Extending BERT with Multi-task and Meta-learning

Stanford CS224N Default Project; Mentor: Anuj Nagpal , No External Collaborators, No Sharing project

Jing Ning Cam Burton
Department of Computer Science Department of Computer Science
Stanford University Stanford University
annaning@stanford.edu cam21@stanford.edu

Abstract

Multi-task learning is a machine learning approach that trains a model to perform
multiple related tasks simultaneously, instead of training separate models for each
task. Our project involved the implementation of a range of techniques aimed at
improving model performance, which resulted in a 21.9% increase in accuracy
score in the development set and 20.4% in the test set. The methods utilized
included a combination of: 1) Using projected attention layers as shared weights to
improve performance 2) A new improved Siamese network architecture designed
to improve information flow for cosine similarity tasks and paraphrase tasks 3)
hyperparameter tuning that involved the adjustment of multi-task loss weights,
learning rate scheduler, and loss function, and 4) fine-tuning the model using an ad-
ditional dataset to address issues of overfitting and 5)We also employ an ensemble
approach by combining the best-performing models for each dataset and ob-
serve that the ensemble technique leads to additional improvements in performance.

Furthermore, we introduce a new Proto BERT meta-learning network architecture
that is customized for the sentiment analysis task, achieving a promising result of
40.4% accuracy on the 5-shot meta-learning test.

1 Introduction

Recent advances in natural language processing (NLP) have led to significant improvements in
various tasks such as sentiment analysis, question answering, and machine translation. One of the
most successful models in this field is BERT (Bidirectional Encoder Representations from Trans-
formers), which leverages a transformer-based architecture to learn contextualized representations of
words.BERT is pretrained on a corpus and this allows BERT to understand the nuances of language
and develop a deep understanding of context and meaning, making it well-suited for tasks such as
sentiment analysis. However, while BERT has shown impressive results on a wide range of tasks, it
still suffers from some limitations. Specifically, BERT was originally designed for a single task and
may not generalize well to new tasks or domains. To address this issue, we propose to extend BERT
with two techniques: multitask learning and meta-learning. By training BERT on multiple related
tasks simultaneously, we aim to improve its ability to generalize to new tasks. Additionally, by using
meta-learning, we hope to improve the efficiency and effectiveness of the training process, enabling
us to learn from fewer examples and adapt more quickly to new tasks.

2 Related Work

BERT (Bidirectional Encoder Representations from Transformers) [1] is a pre-trained deep learning
model for natural language processing (NLP) that was introduced by Devlin et al. in 2018 . BERT is
based on the Transformer architecture proposed by Vaswani et al.[2] in 2017 , which has revolutionized
the field of NLP by allowing for more efficient and effective processing of sequences of data.

Stanford CS224N Natural Language Processing with Deep Learning

Since its introduction, BERT has been widely adopted and has achieved state-of-the-art performance
on a wide range of NLP tasks, such as question answering, sentiment analysis, and language
translation . BERT has also inspired many subsequent research works that aim to improve upon or
extend its capabilities.

One of the key areas of research related to BERT has been multi-task learning, which involves training
a single model to perform multiple related tasks simultaneously. This approach has been shown to
improve model performance and reduce the amount of training data required . Several works have
explored multi-task learning with BERT, such as Liu et al [3]] who proposed a method for jointly
training BERT on multiple tasks using a shared encoder and task-specific classifiers.

Another area of research related to BERT has been meta-learning, which involves training a model to
learn how to learn. This approach has been shown to be particularly effective in few-shot learning
scenarios where only a small amount of data is available for training. Several works have explored
meta-learning with BERT, such as Lee et al [4] who proposed a meta-learning approach for fine-tuning
BERT on low-resource tasks.

More recently, there have been several works that aim to extend BERT’s capabilities beyond language
modeling. For example, Zhang et al. [S]] a method for using BERT to perform cross-modal retrieval
tasks, such as matching images with text descriptions. Li et al. [6] proposed a method for using
BERT to perform entity linking, which involves identifying mentions of entities in text and linking
them to a knowledge base.

3 Approach

3.1 Baseline

BERT [1] is pretrained on a corpus and this allows BERT to understand the nuances of language
and develop a deep understanding of context and meaning, making it well-suited for tasks such as
sentiment analysis. Compared with GPT, BERT is a bidirectional model, meaning it can take into
account both the preceding and succeeding context of a word when predicting the sentiment of a
sentence. This with attention mechanising allows BERT to understand the full meaning of a sentence,
rather than just individual words in isolation.

In our study, we established a baseline for sentiment classification using the pretrained and finetuned
minBERT model on the SST and CFIMDB datasets. To extend to downstream tasks, we employed
a multi-task fine-tuning model by adding a single dense layer with activation and dropout to three
separate output heads.

3.2 Improvements
3.2.1 Projected attention layer (PALs) and multi-head self-attention Layer

Stickland and Murray [[7] proposed a method for multi-task learning using Projected Attention Layers
(PALs). Our methodology investigates the variation in performance between utilizing a shared PALS
layer network, which extracts common representations from multiple tasks, versus a network without
shared layers consisting of only three individual task heads shown in In the context of
designing multi-task models, the technique of weight sharing between layers has been investigated as
a crucial aspect of architecture design. During training, the model is optimized using a multi-task
loss function that combines the average losses for all tasks.

3.2.2 Sentence-BERT using Siamese network

We also investigate the effectiveness of the architecture proposed by Reimers and Gurevych [,
which utilizes a Siamese network for fine-tuning on cosine similarity. Our experiments demonstrate
that utilizing the original architecture can enhance the performance of the baseline model for tasks
such as paraphrasing and cosine similarity. Furthermore, we propose two improvements to the
architecture to further improve its performance shown in[Figure 2]. Firstly, we suggest the addition of
an early u-v cross term, and secondly, we replace the pool layer with LSTM layers, which can help
the model better extract features.

Seanfiment T
Altention |Sentiment
Class

Paraphrase| . 1 |
Attention
Bloc‘k Paraphrase
lass

“Sentiment || N
A— LSTM _|”Sentiment

Class

Bert Projected Paraphrase
output (i Siamese
layer Block araphrase

class

Cosi ’,I
= Simtariy
Siamese | 7 Cosine Aftention Cosine
L_Block _” similarity Block Similarity
(a) Projected attention layer with shared weights (b) Attention heads layer with no shared weights

Figure 1: Shared weights Projected attention layer

1.1
Cosine
* similarity
| cosine-sim(u, v) | “

- [
Y)
| pooling | ‘ pooling ‘ [LsTM 1 H LsTM2 H LsTM3]
) x
| BERT ‘ BERT l
Sentence A Sentence B Sentence A Sentence 8
(a) Original sentence BERT architecture [8] (b) Our designed improvement

Figure 2: Improvement over sentence-BERT architecture

3.2.3 CNN for cosine similarity

Maheshwari and Sun et al. [9] proposed an intriguing architecture for improving feature extraction
in cosine similarity tasks, which involved the use of a 1D Convolutional Neural Network (CNN)
as the backbone as shown in[Figure 5a]. This approach entailed applying ID convolutions and max
pooling to individual input sentences, followed by concatenating the resulting features and passing
them through a linear layer for the final output.

3.2.4 Hyper-parameter search

1. Regression loss function : In the context of the cosine similarity regression task, we
conducted an experimental study to evaluate the performance of four different loss functions.
These loss functions include the CosineEmbeddingloss, L1 loss, Mean Squared Error
(MSE) loss, and SmoothL1 loss.

2. Multi-task loss weight : It is well known that different tasks exhibit varying magnitudes
of loss, and therefore a multi-task function that simply averages the loss values across all
tasks may not be optimal. In order to address this issue, we conducted an experimental
investigation into the use of different loss weight combinations for the three tasks in our
study. Specifically, we utilized a methodology that assigns more weight to the smaller loss
value and also more difficult individual tasks.

3. Learning rate scheduler : We also conducted experiments using two different learning rate
schedulers, namely the linear scheduler, linear scheduler with cosine -exponential scheduler
. The inclusion of cosine and exponential schedulers was motivated by the desire to achieve
a steeper initial learning rate reduction during early training epochs, followed by a more
gradual rate reduction during later epochs shown in This approach aimed to
facilitate fast convergence during initial training stages and prevent overfitting in later stages,
thereby ensuring optimization of training performance.

4. Bert layer output :In addition, we conducted experiments utilizing three distinct output
layers from the BERT model. Specifically, we investigated the performance differences

resulting from using the first token [CLS] of the last hidden state, the mean of all hidden
states, and the output of the final pool layer.

3.2.5 Additional dataset

Upon conducting a thorough analysis of the training results, we observed evidence of overfitting
in both the sentiment analysis and cosine similarity tasks. In response, we incorporated additional
datasets for each respective task, resulting in a larger training sample size of 164,603 [10] sentiment
analysis and 17,788 for cosine similarity tasks using SICK dataset.[11]

3.2.6 Ensembling

Following extensive experimentation with various architectures, we opted to utilize an ensemble
method by combining the output of three best models. In the context of Paraphrase and Sentiment
analysis classification task, the ensemble output is determined through a majority voting scheme. In
contrast, for cosine similarity regression tasks, a linear combination of three models is utilized. As
advised by Prof. Chelsea Finn in the CS330 class[12], ensemble methods are effective in mitigating
the influence of random errors introduced by individual models, leaving behind only the systematic
errors that can be more effectively addressed.

3.2.7 Meta-learning for sentiment classification : Proto BERT

In this study, we proposed a novel meta-learning algorithm for sentiment analysis called Proto BERT,
which draws inspiration from the design of ProtoNet[[13]. Our proposed sentiment meta-learning
neural network architecture utilizes dense layer version as its initial design as shown in [Figure 3|
but can be conveniently modified to an RNN version. Additionally, we have implemented a new
meta-learning data loader to enhance the efficiency of data processing.Our aim is to develop a system
that can learn from a small number of examples (5 examples) , allowing it to generalize effectively to
new and previously unseen sentiment analysis tasks.

Meta-learnign data loader Process The task at hand is divided into two distinct phases: Meta-
learning and Meta-Test, each comprising of two separate task groups with some shared characteristics.
Within Dy,.qin and Dyes; , the dataset is further split into support examples and query examples.
At meta-learning training time, the support examples are employed to learn the model embedding,
whereas the query examples are utilized to update the loss function. At the meta-test stage, a deviation
from the standard supervised learning occurs in that a small proportion of 5-way or 5-support
support-labelled examples are inputted into the model as support examples.

Model Process|[/13]

1. support examples is selected from Dy,,;,, and processed through BERT output layers to compute
the prototype of each class. The prototype is defined as the mean vector of final neural network layers
for each of 5 sentiment category .

1
o=1gm >, folwi) (1
|Sk| —
(zi,yi)k
2. Then we sample some query point X, for given cluster distribution from step 1, the Euclidean

distance of the query point x; to the prototype vector is calculated. Then softmax distribution over
the distance to each prototype is then determined using the following formula:

L@ o) = | S @ — e and paly — ko) — — SR AT@))
(f(z),cx) ;(k) pe(y = kl|z) S oxp (4 (2).c1)

3. The loss function is defined as the negative log-probability of the true class k, but only for the
query examples.—logpg(y = k|z).

@

4 Experiments and Analysis

We use the datasets provided for the sentiment analysis task and multi-task fine-tuning . To perform
extended experiments, our models underwent fine-tuning for 5 epochs using AdamW with a weight

_mf -
A &
Mean ﬁ META - TRAIN META - TEST
Class 2
Bert output
Mean of all FC] T
y, square
hidden n=512 (g::: 1 — Euclidean, —> — Support Set (
states 4 Distance Class Support Set Amazon Review)
ﬁ as logits 5-shot (SST) 5-shot
%—l P = Query Set Query Set
[— (s5T) Amazon Review
Prototype — Class5
(a) Proposed Meta-learning Proto Bert Architecture (b) Meta-learning data loader

Figure 3: Our proposed Meta-learning Proto Bert and dataloader

decay of 3e2. The final best results were obtained through ensembling of three models and training
with learning rate decay schedules of linear-cosine-exponential for 30 epochs, using learning rates of
3e-5, 3e-4, and 4e-5.

4.1 Data

The Datasets are: Sentiment Treebank SST ,paraphrase detection ,Quora dataset , SemEval STS
Benchmark Dataset. Addtional sentiment dataset[10] and STS SICK dataset [11] . And meta-learning
: Sentiment Treebank SST and Amazon kindle book review Dataset. [[14]

4.2 Evaluation method

Upon conducting a thorough analysis of the label distribution, we observed that there is no substantial
imbalance in the classification dataset. Specifically, we did not find any class that is twice as prevalent
as any other class. Consequently, we decided to solely focus on accuracy as the evaluation metric for
Sentiment analysis and Paraphrase tasks. For regression task for cosine similarity , we also look at
pearson correlation as evaluation metric.

4.3 Baseline

Our baseline model for single task sentiment analysis was pre-trained and fine-tuned, achieving a
result of 51.8% accuracy on the SST dataset and 96.7% on the CMFIMDB dataset. For the multi-task
learning approach, linear heads were added to the output of BERT, which was fine-tuned using this
modified architecture. The resulting model achieved development set average accuracy results of
54%. 1t is possible that the multi-task fine-tuning approach did not yield an improvement in sentiment
analysis development performance due to some level of overfitting.

4.4 Experimental 1: Projected attention layer (PALs) and multi-head self-attention Layer

Result As shown in shared PALs attention was able to increase accuracy by +4.2%. By
adding 1 shared attention layers helps multi-task performance , especially increase in paraphrase
accuracy +12%.

Analysis Our findings suggest that incorporating projected attention layers as shared layers, along
with individual task output layers, can significantly enhance the performance of the model. The
additional shared weight PALs seems to help model to better balance the performance of individual
tasks compared with no shared layer weights. We hypothesize that this is due to the model’s ability to
focus on different features that are crucial for optimal performance on each individual task.

4.5 Experimental 2:Sentence-BERT using Siamese network

Result The original design of Sentence-BERT model, which utilized a pooling layer, yielded a
performance increase of +4.6% compared to the baseline. However, the results of experimenting
concatenating two input sentences were not favorable and resulted in a performance decrease of
-4.9%. In contrast, our proposed new architecture, which incorporates three layers of LSTM , achieved
an increase of +7.3% as shown in[Table 3

Analysis After conducting extensive experiments on various architecture design choices, our findings
suggest that the pooling layer may be responsible for the loss of important information. Additionally,
concatenating two inputs too early without the inclusion of the u-v difference matrix may not be
conducive to optimal information flow. We therefore hypothesize that replacing the pooling layer
with three distinct LSTM layers (i.e., u, v, and u-v) may better extract the necessary information for
the given task at hand.

4.6 Experimental 3: CNN for cosine similarity

Result As demonstrated in the the utilization of a 1-dimensional Convolutional Neural
Network (CNN) in combination with pooling resulted in an average accuracy decrease of -4.5%
compared to our proposed LSTM design. It was observed that the incorporation of an additional
Long Short-Term Memory (LSTM) layer prior to the CNN led to an improvement in performance,
albeit still resulting in a decrease of 2.4% on average accuracy.

Analysis Our hypothesis is that the decrease in performance observed could be attributed to the
localization of the feature extraction performed by the CNN. Specifically, we speculate that the kernel
size of 3 may not be sufficient to capture the dependencies present in longer sentences. Thus, we
conclude that a better designed CNN is required in order to surpass the performance of the Attention
and LSTM-based Sentence-BERT architecture.

4.7 Experimental 4: Hyper-parameter search
Result

1. The outcomes of the regression loss function analysis indicate that the most effective
approach is the Mean Squared Error (MSE) loss function, which delivers a superior perfor-

mance improvement of +3.1%]Table 3

2. Furthermore, the experimentation with varying loss weights demonstrated that a weight of
1.5 times the paraphrase loss leads to an optimal performance improvement of +0.6%[Table 5|

3. As shown in[Figure 6] that the utilization of a linear-cosine-exponential learning rate decay
scheduler results in early convergence and a performance enhancement of +0.2% over 5
epochs[Table 5| The difference could be more with more epochs of training.

4. In comparison to solely utilizing the first CLS token from the output hidden layers of
BERT, taking the mean of all hidden layers leads to an improvement in performance by
+1.7% [Table

Analysis The observed superiority of the MSE loss function in improving model performance
could be attributed to the even distribution of class values within the dataset, which results in less
penalization from L2 loss with outliers. Additionally, a comparative analysis of the magnitude
of difference loss across three different tasks revealed that paraphrase and sentiment loss have a
much smaller scale. Therefore, incorporating a weight for these losses in the model training could
potentially facilitate a better balance of learning between tasks.

Based on our experimental results, it appears that the utilization of a learning rate scheduler may
not be indispensable when performing fine-tuning for a limited number of epochs. However, our
findings indicate that such a scheduler could potentially yield more favorable outcomes when utilized
for longer training duration. Furthermore, taking the mean of all hidden layers, as opposed to solely
utilizing the first token, may provide the model with more informative features.

4.8 Experimental 5: Additional dataset

Result This approach resulted in an average increase of +8.6% in the development dataset; however,
the training accuracy remained at a similar level shown in

Analysis After conducting an analysis of the baseline models for sentiment analysis and cosine
similarity, we observed the presence of overfitting. Our investigation revealed a substantial
dissimilarity in the quantity of training samples required for the paraphrase task in contrast to the
sentiment analysis and cosine similarity tasks. Specifically, the number of samples utilized for the
paraphrase task was found to be significantly greater than those employed for the latter two tasks.

Consequently, we conclude that the paraphrase task is not susceptible to over-fitting as compared to
the other tasks.

4.9 Experimental 6: Ensembling Overall result

Result Shown in|Table 1} ensembling led to a 2.4% enhancement in performance on the development
dataset. The resulting ensemble model achieved an average test accuracy of 74%, with SST,
paraphrase, and STS tasks on the test leaderboard scoring 54.2%, 81.0%, and 86.8%, respectively.

Analysis Our findings demonstrate that ensembling is a highly effective technique for improving
the overall performance of machine learning models. Based on our analysis of the development
set leaderboard accuracy, we have found that it is comparable to the accuracy achieved on the test
leaderboard, with only a marginal difference of 1.9% attributable to model selection bias.

The ensemble model exhibits a notable improvement, with a 20.4% increase as compared to the
baseline. However, there remains a significant issue of overfitting as evidenced by the sentiment
analysis test results of only 54%, in contrast to the training accuracy of above 90%. For semantic
similarity task, incorporating the out-of-domain SICK dataset facilitates better generalization of the
model to test datasets. In the paraphrase task, the model demonstrates good training performance and
better generalization to the test dataset, which can be attributed to its utilization of a large training
corpus.

Ensembling | sentiment acc | paraphrase acc | semantic similarity acc | Average Acc
modell 54.9% 81.8 % 86.4% 74.1%
model2 53.2% 82.2% 86.1% 73.6%
model3 533 % 81.4% 86.8% 73.6%
Ensembling | 55.8% 83.2% 88.9% 75.9%

Table 1: Ensembling best result for dev set

4.10 Experimental 6:Meta-learning : Proto BERT

Result As shown in the The 5-way 5-shot few shot meta-learning result on new Amazon
kindle review is 38.7 % + 5.7% . The few shot result on the SST dev query dataset is 41.7 % + 21.1%

Analysis We present our findings on the Amazon Kindle review dataset using a 5-shot meta-test
approach. Our results indicate a promising accuracy rate of 38.7%. It is important to note that Zhong
et al.[15] reported a higher accuracy rate of 46.15% for the IMDB dataset. However, it should be
taken into account that the number of classes in the IMDB dataset is binary, making our task of SST
5 class sentiment analysis more challenging.Moreover, our meta-test accuracy rate is 3% lower than
the 41.7% reported for the SST dataset shown in indicating a certain degree of overfitting
to the SST domain. To improve the generalization of our model, we suggest the inclusion of more
out-of-domain sentiment analysis datasets for various tasks. This can aid in expanding the model’s
understanding of the different nuances in sentiment analysis, leading to improved performance in
diverse datasets.

5 Additional Analysis

Sentiment Class Accuracy

To investigate the underlying cause for the failure of the sentiment analysis task to demonstrate
generalizability to the development dataset, despite achieving a training accuracy of over 90%. We
conducted an analysis of the development class accuracy shown in Our analysis revealed a
significant discrepancy between the class accuracy of the five sentiment classes, with classes 1 and 3
outperforming the other three classes by a large margin of 32%. Additionally, upon closer examination
of the incorrectly predicted results, we discovered that a substantial majority (approximately 91.5%-
95%) of these results were predicted as the adjacent neighbor sentiment class. It is possible that this

could hypothetically suggest that the model possesses some level of understanding regarding the
meanings of various sentiments. However, there appears to be some ambiguity and overlap between
adjacent sentiment categories, making it difficult for the model to accurately differentiate between
the correct classification.

Paraphrase Accuracy

It can be seen in the it was observed that the task of paraphrases that were not duplicates
exhibited a 9.6% higher accuracy compared to identifying duplicate pairs. Upon conducting a manual
review of 20 random examples (shown 1 example below) that were wrongly classified as paraphrase,
we discovered that the determination of what constitutes a paraphrase can be a subject of debate and
may not always be a straightforward decision even for human evaluators.

"What are some interesting campus recruitment rejection stories?"

"What are some of the best rejection stories at campus recruitment?"

Sentiment Analysis Class Accuracy Paraphrase Class Accuracy
80.0% 737% 880% BEE%
70.0% 57.4% 86.0%
L 60.0% sa9% 84.0%
3
E ?C'Cﬁf 40.3% s 400% 82.0%
g 00 80.0%
2 300%
3 78.0% 77.1%
20.0%
oo 76.0%
00% 74.0%
0 1 2 3 4 average

72.0%
SENTIMENT CLASS Not Duplicate Duplicate

Figure 4: Sentiment Analysis and paraphrase by class accuracy

6 Conclusion

In this study, we present several key findings and improvements to enhance the performance of
language models. Our results show that our approach has been successful, with an average improve-
ment of 20.4 % in accuracy compared to baseline. Firstly, we demonstrate that the use of projected
attention layers can significantly improve the model’s performance. Additionally, we highlight the
importance of a shared layer for multi-task fine-tuning, which can result in a significant increase in
model performance. We propose an improvement to the Sentence-BERT model by introducing an
early u-v difference term and replacing the pooling layer with an LSTM. These changes result in
better performance on various tasks.We acknowledge that overfitting on small training datasets is a
common issue in large language models. To address this problem, we recommend adding additional
out-of-domain datasets to improve the model’s performance on the test dataset and increase its
robustness.Finally, we show that ensembling models can help reduce the random mistakes made by
individual models and make predictions more consistent. Overall, our findings and proposed im-
provements contribute to the ongoing efforts to enhance the performance and robustness of language
models.

One of the other promising extensions we have designed and implemented a Proto BERT with
meta-learning, our results indicate that this approach holds great potential for the generalization
of sentiment analysis tasks. Specifically, in the Amazon Kindle meta-test, the Proto BERT model
achieved a promising accuracy of 38.7% when exposed to only five-shot examples.This success
highlights the ability of the model to learn from limited examples and effectively generalize to new,
previously unseen tasks. Our findings suggest that the Proto BERT model has promising implications
for the field of meta-learning and sentiment analysis. Further research may continue to explore the
efficacy and potential applications of this approach.

Our work highlights the importance of exploring and implementing various extensions in natural
language processing models, as this can lead to significant improvements in their accuracy and overall
performance. Additionally, our findings demonstrate the potential of meta-learning and ensemble
modeling approaches for enhancing the capabilities of these models.

References

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems, pages 5998-6008, 2017.

[3] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural networks
for natural language understanding. arXiv preprint arXiv:1901.11504, 2019.

[4] Seung-Hoon Lee, Min-Ho Seo, and Jaewoo Kang. Meta-bert: Learning to learn few-shot
prototypical networks for cross-domain transfer. arXiv preprint arXiv:1912.03072, 2019.

[5] Yixing Zhang, Wei Wu, and Tiejun Huang. Bert for cross-modal retrieval: When vision meets
language. arXiv preprint arXiv:2004.02984, 2020.

[6] Peng Li, Peng Chen, Pei Yu, Yan Zhang, and Xiaoyan Qian. A bert-based entity linking
framework with multi-grained information. IEEE Access, 9:27177-27187, 2021.

[7] Asa Cooper Stickland and Iain Murray. BERT and pals: Projected attention layers for efficient
adaptation in multi-task learning. CoRR, abs/1902.02671, 2019.

[8] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. CoRR, abs/1908.10084, 2019.

[9] Danni Ma Yezheng Li Anant Maheshwari, Simeng Sun. Implementation and extensions
to models in sts 2017 shared task for semantic textual similarity. https://github.com/
anantm95/Semantic-Textual-Similarityl

[10] Baris Sayil. Sentiment analysis neural network trained by fine-tuning bert, albert, or distilbert on
the stanford sentiment treebank. https://github.com/barissayil/SentimentAnalysis|
[Version 1].

[11] Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and
Roberto Zamparelli. A sick cure for the evaluation of compositional distributional semantic
models. In Nicoletta Calzolari (Conference Chair), Khalid Choukri, Thierry Declerck, Hrafn
Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis,
editors, Proceedings of the Ninth International Conference on Language Resources and Evalu-
ation (LREC’14), Reykjavik, Iceland, may 2014. European Language Resources Association
(ELRA).

[12] Prof. Chelsea Finn. (2022,24 oct), advanced meta-learning topics,cs 330: Deep multi-task and
meta learning, fall 2022. https://cs330.stanford.edu.

[13] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning.
CoRR, abs/1703.05175, 2017.

[14] Julian McAuley. Amazon kindle book review for sentiment
analysis. https://www.kaggle.com/datasets/meetnagadia/
amazon-kindle-book-review-for-sentiment-analysis.

[15] Wanjun Zhong, Duyu Tang, Jiahai Wang, Jian Yin, and Nan Duan. UserAdapter: Few-shot user
learning in sentiment analysis. In Findings of the Association for Computational Linguistics:
ACL-1JCNLP 2021, pages 1484—-1488, Online, August 2021. Association for Computational
Linguistics.

A Appendix

https://github.com/anantm95/Semantic-Textual-Similarity
https://github.com/anantm95/Semantic-Textual-Similarity
https://github.com/barissayil/SentimentAnalysis
https://cs330.stanford.edu
https://www.kaggle.com/datasets/meetnagadia/amazon-kindle-book-review-for-sentiment-analysis
https://www.kaggle.com/datasets/meetnagadia/amazon-kindle-book-review-for-sentiment-analysis

Attention VS PALs ifntiment paraphrase | semantic similarity Average Acc
cc Acc Acc

dense+ dense + dense 51.1% 63.1% 81.2% 65.1%

Istm+ attention + attention 50.0% 63.0% 85.0% 66.0%

Istm+ attention + attention 52.2% 62.7% 86.0% 67.0%

attention+ attention+ attention | 53.1% 62.5% 85.9% 67.2%

PAL + attention 51.6% 75.0% 81.3% 69.3%

Table 2: Projected attention layer and multi-head attention layer

Siamese network | sentiment Acc | paraphrase Acc | semantic Similarity Acc | Average Acc
Original u,v pool | 51.3% 75.4% 82.6% 69.8%
1 layer Istm 51.5% 77.4% 85.6% 71.5%
ilnﬁ‘lfter Istm . cat2 | 5 50, 66.4% 81.8% 66.6%
2 layers Istm 52.0% 76.0% 88.0% 72.0%
3 layer Istm 52.6% 79.4% 85.3% 72.4%

Table 3: Sentence-BERT using Siamese network

CNN network sentiment Acc | paraphrase Acc | semantic Similarity Acc | Average Acc
Istm baseline 51.5% 77.4% 85.6% 71.5%
2 CNN with pool | 47.0% 73.1% 80.9% 67.0%
Istm & CNN 50.0% 72.77% 84.5% 69.1%

Table 4: CNN network

Regression loss function sentiment Acc | paraphrase Acc | semantic Similarity Acc | Average Acc
CosineEmbeddingLoss 49.8% 72.8% 47.7% 46.8%
L1 loss 47.7% 63.5% 75.0% 62.1%
L2 MSE Loss 51.1% 63.1% 81.2% 65.1%
SmoothL1Loss 48.8% 63.4% 79.3% 63.8%
Multi-loss weight

Sentiment + 2Paraphrase 51.3% 753% 84.8% 70.5%
+ Cosine Similarity

Sentiment + 1.5Paraphrase | 5, 5o 75.2% 85.5% 71.1%
+ Cosine Similarity

I.5Sentiment + 1.5Paraphrase | ¢, o, 75.1% 85.2% 70.6%
+ Cosine Similarity

Ir shedular

linear 51.5% 62.8% 85.7% 66.7%
linear_exp_cosine 52.0% 63.0% 85.6% 66.9%
BERT output layer

first token last hidden state 51.3% 71.8% 71.5% 64.9%
mean all_hidden_state 52.4% 75.6% 71.8% 66.6%

Table 5: hyper parameter search

Additional dataset

sentiment Acc

paraphrase Acc

semantic Similarity Acc

Average Acc

Default dataset

51.3%

71.8%

39.0%

54.0%

additional SST, SICK dataset

52.4%

63.1%

72.5%

62.7%

Table 6: Additional dataset

Proto - Bert

5 shot Query Accuracy

5 - way accuracy Meta- test Amazon dataset

38.7 % £5.7%

5 - way 5-shot accuracy SST dev dataset

41.7 % £ 21.1%

Table 7: Meta-learning query accuracy

10

Cosine
similarity

concate +dense

12

08

0.6

04

02

pool pool
f f
1d CNN Block 1d CNN block
b A
BERT l BERT
T
Sentence A Sentence B

(a) CNN architecture [9]]

Epochs

®liner @ liner+cos+exp

(b) Projected learning rate schedule

Figure 5: CNN architecture and learning rate scheduler

Meta-test Amazon Kindle
dataset — query accuracy

0.4

035

0.3

150

ra
La

200

Meta-train dev SST
dataset — query accuracy R

ra
[

0.5

0.4

03

0.2

0.1

Figure 6: meta-test Amazon Review query result vs meta-train query SST result

T

loss/train

25

.

1 2

3 4 s

i

Figure 7: linear-cosine-exp scheduler early convergence with 5 training epochs

11

120

	Introduction
	Related Work
	Approach
	Baseline
	Improvements
	Projected attention layer (PALs) and multi-head self-attention Layer
	Sentence-BERT using Siamese network
	CNN for cosine similarity
	Hyper-parameter search
	Additional dataset
	Ensembling
	Meta-learning for sentiment classification : Proto BERT

	Experiments and Analysis
	Data
	Evaluation method
	Baseline
	Experimental 1: Projected attention layer (PALs) and multi-head self-attention Layer
	Experimental 2:Sentence-BERT using Siamese network
	Experimental 3: CNN for cosine similarity
	Experimental 4: Hyper-parameter search
	Experimental 5: Additional dataset
	Experimental 6: Ensembling Overall result
	Experimental 6:Meta-learning : Proto BERT

	Additional Analysis
	Conclusion
	Appendix

