
Leave It To BERT: Exploring Methods for Robust
Multi-Task Performance

Stanford CS224N Default Project

Finn Dayton
Department of Computer Science

Stanford University
finniusd@stanford.edu

Abhi Kumar
Department of Computer Science

Stanford University
abhi1@stanford.edu

Chris Moffitt
Department of Computer Science

Stanford University
cmoffitt@stanford.edu

Abstract

The ability to accurately perform multiple sentence-level tasks with a single model
has significant applications. We investigate the efficacy of fine-tuning a BERT
model to achieve optimal performance on a range of sentence-level tasks. As a
baseline, we expand the minBERT implementation by utilizing pretrained weights
to perform sentiment classification, paraphrase detection, and semantic textual
similarity. Then, we perform additional pretraining on adjacent datasets, multi-
task fine-tuning with gradient surgery, and single-task fine-tuning using a variety
of model architectures to train the model weights for deeper embeddings that
generalize well to each of the three tasks. Our experiments demonstrate that the
additional pretraining and task-specific head fine-tuning contributes mild boosts in
performance, but the greatest increases in performance come from the combination
of performing gradient surgery and using a model that concatenates input sentences
so that BERT can generate one embedding for the entire input. Essentially, per-
forming gradient surgery while allowing BERT to do most of the work on the input
sentences together results in the highest performance across all objective tasks. We
provide a comprehensive analysis of the individual performances, advantages, and
disadvantages of each proposed training method and model architecture.

1 Key Information

Our mentor is Shai Limonchik. We have no external collaborators nor are we sharing projects.

2 Introduction

Deep NLP models have achieved great success on single tasks, but the ability to perform well on
multiple tasks is becoming more crucial for many practical applications of NLP. Developing multi-task
models is challenging, however, because different tasks have different requirements in terms of input
representation, output format, and training data. Moreover, tasks may have conflicting objectives,
making it difficult to optimize a single model for all tasks simultaneously. Transformer-based models,
such as BERT [2], have led to significant improvements in the performance of NLP models across
a range of tasks. For our project, we train and evaluate a series of models that use shared BERT
embeddings to perform three tasks simultaneously: sentiment analysis, paraphrase detection, and
similarity detection.

Stanford CS224N Natural Language Processing with Deep Learning

In this report, we present a novel approach that combines additional pretraining, gradient surgery,
and final layer fine-tuning to optimize multi-task deep learning for NLP. Additional pretraining is
a technique that involves training a model on additional data before fine-tuning on specific tasks,
improving model performance by enabling it to learn general features that can be transferred to a
range of downstream tasks. Gradient surgery, proposed by Yu et al [10], is a technique used for
multitask learning that manipulates gradients to selectively dampen or amplify the contributions of
each objective task to the overall loss function. Gradient surgery not only helps the model focus on
the more challenging or informative parts of each task but also is beneficial for preventing over-fitting,
under-fitting, and negative transfer. Our final step is final layer fine-tuning, whereby the shared
BERT weights are frozen and the final layers (task-specific head) for each objective task is fine-tuned
on labeled data. Final layer fine-tuning can help the model adjust its final layer parameters more
precisely to each specific task without conflicts between the tasks. While each of these techniques
has been shown to improve the performance of NLP models in isolation, their combined effect has
not been thoroughly explored. Our project aims to fill this gap by investigating the potential benefits
of many combinations of these techniques and evaluating their effectiveness on a range of NLP tasks.
Our results show promising improvements in the performance of multi-task NLP models, especially
in cases where the tasks have different complexities or variances.

3 Related Work

Recent research, such as (Yang et al [9]) and (Liu et al [5]), highlights the advantages of additional
pretraining in natural language processing models on large, diverse datasets to enhance performance
on downstream tasks. Nevertheless, this is a very active area of research and there exist many
techniques for pretraining and finetuning for good multi-task performance.

Liu et al 2019 [5] introduces Roberta, an improved bi-directional encoder based on the BERT
architecture. The paper validates the fundamental approach of BERT but emphasizes that longer
training and better hyperparameter optimization lead to much better results. The model, though
improved, remains just an encoder, so it is fine-tuned for the downstream tasks tackled by our model.

Chen et al 2021 [1] provides an overview of the use of Multi-Task Learning (MTL) in NLP tasks.
They review MTL architectures used in NLP tasks and categorize them into parallel, hierarchical,
modular and generative architecture. A parallel architecture—what we elected to use—shares most
of its weights for each of its tasks while each task has its own task-specific output layer. For
our experiments, since each input produces a specified output (which is specific to each task), the
generative architecture is not applicable. Future research into multi-task training of BERT, however,
could investigate the efficacy of using a hierarchical or modular architecture.

Yu et al 2020 [10] introduced gradient surgery, a technique for reconciling gradient conflicts for
multi-task learning introduced above. Our approach builds on this technique by applying it to the
three tasks of sentiment analysis, paraphrase detection, and similarity detection.

Lastly, Weller et al 2022 [7] examine and compare three methods of multi-task finetuning. They first
train on an intermediate task before training on the objective task. Second, they using multi-task
learning to train jointly on the main task and a supplementary task. And third, they using multi-task
learning to jointly train on all available datasets. They found that for primary tasks of STS and SST
(two of our objective tasks) and a pretraining dataset of MultiNLI (Multi-Genre Natural Language
Inference) [8] (which we use for additional pretraining), there was no significant difference between
their first and second methods. Given these findings, we will build on their first method: we first
pretrain on MultiNLI dataset and subsequently perform multi-task learning to jointly train on our
three end-tasks.

4 Approach

4.1 Baseline

For our baseline, we train a naive Multitask Classification model that uses the pre-trained BERT
weights and is only finetuned for the Sentiment Classification task but then evaluated for each
of the three objective tasks: sentiment classification, paraphrase detection, and semantic textual

2

similarity. Our aim was to beat these baseline scores for each of the three tasks by utilizing the model
architectures and neural training methods described below.

4.2 Model Architectures

In this report, we investigate three model architectures. Our first model architecture, Concat After
BERT (ConcatA), feeds each sentence from a sentence pair separately into BERT and concatenates
the two resulting embeddings. It includes one linear layer and one dropout layer in each task-specific
head (See Figure 1).

Figure 1: Concat After BERT (ConcatA)

Our second model architecture, Concat Before BERT (ConcatB), concatenates tokenized sentences
from a pair and then feeds the result into BERT to generate one embedding for both sentences.
Similarly to ConcatA, it also includes one linear layer and one dropout layer in each task-specific
head (See Figure 2(a)). Our last model architecture, Concat Before BERT + Added Layer (ConcatB +
AL) follows the same concatenation pattern of inputs as ConcatB, but there are two linear layers and
two dropout layers in each task-specific head. In this model architecture, we introduce a Leaky ReLU
activation function in between the first set and second set of dropout and linear layers (See Figure
2(b)).

(a) Concat Before BERT (ConcatB) (b) Concat Before BERT + Added Layer (ConcatB +
AL)

Figure 2: Concat Before BERT (ConcatB) Architecture

Note, the difference between the ConcatA and ConcatB model architectures only affects how learned
embeddings are generated in the PARA and STS datasets since they are both pair datasets (having
two sentences as input). Since the input for the SST dataset is a single sentence, we feed the
single sentence token ids for SST directly into BERT to generate a learned embedding in all model
architectures. However, the task-specific heads in each model architecture are still accordingly

3

modified for all three tasks (i.e. ConcatA and ConcatB have 1 set of dropout and linear layers in each
task-specific head; ConcatB + AL has 2 sets of dropout and linear layers in each task-specific head).

4.3 Training Methods

4.3.1 Additional Pretraining

Our first training method is to conduct additional pretraining on target-domain data using the Multi-
Genre MultiNLI Corpus, which has 433k sentence pairs from multiple different contexts, all labeled
with textual entailment information. Like both the paraphrase detection and similarity detection task,
since the MultiNLI dataset contains sentence pairs that are related in some way, we hypothesized
pretraining on MultiNLI will allow us to improve BERT embeddings for sentence pairs.

4.3.2 Gradient Surgery

Our second training method is gradient surgery for multitask fine-tuning on all of our three objective
tasks. Multitask fine-tuning with gradient surgery, as described in [10], is a technique that selectively
scales gradients from each objective task in a model to improve its generalization performance on the
different but related tasks. To perform gradient surgery, we first add together the loss on each of our
three tasks.

Ltotal = Lsst + Lpara + Lsts (1)

where Lsst, Lpara, and Lsts represent the Loss values of the sentiment classification, paraphrase,
and STS tasks, respectively.

To reconcile gradient conflicts, we use gradient surgery, proposed by Yu et al. [10], where
the gradient of one task gi is projected onto the normal plane of another conflicting task’s
gradient gj , as shown in this equation: gi = gi − (

(gigj)
||gj ||2)gj . This removes the component

of the gradient that conflicts with the other task’s objective, while preserving the component
that contributes to the current task’s objective. Since we have three tasks and thus three gradi-
ents to calculate, we project each gradient onto the normal plane of the other two conflicting gradients:

g′sst = gsst − (
(gsstgpara)

||gpara||2
)gpara − (

(gsstgsts)

||gsts||2
)gsts (2)

g′para = gpara − (
(gparagsst)

||gsst||2
)gsst − (

(gparagsts)

||gsts||2
)gsts (3)

g′sts = gsts − (
(gstsgsst)

||gsst||2
)gsst − (

(gstsgpara)

||gpara||2
)gpara (4)

where gsst, gpara, and gsts represent the gradients for the sentiment classification, paraphrase, and
STS tasks, respectively. Then, we simply take the sum of each of the three gradients in order to
calculate the final gradient, g′, which is used to perform gradient descent:

g′ = g′sst + g′para + g′sts (5)

In order to perform gradient surgery and back propagation for each batch simultaneously during
training, we attempt two different Round Robin training techniques to reconcile the different sizes of
the SST, Quora, and STS datasets:

(1) Round Robin: Different Batch Sizes (GSbd)

In this approach, we define different batch sizes bsst, bpara, and bsts based on the lengths of each
dataset, lsst, lpara, and lsts such that for n number of batches,

n · bsst ≈ lsst, n · bpara ≈ lpara, n · bsts ≈ lsts (6)

By doing this, for each training iteration in an epoch, we can take one batch from SST, Quora, and
STS, calculate the loss for each respectively, perform gradient surgery, and take a gradient step. After
going through all n batches, we will have exhausted most of the training examples in all three datasets
(See figure 3(a)).

4

When combining the losses for gradient surgery, this approach also requires us to rescale the losses
according to the minimum batch size among the three batch sizes, bmin, in the following manner:

Loss′sst = Losssst
bmin

bsst
, Loss′para = Losspara

bmin

bpara
, Loss′sts = Losssts

bmin

bsts
(7)

Rescaling in this manner allows us to weight each loss equally rather than over-weighting losses that
were calculated from larger batch sizes.

(2) Round Robin: Data Wrapping (GSw)

In the Data Wrapping approach, we define equal batch sizes for each dataset. This means that each
training iteraction sees an equal number of examples from each dataset. Since this will cause, shorter
datasets (SST and STS) to run through all of their training examples before longer datasets (Quora),
we wrap the shorter datasets such that we see repeat exemples until exhausting all training examples
of the largest dataset. This means each epoch sees all of Quora (the largest dataset) once and sees
many duplicates of STS and SST (the smaller datasets), which could potentially lead to over-fitting
(See figure 3(b)).

(a) One epoch of GSbd (b) One epoch of GSw

Figure 3: Two Round Robin Strategies for Multi-Task Training with Gradient Surgery

4.3.3 Final Layer Fine-tuning (FL)

Our last training method is Final Layer Fine-tuning (FL). Our model has one head for each of our
objective tasks (SST, PARA, SST), and we vary the depths of these heads (as described in section
4.2.2). In this method, we finetune the parameters for each head by training the model on each task
once again, but freezing the shared BERT weights so that we only perform back propagation on
the head specific to that task. The reasoning behind this final method is that, unlike for the shared
BERT weights, each task-specific head does not need to consider the losses from the other tasks when
performing back propogation. Thus, in this final training method, we are able to finetune the heads to
learn task-specific features and specialized parameters for each of our objective tasks.

5 Experiments

5.1 Data

We use 4 datasets in our experiments. From the default final project, we use the Stanford Sentiment
Treebank (SST) [6] for sentiment classification, Quora [3] for paraphrase detection between two
sentences, and SemEval[4] for semantic textual similarity between two sentences. We also use
the Multi-Genre MultiNLI Corpus [8], a dataset used for logical inference detection between two
sentences, for additional pretraining. This dataset has 402,517 examples of sentence pairs from
10 different "genres" (ex: fiction, government, travel, etc). Each sentence pair is labeled as either
contradictory, entailment, or neutral; therefore, it has been used for the textual entailment task. We

5

will use 392,702 examples for our train set, and 9,815 examples for our dev set when pretraining the
model.

5.2 Evaluation method

We use accuracy as the primary metric for both sentiment classification on the SST dataset and
paraphrase detection on the Quora dataset. We use the Pearson correlation coefficient as the primary
metric for sematic textual similarity detection on the SemEval dataset.

5.3 Experimental details

To establish a baseline performance for our multitask model, we ran a baseline experiment in which
we tested our model on all three tasks using the pretrained weights imported from BERT and fine-
tuned on a single linear final layer head for the predict sentiment task using the SST dataset, as
described in section 4.2. This baseline experiment serves as a reference for the following experiments.

We assessed the performance of our proposed neural techniques by training and evaluating every
permutation of the proposed training methods on each of the three tasks for each of the model
architectures we implemented:

First, we conducted a series of experiments in which we trained separate models using the GSbd,
GSw, and FL training methods individually. These experiments were conducted to understand the
effectiveness of each training method in isolation and whether it improves the model performance for
each task.

Then, we pre-trained our BERT weights on the Natural Language Inference (MultiNLI) task and
subsequently trained on GSbd, GSw, and FL, yielding the following experiments: MultiNLI + GSbd,
MultiNLI + GSw, and MultiNLI + FL. In these experiments, we pretrained MultiNLI and loaded
these weights in before training on GSbd, GSw, and FL. This set of experiments provided a direct
comparison to the first set of experiments, illustrating the effect of pretraining MultiNLI prior to
gradient surgery and fine-tuning. We also conducted experiments to test whether gradient surgery
can be improved by fine-tuning, given by the following experiments: GSbd + FL and GSw + FL. To
conduct these experiments, we fine-tuned on the model weights from the previous experiments GSbd

and GSw.

Finally, we also assessed all three of our training methods in series: MultiNLI + GSbd + FL and
MultiNLI + GSw + FL. For these experiments, we loaded in the model weights trained by the
experiments MultiNLI + GSbd and MultiNLI + GSw and fine-tuned using FL.

We ran each of the 10 experiments described above on each of our model architectures (ConcatA,
ConcatB, and ConcatB + AL), giving us a total of 30 experiments. In all 30 experiments, we used a
learning rate of 1e-5 and 10 epochs. Additionally, for every experiment with MultiNLI, we used a
batch size of 16 for the MultiNLI stage. For every experiment with GSbd, we used batch sizes of 1,
24, and 1 for the SST, PARA, and STS tasks, respectively, for the GSbd stage. For every experiment
with GSw, we used a batch size of 16 for all tasks for the GSw stage. For every experiment with
FL, we used a batch size of 8 for the FL stage. To reduce over-fitting, we employed dropout rates
of 0.3 for the first dropout layer (applies for ConcatA, ConcatB, and ConcatB + AL) and 0.45 for
the second dropout layer (only applies to ConcatB + AL). While we would have liked to conduct
more experiments with alternative model hyperparameters to continue exploring the most optimal
multitask model configuration, we were limited by compute resources and time.

5.4 Results

As shown in Table 1, all of our experiments outperform the baseline model, and this is expected since
our baseline model was only fine-tuned on the SST task and did not utilize any sophisticated model
architectures or training methods. Our best model was trained with MultiNLI + GSw and used the
ConcatB + AL architecture (highlighted in Table 1) as it had the highest average scores across all
three tasks. The best SST score comes from MultiNLI + GSbd + FL with the ConcatA architecture;
the best PARA score comes from multiple experiments using GSw with ConcatB + AL architecture;
and the best STS score comes from MultiNLI + GSbd with the ConcatB + AL architecture (See Table
1). When we evaluated our best model, MultiNLI + GSw with ConcatB + AL, on the Test Set, we
observe outstanding scores across all three tasks (See Table 2).

6

Baseline: SST PARA STS
Finetune on SST .310 .380 -.008

Model Architectures
ConcatA ConcatB ConcatB + AL

Methods SST PARA STS SST PARA STS SST PARA STS
GSbd .500 .720 .362 .520 .838 .866 .511 .832 .865
GSw .528 .732 .352 .511 .843 .850 .520 .873 .844
FL .305 .636 .206 .303 .665 .154 .337 .696 .330
MultiNLI + GSbd .529 .708 .390 .495 .836 .881 .500 .839 .892
MultiNLI + GSw .514 .740 .326 .503 .850 .868 .516 .873 .877
MultiNLI + FL .342 .661 .104 .343 .753 .635 .330 .751 .711
GSbd + FL .503 .719 .373 .510 .838 .867 .511 .830 .866
GSw + FL .527 .742 .356 .508 .847 .851 .518 .873 .844
MultiNLI + GSbd + FL .531 .713 .389 .499 .840 .882 .508 .843 .891
MultiNLI + GSw + FL .508 .748 .332 .499 .853 .868 .514 .873 .878

Table 1: Experiment Results on Dev Set

Model SST PARA STS
MultiNLI + GSbd with ConcatB + AL 0.539 0.873 0.876

Table 2: Best Model Performance on Test Set

5.5 Model Architectures Findings

Our findings indicate that the performance of the Paraphrase and STS Similarity detection tasks
is significantly improved when we employ a model architecture that concatenates sentence tokens
prior to inputting them into BERT, ConcatB, as opposed to ConcatA. This observation is particularly
intriguing as it suggests that ConcatB enables BERT to generate embeddings that can more effectively
capture the inter-sentence relationship between two input sentences. However, it is also worth noting
that ConcatB appears to negatively impact SST Sentiment Classification performance, which is the
only task that employs single sentence inputs. This suggests that there may be a trade-off between
the ability of the model to generate high-quality sentence pair embeddings and its ability to generate
single sentence embeddings. Our analysis of this observation leads us to speculate that the over-
specialization of BERT in generating sentence pair embeddings for tasks that require them may come
at the cost of its ability to generate effective single sentence embeddings. Additionally, we found that
for most of the methods that we tested, the ConcatB + AL model architecture outperformed ConcatB
across all three tasks on average. This observation suggests that the addition of extra layers on each
task head makes the model more expressive, enabling it to learn more nuanced representations of the
underlying data and task-specific features.

5.6 Training Methods Findings

We observed that MultiNLI pretraining typically results in small improvements in performance across
all tasks, except for SST performance in the ConcatB models. This may be attributed to the fact that
MultiNLI pretraining may cause the model to further specialize for sentence pair embeddings rather
than single sentence embeddings, leading to a decrease in performance for single sentence tasks. This
observation highlights the importance of carefully selecting the appropriate pretraining techniques
based on the nature of the objective tasks. Moreover, our experimental results suggest that gradient
surgery is a highly effective technique for multi-task learning of shared BERT weights since our
gradient surgery experiments achieve superior performance across all three tasks. Our experiments
revealed that GSw consistently under-performs GSbd in STS similarity detection performance. This
is likely because wrapping causes the model to repeatedly see the same STS examples multiple times
which leads to over-fitting. Similarly, we see that GSw consistently performs better than GSbd on the
PARA task since GSw trains on the entirety of the PARA dataset, while GSbd is trained on a portion
of the PARA dataset; this allows GSw to learn more nuanced features for the PARA Paraphrase task.

7

Finally, our results indicate that final layer fine-tuning can result in minor performance improvements
across all tasks. However, it is worth noting that final layer fine-tuning, when performed individually,
under-performs all other experiments, except for baseline. This suggests that final layer fine-tuning
should be used in conjunction with gradient surgery and additional pretraining, if used for multitask
learning, in order to achieve optimal performance.

6 Analysis

6.1 Analysis of Model Performance and Data Variation

We performed additional data analysis on the results of our best model (MultiNLI + GSw with
ConcatB + AL architecture) in order to get a better sense of where our model is succeeding and
failing. In doing so, we made two interesting discoveries with regards to what type of input our model
performs the best upon.

1. First, we found that our model performs worse at SST sentiment classification and STS
similarity detection when given longer sentences (See figures 4(a) and 4(c)). This is likely
because longer sentences increase ambiguity for SST and STS, making it harder to make
accurate predictions. However, PARA paraphrase detection interestingly performs better
when given longer sentences (See figure 4(b)). This is likely because the paraphrase detection
task requires simpler predictions (simple binary classification) and the longer sentences
provide more context on which the model can base its predictions.

(a) (b) (c)

Figure 4: Performance Analysis by Sentence Length

2. Second, we found that our model performs better across all tasks when the sentences contain
more words that appeared commonly in the training dataset (See figures 5(a), 5(b), and 5(c)).
As might be expected, the model is less sure about sentences with words that rarely appear
in the training dataset or don’t appear at all. However, as is evident in the chart and worth
noting, this correlation is much more noisy for the SST task.

(a) (b) (c)

Figure 5: Performance Analysis by Word Commonality

6.2 Analysis of Model Predictions

We also assessed the quality of our best model (MultiNLI + GSw with ConcatB + AL architecture)
by generating data visualizations for the relationship between our predictions and labels. For our

8

two discrete classification tasks (SST and PARA), we generated a confusion matrix, which provides
a detailed view of the accuracy and errors of our model’s predictions. Our analysis revealed that
our best performing model consistently achieved high accuracy and maintained a close alignment
with the true labels for both the SST and PARA tasks (See figures 6(a) and 6(b)). This observation is
supported by the fact that the confusion matrices of our results consistently exhibit a high level of
correct predictions, with only a relatively small number of incorrect classifications. For STS, which
has continuous outputs, we generated a scatterplot comparing the labels vs. predictions (See figure
6(c)). In this visualization, we see that predictions generally hover around the ground truth labels,
while slightly undershooting them.

(a) (b) (c)

Figure 6: Confusion Matrices From Best Model

These findings demonstrate the efficacy of our best model architecture and its ability to accurately
predict the labels for our objective tasks.

7 Conclusion

In this report, we implemented, trained, and evaluated a series of neural training methods and model
architectures on multi-task learning objectives, and we had a variety of findings regarding each of our
models. Most importantly, we found that two methods are primarily responsible for increased multi-
task performance. First, the concatenation of input sentences before BERT dramatically improves
model performance across PARA and STS tasks by allowing BERT to do most of the work. Second,
performing Gradient Surgery during training – both using the different batch size (GSbd) and wrap
(GSw) round robin approaches – provides considerable gains in performance across all 3 tasks by
allowing BERT to learn parameters that favor all 3 tasks simultaneously. Though not as impactful as
the former two methods, we also found that using additional layers on each task head made the model
more expressive and allowed it to learn more task-specific features. Furthermore, our first training
method, additional pretraining on MultiNLI, generally provides small bump in performance for all
tasks. Finally, we found that the performance of the final layer fine-tuning varied, providing a small
bump in accuracy for some models while in others, the performance decreased.

While we would have liked to conduct more experiments with alternative model hyperparameters,
such as learning rate, dropout percentages, and the number of final layers on each task head, we
were limited by compute resources and time. Future work for this report includes exploring this
hyperparameter experimentation further. Additionally, future research is needed to explore the
efficacy of using modular and hierarchical architectures for sharing weights for multitask learning.

References
[1] Shijie Chen, Yu Zhang, and Qiang Yang. Multi-Task Learning in Natural Language Processing:

An Overview. 2021. arXiv: 2109.09138 [cs.AI].
[2] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding. 2019. arXiv: 1810.04805 [cs.CL].
[3] Kuntal Dey, Ritvik Shrivastava, and Saroj Kaushik. “A Paraphrase and Semantic Similarity

Detection System for User Generated Short-Text Content on Microblogs”. In: Proceedings of
COLING 2016, the 26th International Conference on Computational Linguistics: Technical

9

https://arxiv.org/abs/2109.09138
https://arxiv.org/abs/1810.04805

Papers. Osaka, Japan: The COLING 2016 Organizing Committee, Dec. 2016, pp. 2880–2890.
URL: https://aclanthology.org/C16-1271.

[4] Mona Diab, Tim Baldwin, and Marco Baroni, eds. Second Joint Conference on Lexical and
Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the
Shared Task: Semantic Textual Similarity. Atlanta, Georgia, USA: Association for Computa-
tional Linguistics, June 2013. URL: https://aclanthology.org/S13-1000.

[5] Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach. 2019. arXiv:
1907.11692 [cs.CL].

[6] Richard Socher et al. “Recursive Deep Models for Semantic Compositionality Over a Sentiment
Treebank”. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing. Seattle, Washington, USA: Association for Computational Linguistics, Oct. 2013,
pp. 1631–1642. URL: https://aclanthology.org/D13-1170.

[7] Orion Weller, Kevin Seppi, and Matt Gardner. When to Use Multi-Task Learning vs Inter-
mediate Fine-Tuning for Pre-Trained Encoder Transfer Learning. 2022. arXiv: 2205.08124
[cs.CL].

[8] Adina Williams, Nikita Nangia, and Samuel Bowman. “A Broad-Coverage Challenge Corpus
for Sentence Understanding through Inference”. In: Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). New Orleans, Louisiana: Association for Computational
Linguistics, 2018, pp. 1112–1122. URL: http://aclweb.org/anthology/N18-1101.

[9] Zhilin Yang et al. “XLNet: Generalized Autoregressive Pretraining for Language Understand-
ing”. In: Advances in Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32.
Curran Associates, Inc., 2019. URL: https://proceedings.neurips.cc/paper/2019/
file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf.

[10] Tianhe Yu et al. Gradient Surgery for Multi-Task Learning. 2020. DOI: 10.48550/ARXIV.
2001.06782. URL: https://arxiv.org/abs/2001.06782.

10

https://aclanthology.org/C16-1271
https://aclanthology.org/S13-1000
https://arxiv.org/abs/1907.11692
https://aclanthology.org/D13-1170
https://arxiv.org/abs/2205.08124
https://arxiv.org/abs/2205.08124
http://aclweb.org/anthology/N18-1101
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://doi.org/10.48550/ARXIV.2001.06782
https://doi.org/10.48550/ARXIV.2001.06782
https://arxiv.org/abs/2001.06782

	Key Information
	Introduction
	Related Work
	Approach
	Baseline
	Model Architectures
	Training Methods
	Additional Pretraining
	Gradient Surgery
	Final Layer Fine-tuning (FL)

	Experiments
	Data
	Evaluation method
	Experimental details
	Results
	Model Architectures Findings
	Training Methods Findings

	Analysis
	Analysis of Model Performance and Data Variation
	Analysis of Model Predictions

	Conclusion

