
Multi-Task Learning BERT Model with Task-Specific
Decoders

Stanford CS224N Default Project

Zhen Li
Stanford University

zhenlili@stanford.edu

Abstract

In this project, we developed a BERT-based multi-task learning model with task-
specific decoders for three downstream NLP tasks: Sentiment Analysis, Paraphrase
Detection, and Semantic Textual Similarity. The proposed model includes a BERT-
based encoder shared between these three tasks to understand the semantic meaning
of the input, and 3 separate decoders composed of self-attention and linear projec-
tion to transform the understanding into task-specific predictions.
Main contribution includes: Come up and develop task-specific decoder with self-
attention layer. Separate loss backpropogation on each sub-task. Separate optimizer
configurations(lr, weight_decay) for each sub-task are used to overcome different
convergence speed and training data imbalances problems.
On test leaderboard, our best model achieves 0.492 on Sentiment Classification
Acc, 0.867 on Paraphrase Detection Acc, 0.867 Semantic Textual Similarity Corr,
the overall test score of 0.742.

1 Key Information to include

• Mentor: Tathagat Verma

• Professor: Chris Manning

2 Introduction

Understanding and processing natural language is a fundamental problem in artificial intelligence,
with a lot of applications in sentiment analysis, paraphrase detection, and semantic textual similarity.
The growing demand for robust, efficient, and versatile models that can handle multiple tasks
effectively has led to the development of multi-task learning models, which improve performance
by leveraging shared knowledge between tasks (Caruana, 1997). Recent advances in deep learning,
particularly pre-trained language models such as BERT (Devlin et al., 2018), have achieved state-of-
the-art performance on various NLP tasks.

The main challenges in multi-task learning for NLP tasks lie in finding a common representation
that can capture the unique features of each task while still allowing for shared learning across tasks.
Moreover, it is essential to address the trade-offs between model complexity, training efficiency, and
performance on individual tasks.

In this project, we proposed a multi-task learning model by using a pre-trained BERT encoder with
task-specific decoders for sentiment analysis, paraphrase detection, and semantic textual similarity.
The key idea behind our approach is to leverage the pre-trained BERT model as a shared encoder to
learn a common representation of the input text and then employ task-specific decoders to generate
task-specific outputs. By incorporating task-specific decoders, it allows for a more nuanced modeling
of each task’s unique characteristics and enables the model to perform well across different tasks.

Stanford CS224N Natural Language Processing with Deep Learning

We also introduced an self-attention layer in our decoder to help the model learn the optimized
pooling for each specific tasks. Besides all above, a lot of effort have been put into balance the
performance between different tasks due to the imbalanced training datasets. We came up with an
approach to use separate loss backpropogation on each sub-task during each training batch. This
allows us to tune separate optimizer configurations(lr, weight_decay) for each sub-task to make them
converge at the same pace.

3 Related Work

3.1 Multi-Task Learning

Multi-task learning (MTL) is an effective approach to improve model performance by learning
multiple related tasks simultaneously, exploiting the shared information among tasks (Caruana, 1997).
MTL has been successfully applied to a variety of NLP tasks, such as machine translation (Dong
et al., 2015), and part-of-speech tagging (Søgaard and Goldberg, 2016).

3.2 Pre-trained Language Models

Pre-trained language models, such as BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019b),
have achieved state-of-the-art performance in various NLP tasks by leveraging large-scale unsu-
pervised pre-training followed by task-specific fine-tuning. Both of these models use bidirectional
transformer architectures (Vaswani et al., 2017), which enable it to capture both syntactic and semantic
information from the input text.

3.3 Multi-Task Learning with Pre-trained Language Models

Several works have investigated combining of multi-task learning and pre-trained language models
to improve performance on multiple NLP tasks. Liu et al. (2019a) proposed the Multi-Task Deep
Neural Network (MT-DNN), which uses BERT as a shared encoder and employs task-specific output
layers for various tasks.

3.4 Sentiment Analysis, Paraphrase Detection, and Semantic Textual Similarity

Sentiment analysis aims to determine the polarity (positive, negative, or neutral) of a given text, while
paraphrase detection is concerned with identifying whether two text fragments convey the same
meaning. Semantic textual similarity measures the degree of similarity between two text fragments in
terms of their semantic meaning. These tasks have been widely studied in NLP, with various methods
being proposed, including traditional feature engineering techniques (Pang et al. (2002); Dolan et al.
(2004)), deep learning models (Socher et al., 2013), and pre-trained language models (Devlin et al.
(2018); Reimers and Gurevych (2019)).

4 Approach

4.1 Model Architecture

The proposed model architecture is shown in Figure 1. It includes the following main components:

4.1.1 Pre-trained BERT Encoder:

The pre-trained BERT model we use is BERTBase which has 12 layers, 768 hidden layer dimensions,
12 heads, and 110M total parameters. It’s pre-trained on BooksCorpus (800M words) and English
Wikipedia (2,500M words). Two main pre-trained tasks are "Masked language modeling" and "Next
sentence prediction". (Devlin et al., 2018)

4.1.2 Task-specific Decoder:

Each task has its own decoder which includes an attention layer, followed by a linear projection layer
and prediction head. Task-specific layers do not share parameter weights. During training time, each
sub-task loss runs backpropagation separately.

2

Q K,V Q K,V Q K,V

P(C|S) P(S1, S2) Sim(S1, S2)Label Label Label

CE
Loss

BCE
Loss

MSE
Loss

Sentiment
Analysis

Paraphrase
Detection

Semantic
Similarity

Figure 1: Model Architecture Diagram

4.1.3 Attention Layer in Decoder:

It’s worth to mention that we added a Attention Layer between BERT encoder’s output and Linear
Layer. Its Query input is from the BERT pooling output, the Key and Value is from BERT output
hidden states. This is because that during early phrase of project different pooling methods were
experimented on each task and it had noticeable impact on the quality. So the idea is that by adding
this Attention Layer it can learn the optimized pooling from on the hidden state for each sub-task.

4.2 The Training Procedure

4.2.1 Training Algorithm

The training procedure runs as shown in Alrogithm 1. Note that each task has its own sample_size,
batch_size and optimizer_config which can be configured and tuned. The loss function for different
tasks are discussed in 4.2.2.

4.2.2 Loss Function

Sentiment Analysis task uses Cross-Entropy Loss as the loss function. M is number of classes, y is
binary indicator (0 or 1) if class label c is the correct classification for observation o, p is predicted
probability observation o is of class c. Loss defined as:

L(Θ) = −
M∑
c=1

yo,c log(po,c) (1)

3

D1, D2, D3 ← load_data()
epochmax ← args.epoch
for epoch in {1, 2, ..., epochmax} do

for t in {1, 2, 3} do
St ← random_sample(Dt, args.sample_sizet)
St ← random_shuffle(St)

end
each task has its own sample size and batch size
but number are aligned to make sure sample_size / batch_size are equal across all tasks
batch_num← sample_size/batch_size
for i in {1, 2, ..., batch_num} do

inside each mini-batch compute loss and backpropagate on each task
for t in {1, 2, 3} do

bt ← read_next_batch(St)
optimizert ← optimizer(args.optimizer_configt)
Compute loss: L(Θ)
Compute gradient: ∇(Θ)
Update model: Θ← optimizert.step(∇(Θ),Θ)

end
end

end

Algorithm 1: Training multi-task model

Paraphrase Detection task uses Binary Cross-Entropy Loss as the loss function. With y as label (0
or 1) and p as model predicted probability. Its loss can be defined as:

L(Θ) = −(y log(p) + (1− y) log(1− p)) (2)

Semantic Textual Similarity task uses Mean Squared Error(MSE) as loss function. yi is the label
score and ŷi is the model predicated score. For a batch of D data points. Their loss can be defined as:

L(Θ) =

D∑
i=1

(yi − ŷi)
2 (3)

5 Experiments

5.1 Data

In this project we uses the dataset provided in default project codebase Stanford-CS-224N (2023).
Which includes:

SST-5 Stanford Sentiment Treebank consists of 11,855 single sentences from movie reviews
extracted from movie reviews. Each phrase has a label of negative, somewhat negative,
neutral, somewhat positive, or positive. Data split as 8544 train, 1101 dev, 2210 test.

QQP A subset of Quora Dataset consists of question pairs with labels indicating whether particular
instances are paraphrases of one another. Data split as 141,506 train, 20,215 dev, 40,431
test.

STS-B SemEval STS Benchmark Dataset consists of 8,628 different sentence pairs of varying
similarity on a scale from 0 (unrelated) to 5 (equivalent meaning). Data split as 6,041 train,
864 dev, 1,726 test.

5.2 Evaluation method

Sentiment Analysis: Measures model prediction accuracy against labels (0-5) in SST-5 dataset.

sst_accuracy =
sum(correctly_predicted)
total_number_of_data

(4)

4

Table 1: Model Parameters Comparison

Model sst_lr para_lr sts_lr Batch Size Para Batch Size Dropout

SLT 1e-6 1e-5 1e-5 32 32 0.3
MTL + CLB + SepInput 2e-6 2e-6 2e-6 32 32 0.3
MTL + CLB + ConcatInput 2e-6 2e-6 2e-6 30 150 0.5
MTL + SLB + ConcatInput 1e-6 3e-6 2e-6 30 150 0.5
MTL + SLB + ConcatInput + SelfAttn 1e-7 1e-5 1e-6 30 150 0.5

Paraphrase Detection: Measures model prediction accuracy against labels (0-1) in QQP dataset.

para_accuracy =
sum(correctly_predicted)
total_number_of_data

(5)

Semantic Textual Similarity: Measures Pearson correlation coefficient between model predicted
score (xi) and label scores (yi) in STS-B dataset.

correlation =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(6)

5.3 Experimental details

The following experiment groups are run to compare different model architecture and training
algorithms. This is not an exhaustive list of the experiments we have tried. For example, we have also
experimented cosine similarity approach and applying gradient surgerys. But the following groups
are selected because each of these experiments is a milestone with major discovery that leads to the
final model. Table 1 shows the hyperparameters that are used when training these models. sst_lr,
para_lr and sts_lr are the each individual learning rate for SST, Paraphrase Detection and STS.

• SLT: Single-task Learning

– 3 Pre-trained BERT Models with a linear layer. Each model is fine-tuned on the
individual sub-task.

• MTL + CLB + SepInput: Multi-task Learning with Combined Loss Backprop

– MTL: Multi-task model using shared BERT encoder and a liner layer per task for
prediction

– CLB: During training run back-propagate on the combined losses of 3 sub-tasks.
– SepInput: For tasks that have a pair of setences as input, encode them using BERT

separately and then concatenate two output embeddings to feed into linear layer.

• MTL + CLB + ConcatInput: Multi-task Learning with Combined Loss Backprop and
Input Concatenation

– On top of MTL+ CLB, concatenate the sentence pairs into a single sentence and feed it
to BERT encoder.

• MTL + SLB + ConcatInput: Multi-task Learning with Separate Loss Backprop and Input
Concatenation

– On top of MTL + CLB + ConcatInput, instead of CLB we run separate loss backpro-
pogation on each sub-task, also using different optimizers to allow different learning
rate and regularization configs.

• MTL + SLB + ConcatInput + SelfAttn: Multi-task Learning with Separate Loss Backprop,
Input Concatenation with a self-attention in task-specific decoder.

– On top of MTL + SLB + ConcatInput, added a self-attention layer in each task-specific
decoder.

5

5.4 Results

5.4.1 Test Set Result

Our best model (MTL + SLB + ConcatInput + SelfAttn) achieved the following scores on test set.

• SST test Accuracy: 0.493
• Paraphrase test Accuracy: 0.867
• STS test Correlation: 0.867
• Overall test score: 0.742

5.4.2 Dev Set Results

Table 2 has shown the performance comparison for each model mentioned in 5.3. We noticed
changing SepInput from ConcatInput has shown significant improvement on Paraphrase Accuracy
and STS Correlation. By changing from CLB to SLB the slower converged task (Paraphrase
Detection) improves. And finally by adding self attention layer in decoder each task is able to learn
its own optimized pooling weights thus improves the overall quality on each task. More analysis and
comparison is discussed in section 6.

Table 2: Model Performance Comparison on Dev Dataset

Model SST Acc Paraphrase Acc STS Corr Average

SLT 0.524 0.780 0.322 0.542
MTL + CLB + SepInput 0.515 0.761 0.372 0.549
MTL + CLB + ConcatInput 0.499 0.805 0.849 0.717
MTL + SLB + ConcatInput 0.487 0.828 0.847 0.720
MTL + SLB + ConcatInput + SelfAttn 0.504 0.869 0.868 0.747

6 Analysis

Multi-Task vs Single-Task We noticed task with sparse dataset for example STS benefits more from
the Multi-task learning, due to other similar tasks’ influence on the shared encoder.

SepInput vs ConcatInput For tasks that uses sentence pair as input, concatenating the pair of the
sentence as single sentence input to BERT has a big leap in quality. It’s likely due to
BERT pretraining tasks e.g. "next sentence prediction" handles sentence pairs inputs as
CLS + sentence1 + SEP + sentence2 + SEP . So the pretrained BERT understand this
format better.

Combine Loss BackProp vs Separate Loss Backprop Separate loss backprop allows different
learning rates and regularization, allowing different decoders to converge simultaneously.
This capability improves the paraphrase detection performance in this MTL model.

With vs W/O Self Attention Adding self-attention in each task-specific decoder has a general qual-
ity lift on every task, it makes the model to automatically learn the best pooling method for
each specific task thus increases decoders’ learning capacity.

7 Conclusion

We developed a BERT-based multi-task learning model with task-specific decoders, fine-tuned on
three tasks: Sentiment Analysis, Paraphrase Detection, and Semantic Textual Similarity. Feeding
concatenated sentence to BERT encoder shown big quality lift on QQP and STS. Having separate
loss backpropogation and optimizer on each sub-task has helped on solving the data imbalance and
different coverge issue. We have also enhance the decoder’s capacity by adding self-attention layer to
each decoder, it has shown performance improvement across all tasks. The final model combined
these 3 strategies results in the best overall performance.

6

References
Rich Caruana. 1997. Multitask learning. Machine Learning, 28(1):41–75.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Unsupervised construction of large paraphrase
corpora: Exploiting massively parallel news sources. In COLING 2004: Proceedings of the 20th
International Conference on Computational Linguistics, pages 350–356, Geneva, Switzerland.
COLING.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and Haifeng Wang. 2015. Multi-task learning for
multiple language translation. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1723–1732, Beijing, China. Association for Computational
Linguistics.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019a. Multi-task deep neural
networks for natural language understanding. CoRR, abs/1901.11504.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019b. Roberta: A robustly optimized BERT
pretraining approach. CoRR, abs/1907.11692.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up? sentiment classification
using machine learning techniques. In Proceedings of the 2002 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2002), pages 79–86. Association for Computational
Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. CoRR, abs/1908.10084.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Anders Søgaard and Yoav Goldberg. 2016. Deep multi-task learning with low level tasks supervised
at lower layers. In Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages 231–235, Berlin, Germany. Association for
Computational Linguistics.

Stanford-CS-224N. 2023. Default final project: minbert and downstream tasks.
Https://web.stanford.edu/class/cs224n/project/default-final-project-bert-handout.pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. CoRR, abs/1706.03762.

7

http://www.springerlink.com/content/x4q010h7342j4p15/fulltext.pdf
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://aclanthology.org/C04-1051
https://aclanthology.org/C04-1051
https://doi.org/10.3115/v1/P15-1166
https://doi.org/10.3115/v1/P15-1166
http://arxiv.org/abs/1901.11504
http://arxiv.org/abs/1901.11504
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.3115/1118693.1118704
https://doi.org/10.3115/1118693.1118704
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/P16-2038
https://doi.org/10.18653/v1/P16-2038
https://web.stanford.edu/class/cs224n/project/default-final-project-bert-handout.pdf
http://arxiv.org/abs/1706.03762

	Key Information to include
	Introduction
	Related Work
	Multi-Task Learning
	Pre-trained Language Models
	Multi-Task Learning with Pre-trained Language Models
	Sentiment Analysis, Paraphrase Detection, and Semantic Textual Similarity

	Approach
	Model Architecture
	Pre-trained BERT Encoder:
	Task-specific Decoder:
	Attention Layer in Decoder:

	The Training Procedure
	Training Algorithm
	Loss Function

	Experiments
	Data
	Evaluation method
	Experimental details
	Results
	Test Set Result
	Dev Set Results

	Analysis
	Conclusion

