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Abstract

To achieve high performance on natural language processing tasks requiring su-
pervised learning, empirical work has demonstrated the success of pretraining a
language model on a large amount of text data from a general domain and then
finetuning the model on a smaller amount of data from the problem domain. Within
a multi-task learning framework, the model is simultaneously finetuned on multiple
different datasets for different tasks. With a variation of the widely used BERT
model serving as our representation learner, we investigate the best way to use
multi-task learning to achieve high performance on three distinct tasks. We find that
a simple implementation of such a model performs moderately well on all tasks,
and we are only able to improve performance in relation to such an implementation
by freezing layers of our version of BERT during training.

1 Introduction

The BERT model architecture was introduced in Devlin et. al, 2019 [1]. BERT is a multi-layer
Transformer with bidirectional attention, derived from the work of Vaswani et. al, 2017 [2]. BERT
takes a sequence of tokens as input, with a special [CLS] token prepended at the start of each
sequence. As output, BERT returns the final hidden state of each token. The final hidden state of
the [CLS] token serves as an embedding representation of the sequence as a whole. As a training
objective, BERT uses masked language modeling, wherein certain input tokens are masked and the
model is tasked with predicting the true value of the masked tokens.

Devlin et. al, 2019 demonstrated that high-performing models for a variety of tasks could be
developed by pretraining BERT on a large corpus and then finetuning the model, with some additional
layers, on a task-specific dataset [1]. The intuition behind this process is that, through pretraining,
BERT learns how to output high-quality general sentence representations which can be used as input
in supervised learning settings.

The creators of BERT finetuned separate BERT models for each specific task they addressed. Effec-
tively, they built a toolset, where each tool in the set had a particular purpose. Ideally, rather than
carry around a large, cumbersome box of tools, we would like to develop some kind of multitool.
That is, a single model which can achieve high performance on multiple different downstream tasks.

We use a variation of BERT, minBERT, and the pretraining-finetuning paradigm, but by working
within the framework of multi-task learning, we develop a single model for use on three different
tasks. In particular, we adapt minBERT for sentiment analysis, paraphrase detection, and semantic
textual similarity evaluation.

2 Related Work

After Devlin et. al, 2019, the utility of finetuning BERT for a variety of text classification tasks
was explored in Sun et. al, 2019 [1][3]. The authors used multi-task learning as an extra step after
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pretraining to encourage BERT to learn robust embeddings, but proceeded to finetune the model to
each task individually.

Liu et. al, 2019 used multi-task learning with BERT to achieve state-of-the-art performance on ten
text classification tasks, including sentiment analysis and semantic textual similarity [4]. Our work
can be seen as a minimalist version of theirs. Indeed, our dataloader for multi-task learning is derived
from theirs, and we implement the SMART regularization technique from the related work Jiang et.
al, 2020 [5].

Various other work has explored how to use BERT to address the specific tasks we focus on. In
particular, Reimers and Gurevych, 2019 showed that for semantic textual similarity tasks, rather than
having a sentence pair separated by a [SEP] token as a single input to BERT, the two sentences
could be input individually into BERT and their output could be compared via cosine-similarity [6].

3 Approach

3.1 Task-Specific Heads and Dataloader

As a representation of each input sentence, minBERT puts the final hidden state of the [CLS] token
through a pooling layer consisting of a multi-layer perceptron with tanh activation. Let y be the
output of this multi-layer perceptron.

Our task-specific layers, or head, for sentiment analysis returns

W SA
2 (GELU(W SA

1 y + bSA1 )) + bSA2 ∈ R5

A dropout layer is applied after the activation function. Cross entropy loss is used for training.

For paraphrase detection, if y1 and y2 are the pooled outputs of minBERT for two sentences, then we
return

(WPara
1 y1 + bPara1 )⊤(WPara

2 y2 + bPara2 ) ∈ R
Cross entropy loss is used during training.

Our head for STS is similar. Let
z1 = W STS

1 y1 + bSTS
1

z2 = W STS
2 y2 + bSTS

2

We return 5 · max (0, cos(z1, z2)), where cos(z1, z2) is the cosine similarity between z1 and z2.
Mean-squared error loss is used during training.

For training without gradient surgery, our dataloader is directly adapted from the algorithm given in
Liu et al., 2019 [4]. Each dataset is separated into mini-batches and then pooled with the mini-batches
of the other datasets. During training, a mini-batch is randomly chosen from this set of mini-batches,
and the task corresponding to the selected mini-batch is used to calculate the model’s gradients.

3.2 Gradient Surgery

For training with gradient surgery, we used a different dataloader. The three datasets for each task are
consolidated to form one dataset. When sampling batches, the dataloader samples uniformly from the
consolidated dataset, without replacement. During training, samples within the batch are grouped by
task and then fed into the model to produce up to three gradient vectors—one for each task present in
the batch. It may be the case that gradients backpropagated from different tasks point in conflicting
directions; if so, then the descent direction for one task may be a poor direction for other tasks. To
alleviate this issue, we implement an intuitive "gradient surgery" procedure from Yu et. al, 2020 that
projects gradients onto the subspace orthogonal to the other gradients [7]. In our implementation, we
select the dominant task gradient and project out conflicting components of the other gradients.

Let gsa, gpara, gsts ∈ RNbert denote the averaged, flattened gradient vectors of the minBERT
backbone from each task in a given batch (Nbert denotes number of parameters in the minBERT
model). WLOG, suppose ∥gsa∥ ≥ ∥gpara∥, ∥gsts∥. We calculate

g′para = gpara − 1{gpara · gsa < 0}gpara · gsa
∥gsa∥2

gsa,
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g′sts = gsts − 1{gsts · gsa < 0}gsts · gsa
∥gsa∥2

gsa,

and the new descent direction is
gsa + g′para + g′sts.

3.3 Regularization

The primary issue we faced during experimentation was that our model’s performance on the
validation set was substantially lower than on the training set. This problem indicated that the model
was overfitting. To correct for this, we first attempted to reduce the number of parameters in each
of our heads, for example, by replacing the multi-layer perceptron in the sentiment classifier with
a single linear layer. Such changes had a marginal effect on performance. We turned to two more
powerful methods of regularization.

First, we tested the effect of keeping some of minBERT’s layers frozen during finetuning. We
assumed that if the heads were not responsible for overfitting, then likely minBERT had too much
flexibility to change from its pretrained parameters.

We also experimented with a more advanced form of regularization, called SMART, introduced in
Jiang et. al, 2020 [5]. Their method of regularization has two parts. The first is a smoothness-inducing
adversarial regularizer, which they define as

Rs(θ) =
1

n

n∑
i=1

max
∥x̃i−xi∥p≤ϵ

ℓs(f(x̃i; θ), f(xi; θ))

where the xi are the embeddings of the input sentences, ℓs is some loss function, and ϵ and p are
hyperparameters. This penalty restricts the ability of f to vary widely in a small neighborhood around
each input, hence smoothing the function, as the terminology suggests.

The second part of the regularization is a Bregman proximal point optimization method. Specifically,
for two sets of model parameters θ1 and θ2 we define the Bregman divergence

DBreg(θ1, θ2) =
1

n

n∑
i=1

ℓs(f(xi; θ1), f(xi; θ2))

While the smoothness-inducing adversarial regularizer works directly against overfitting by incen-
tivizing simpler model geometry, the Bregman divergence addresses the issue by penalizing weight
updates which have a large impact on the model.

If L(θ) is the original loss function, and θcurrent is the current set of model parameters, then the new
loss is given by

L(θ) + λsRs(θ) + µDBreg(θ, θcurrent)

for hyperparameters λs and µ.

For our implementation, we primarily followed the example of Jiang et. al, 2020, using their
description of their algorithm as well as their code 1[5]. θ was updated with momentum, as described
in their work. Symmetric Kullback-Leibler divergence was used as the loss ℓs for sentiment analysis
and paraphrase detection, and mean-squared error loss was used for semantic textual similarity. p
was set to be infinity. A direct adaptation was not possible though, as their method supposes that the
model f is a function of a single sentence x. Two of our model heads are functions of sentence pairs
instead, taking the form f(xi, yi; θ). To resolve this difference, for these tasks we set

x̃i = argmax
∥x̃i−xi∥p≤ϵ

ℓs(f(x̃i, yi; θ), f(xi, yi; θ))

ỹi = argmax
∥ỹi−yi∥p≤ϵ

ℓs(f(xi, ỹi; θ), f(xi, yi; θ))

and return

Rs(θ) =
1

n

n∑
i=1

ℓs(f(x̃i, ỹi; θ), f(xi, yi; θ))

1https://github.com/namisan/mt-dnn
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3.4 Baseline

We developed a baseline model for minimal functionality. Our baseline model used the same
sentiment analysis and paraphrase detection heads as our final model, as well as the same dataloader.
For semantic similarity, the baseline used a head identical to the paraphrase detection head. The
baseline did not make use of any of the other methods described above.

4 Experiments

4.1 Data

The Stanford Sentiment Treebank (SST), Quora Question Pairs dataset 2, and SemEval STS Bench-
mark datasets were used for the sentiment analysis, paraphrase detection, and semantic textual
similarity tasks, respectively [8][9].

The SST dataset consists of 11,855 sentences from movie reviews, each with a discrete sentiment
label from 0 (negative) to 4 (positive). The Quora paraphrase dataset contains 400,000 question
pairs with binary labels denoting whether the questions are paraphrases of each other. The SemEval
STS dataset contains 8,628 sentence pairs, each with a continuous label from 0 to 5 denoting their
semantic similarity.

4.2 Evaluation method

For evaluating the performance of our model on sentiment analysis and paraphrase detection, we
used the proportion of correct label predictions. For semantic textual similarity, we used the Pearson
correlation between our predictions and the true score values.

To understand the performance of our model within a wider context, these scores were compared
with scores submitted to the class leaderboard.

4.3 Experimental process

Our experimental process was guided by attempting to modify the model to improve on our baseline’s
performance. We found this surprisingly difficult to achieve. Most of our experimental work focused
on testing different model configurations.

Different heads were tested for each task. Both increasing and decreasing complexity of model heads
had marginal impact on performance.

Gradient surgery did not have a substantial impact on performance, and was discarded. SMART
regularization improved performance on the semantic textual similarity head when that head was
finetuned in isolation. There was no improvement for the other tasks in isolation, and no improvement
when doing multi-task finetuning. SMART was discarded.

When finetuning heads in isolation, freezing minBERT layers had marginal effect on the sentiment
analysis and paraphrase detection tasks, but improved performance on semantic textual similarity.
This pattern continued to hold true when doing multi-task learning as well, so freezing layers was
deemed beneficial. We tried freezing layers just when updating the model with respect to semantic
textual similarity as well as freezing layers for all tasks, and found the latter approach more successful.

For our final model configuration, we froze all the layers of minBERT except the final three and the
pooling layer. A learning rate of 1e-4 was used for 9 epochs.

2https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

4

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs


4.4 Results

Task Baseline (Dev) Final (Dev) Final (Test)
Sentiment Analysis 0.508 0.498 0.518

Paraphrase Detection 0.811 0.817 0.819
Semantic Similarity 0.551 0.690 0.643

Overall 0.623 0.668 0.660

Final results on validation and test sets

We were only able to noticeably improve the model’s performance on semantic textual similarity in
relation to the baseline. The most important reason behind the improvement for this task was the
decision to freeze layers of minBERT during training. Unfortunately, despite the fact that the model
seemed to be overfitting for sentiment analysis and paraphrase detection as well, freezing layers had
little impact on performance for these tasks. We were disappointed to find that none of the other
approaches we implemented were able to affect performance on these two tasks in a meaningful way.

5 Analysis

We reviewed the qualitative performance of our model across the three tasks on the validation dataset.

5.1 Sentiment Analysis

For sentiment analysis, we were interested in three aspects of our model: which sentences it classifies
well, which sentences it struggles with, and how prediction accuracy varies across classes. Out of
correctly classified sentences, the one the model predicted with the highest assigned probability was
the positive, class 4 review

a gorgeous, high-spirited musical from india that exquisitely blends music, dance,
song, and high drama.

which includes three strongly positive adjectives/adverbs. In contrast, the sentence it assigned the
lowest probability to the true class to was

hilariously inept and ridiculous.

This phrase is labeled as class 3, but the model classified it as a 0. The phrase only has three words
from which sentiment can be inferred. On their own, the word "inept" is negative, "ridiculous" is
slightly negative, and "hilariously" is positive. Inferring a mostly positive overall sentiment, then,
is quite challenging. Even for a human evaluator, with this little context the phrase could easily be
interpreted as a class 1 negative review.

The model achieved the following per class accuracies

Class 0 1 2 3 4
Accuracy 0.42 0.73 0.07 0.66 0.47

Sentiment classifier per class accuracies

The model performs best on classes 1 and 3, but is strikingly bad at correctly classifying neutral
sentences. We note that classes 1 and 3 combined make up about 50% of the training data, so that
may explain the higher performance on those labels, but the rest of the training data is approximately
evenly split between the other three classes. Hence we cannot ascribe the poor performance on class
2 as a consequence of the model not seeing enough such examples as it learned. Rather, we suppose
that neutral sentences may be hard to classify. The model may be able to minimize loss by treating
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the five-class classification problem more as a two-stage process: determine whether the sentence is
mostly positive or negative, then determine the degree of sentiment in the chosen category.

5.2 Paraphrase Detection

We first looked at cases where the model correctly classified sentence pairs. The pair for which the
model assigned the highest probability to their being paraphrases of each other was

why are saltwater taffy candy imported in the philippines?
why is saltwater taffy candy imported in the philippines?

This pair differs only on the point of whether candy is a plural or singular noun, so we are glad that
the model performs well here. Similarly, the pair for which model assigned the highest probability to
their not being paraphrases of each other was

which is the best c programming institute in patna?
how much do castles and manors costs?

two completely unrelated questions.

For failure cases, we looked at the pair that the model incorrectly classified as paraphrases with the
highest confidence, and the pair that the model incorrectly classified as not being paraphrases with
the highest confidence. The former pair was

why spotify is not available in india?
is spotify not available in india?

and the latter pair was

do native speakers of spanish ever confuse ser and estar?
what are the ways to quickly learn the use of the two spanish verbs "ser" and
"estar"? do native hispanophones ever confuse their use?

In the first case, the sentences are almost lexically identical. The model is not able to recognize the
importance of the word "why" to the overall meaning of the question. The failure of the model in
the second case is more interesting. Only the second part of the second question is a paraphrase of
the first question. The first part is a separate question altogether. It is not suprising that the model
misclassified this pair, but it is surprising it did so with high confidence, given the high degree of
lexical overlap.

5.3 Semantic Textual Similarity

We fit a linear regression between our model’s predicted values and the true similarity scores and
calculated the residuals. The sentence pair with the smallest residual was

a man and woman walking past a record shop
a man and woman kissing in front of a crowd of people.

This pair had a true score of 0.2. The model was smart enough to not be confused by the identical
start to each sentence. The man and woman are doing two highly different activities in each. The
sentence pair with the largest residual was

non-proliferation expert at the international institute for strategic studies mark
fitzpatrick stated that the iaea report had an unusually strong tenor.
senior fellow at the international institute for strategic studies mark fitzpatrick
stated that the international atomic energy agency plan is superficial.

This pair had a true score of 4. This score is surprising—the sentences differ acutely in their
description of the agency’s report, which is key to each sentence’s meaning. Poor performance on
this example may actually reflect good judgement by the model.
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6 Conclusion

Our model’s performance on all three tasks is reasonable, especially when the simplicity of the final
configuration is taken into account. However, performance does not compare well to other models.
We were disappointed in our inability to make a significant leap in any of the three tasks after we
developed our baseline model. Our baseline was created with the sole intention of having a functional
model. Hence, we imagined that large improvements in performance would be made immediately
when more carefully considered methods were introduced. We were mostly proven wrong. We were
surprised that SMART regularization was not the answer to our overfitting issues, and we question
the validity of our implementation.

We heard from other groups during the poster presentation session that concatenating the sentence
pairs for the paraphrase detection and semantic textual similarity tasks before inputting into minBERT
had a large impact on performance. After a five minute alteration to our code implementing this
change, without any optimization, our scores on the validation set were 0.494, 0.881, and 0.865,
respectively. We are frustrated that this simple change was so instrumental to model performance, in
particular because Reimers and Gurevych, 2019, a work which strongly informed our own, advises
against this approach in favor of the two pass approach that we use [6].
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