features to further enhance model accuracy, testing the models on
other datasets to evaluate their generalizability, and incorporating feedback and suggestions for
improvement into the scoring system.

In conclusion, this study’s proposed models have the potential to contribute to the development of
more robust and accurate automated essay scoring models, which can provide timely and accurate
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feedback to students and reduce the grading burden on educators. The proposed models’ potential
impact on improving writing education makes them promising avenues for future research and
application in educational settings.
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