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Abstract

Table-to-text generation is an important task because a lot of valuable information
is stored as tables. Recently, Kale and Rastogi (2020) showed that the T5 model
can achieve SoTA results on table-to-text generation. Wang et al. (2022) introduced
the Lattice model which further improved upon the standard T5 model by tailoring
the T5 architecture (i.e. encoder self-attention and relative position encoding)
to tabular input. The Lattice model encodes very limited information within the
relative position encoding: whether the query token and key token are both in
the metadata or same table cell, and if so, their relative position. We believe that
encoding additional information within the relative position encoding (e.g. whether
the query and token are in the same row or column) could further improve the
model’s understanding of tabular input and table-to-text generation quality. In
this project, we showed that our approach ("Additional Positional Info") achieves
slightly better results than the baseline Lattice model on the ToTTo dev set (Parikh
et al., 2020). Furthermore, we showed that, with Additional Positional Info, the
Structural Attention in the Lattice model is no longer necessary.
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2 Introduction

Table-to-text generation seeks to generate natural language description for content and entailed
conclusion in tables (Wang et al., 2022). See Figure 1 for an example task. It is an important task
because a lot of valuable information is stored as tables (e.g. financial statements and economic &
demographic statistics). Generating natural language descriptions for these tables make such data
easier to discover. It also supports downstream tasks such as tabular semantic retrieval, reasoning,
fact-checking and table-assisted question answering.

Compared to text-to-text generation tasks such as summarization, table-to-text generation is challeng-
ing and interesting because tabular data is non-linear. Furthermore, tables encode important semantic
information within its layout. For example, the semantic relationship between tokens within the
same cell is different than the semantic relationship between tokens in different cells. Finally, tabular
data is semantically invariant to several transformation (e.g. permutation of row / column order).
Capturing these properties of tabular input data within the model architecture could significantly
improve table-to-text generation quality.
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Figure 1: Example ToTTo Task

Recently, Kale and Rastogi (2020) showed that linearizing the tabular input data into text (in a
row-major order) and then applying the standard T5 text-to-text generation model achieves SoTA
result. Wang et al. (2022) was able to further improve upon the standard T5 model by identifying the
special properties of tabular data and tailoring the T5 model architecture to reflect these properties.

One potential limitation of Lattice model in (Wang et al., 2022) is that its relative position encoding
only encodes whether the query and key token are both in the metadata or both in the same cell,
and, if so, their relative position within the linearized sequence. Another potential limitation is that
the Lattice model uses the simplified relative position encoding, which map each relative position
bucket to a bias that is added to the logit used to compute attention weights. This means the relative
position only affects the attention weights as a bias term, and it does not affect the value vectors in
the attention output calculation. We believe that additional relative position information (e.g. whether
the tokens are in the same row / column) could affect how the key/value token modifies the meaning
of the query token. For example, in Figure 1, different cells within the same row pertains to different
types of information for the same radio station while different cells within the same column pertains
to same type of information pertaining to different radio stations. Therefore, we believe encoding
such additional information in the relative position embedding could further improve the model’s
understanding of tabular input data and its table-to-text generation quality.

We investigated whether we can improve upon the Lattice model by encoding additional information
in the relative position embedding ("Additional Positional Info"). We also investigate whether
applying the original Relative Position Encoding approach (Shaw et al., 2018) ("Full Relative
Position Encoding") could be beneficial. We achieved slightly better BLEU and PARENT score
on the ToTTo dev set using Additional Position Info compared to the baseline Lattice model. We
achieved poorer results using Additional Positional Info + Full Relative Position Encoding compared
to the Lattice model. Furthermore, we showed that, with Additional Positional Info, the Lattice
model’s Structural Attention is no longer necessary.

3 Related Work

This project is related to recent efforts to apply the pretrained T5 models to the table-to-text generation
task and relative position encoding.

3.1 Applying T5 to Table-to-Text Generation

T5 is a pretrained text-to-text generation model that achieves SoTA results on many NLP tasks (Raffel
et al., 2020). Kale and Rastogi (2020) showed how to transform the table-to-text generation task into
a text-to-text generation task by linearizing the table into a sequence of tokens (in row-major order)
and then applying the T5 model. The T5 model achieved SoTA results without any modifications.

Wang et al. (2022) identified the special properties of tabular input data described in Section 2 and
modified the standard T5 architecture to reflect these properties:

• Structural Attention: In the T5 model’s encoder self-attention, a query token can attend
to any of the key/value tokens. Wang et al. (2022) argues that this disregards an important
structural information (i.e. a query token should only attend to tokens in the table metadata

2



or in the same row or column). Therefore, they propose Structural Attention, which prunes
the other attention connections.

• Transformation-Invariant Position Encoding: In the T5 model’s encoder self-attention,
the relative position of the query and key/value token in the linearized sequence is mapped
to one of N relative position bucket. Wang et al. (2022) argues this is not invariant to
transformations that should not affect the table content (e.g. permuting rows or columns).
Therefore, they propose Transformation-Invariant Position Encoding, which is invariant to
such transformations.

The Lattice model further improved upon the standard T5 model and was more robust to content-
invariant transformations of the table. Our work explores whether we can push the idea of
Transformation-Invariant Position Encoding further by encoding additional positional information in
the relative position embedding.

3.2 Relative Position Encoding

Shaw et al. (2018) introduced the Relative Position Representation. Instead of mapping the absolute
position of each token in the sequence to an embedding vector as in the original Transformer paper
(Vaswani et al., 2017), Relative Position Representation maps the relative position between the
query and key/value token to one of the relative position buckets. Each bucket is then mapped
to two embedding vectors. One embedding vector is added to the key vector in the attention-
weight calculation. The other embedding vector is added to the value vector in the attention-output
calculation.

In a subsequent work, Raffel et al. (2020) showed that for most standard NLP benchmark tasks,
a simplified version of Relative Position Encoding worked very well. In this simplified version,
each relative position bucket is mapped to a single-dimensional bias that is added to the logit in the
attention-weight calculation. The Lattice model uses this simplified version.

Tabular data contains a lot of semantically relevant structural information (e.g. whether the query
and key/value token are in the same cell). Therefore, its possible that table-to-text generation could
benefit from the richer original Relative Position Representation proposed by Shaw et al. (2018). In
particular, it might make sense to allow the relative position to interact with the query vector in the
attention-weight calculation and also to allow the relative position to affect the value vector in the
attention output calculation.

4 Approach

We will use the Lattice model introduced by Wang et al. (2022) as our baseline. On top of this
baseline, we explore the following changes: (1) Additional Positional Info, (2) Full Relative Position
Encoding, and (3) Ablating Structural Attention.

4.1 Additional Positional Info

In order to capture additional information about the relative position of the query and key/value
tokens within the table, we use the following scheme to map the relative position information to one
of the N relative position buckets:

1. If the query and key are both in the metadata or both in the same cell, map their relative
position (i.e |i-j|) to a bucket in [0, N-6]. We use the same mapping as T5 with a cap at N-6.

2. Otherwise,
(a) If the query is in the metadata and the key is in the table body, map it to bucket N-5.
(b) If the query is in the table body and the key is in the metadata, map it to bucket N-4.
(c) If the query and key are in the same row (but not same column), map it to bucket N-3.
(d) If the query and key are in the same column (but not same row), map it to bucket N-2.
(e) If the query and key are not in the same row or column, map it to bucket N-1.

We initialize the bias term associated with each relative position bucket using the pretrained T5
weights. We then update these bias terms during finetuning to adapt them to their new semantics.

3



4.2 Full Relative Position Encoding

We follow the original Relative Position Encoding approach proposed by Shaw et al. (2018). We
map each relative position bucket to 2 embedding vectors (aKij and aVij) and add them to the key
vector in the attention weight calculation (Equations 1, 2) and the value vector in the attention output
calculation (Equation 3). Because the embedding vectors associated with each relative position
bucket were not present during the pretraining of the T5 model, we will need to randomly initialize
these vectors and then update them during finetuning.

eij = (xiW
Q)(wjW

K + aKij )
T /

√
dz (1)

αij = softmaxj(eij) (2)

zi =
∑
j

αij(xjW
V + aVij) (3)

4.3 Ablating Structural Attention

To ablate the Structural Attention, we revert the Lattice model to use the standard T5 model’s encoder
self-attention mechanism. This means every query token can attend to every key/value token.

4.4 Notes on Implementation

We use the Lattice model implementation provided by the authors of Wang et al. (2022) as the starting
point. We then implement the Additional Positional Info (Subsection 4.1) and Full Relative Position
Encoding (Subsection 4.2).

5 Experiments

5.1 Data

We use the ToTTo dataset (Parikh et al., 2020) to train and evaluate our models. The input is a
table with metadata (e.g. table title) with some cells highlighted and the target is text describing the
highlighted cells. See Figure 1 for an example. We could only submit one model for evaluation on
the ToTTo test set. Therefore, we used the ToTTo dev set for our evaluations. The ToTTo dev set has
two subsets:

• Overlap: These examples use tables in the training set with different cells highlighted.

• Non-Overlap: These examples use tables not in the training set. This should be a better test
of generalization to previously unseen tables.

5.2 Evaluation method

Following the approach in Parikh et al. (2020), Kale and Rastogi (2020) and Wang et al. (2022),
we use the BLEU score and PARENT (F1) score to evaluate our models. We use these metrics to
measure how well the model’s prediction capture information within the input table and its fluency.
According to Dhingra et al. (2019), BLEU score only compares the prediction against the reference
sentences which may not accurately reflect the table. Therefore Dhingra et al. (2019) proposed the
PARENT (F1) Score which compares the model’s prediction against both the input table and the
reference sentences. Dhingra et al. (2019) showed that the PARENT score correlated with human
evaluations significantly better than BLEU score.

5.3 Experimental details

We fineutine a pretrained T5 model (with the architectural changes described in Section 4) using the
same hyperparameters as Wang et al. (2022). See Appendix A for details.
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5.4 Results

5.4.1 Main Results

Our main findings (Table 1) are:

1. Encoding additional positional information ("Additional Positional Info") seem to slightly
improve the BLEU and PARENT score compared to the baseline Lattice model on the
ToTTo dev set. However, our evaluation on the ToTTo test set (Table 2)) showed similar
metrics compared to the baseline Lattice model. This suggests that encoding additional
positional information may have a slight benefit which is consistent with our expectations.

2. Using full relative position encoding ("Additional Positional Info + Full Relative Position
Encoding") seem to significantly decrease the BLEU and PARENT score compared to both
Additional Positional Info and baseline Lattice model. This is not very surprising because
the embedding vectors for the Full Relative Position Encoding are not present during the
pretraining and need to be randomly initialized. This is also consistent with the training
curve in Figure 2, which showed the Additional Positional Info + Full Relative Position
Encoding started the finetuning with a lower BLEU score on the dev set due to randomly
initializing new embedding vectors and never catching up.

3. With Additional Positional Info, we can ablate Structural Attention ("Additional Positional
Info w/o Structural Attn") and achieve similar metrics as "Additional Info."

Model Overall Overlap Non-Overlap
B P B P B P

Lattice (Baseline) 47.5 58.3 55.7 63.3 39.4 53.5
Additional Positional Info (Ours) 47.8 58.7 56.1 63.5 39.7 54.1
Additional Positional Info + Full Relative Po-
sition Encoding (Ours)

45.9 57.0 53.7 61.6 38.2 52.6

Additional Positional Info w/o Structural Attn
(Ours)

47.8 59.0 55.9 63.5 40.0 54.6

Table 1: Evaluations on ToTTo Dev Set (B: BLEU, P: PARENT)

Figure 2: Training Curve

5.4.2 Ablation Study

We investigate the relative contributions of Structural Attention and Additional Positional Info through
ablation (Table 3). We see that, by adding Additional Positional Info to the T5 model, it’s no longer
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Model Overall Overlap Non-Overlap
B P BR B P BR B P BR

Lattice Baseline 47.4 57.8 0.207 55.6 62.3 0.337 39.1 53.3 0.077
Additional Positional
Info (Ours)

47.3 57.9 0.210 55.5 62.6 0.341 39.1 53.3 0.079

Table 2: Evaluation on ToTTo Test Set (B: BLEU, P: PARENT, BR: BLEURT)

Model Att Pos Overall Overlap Non-Overlap
T5 - - 45.7 53.7 37.7
T5 + Additional Positional Info - ✓ 47.8 55.9 40.0
T5 + Structural Attention ✓ - 47.0 54.4 39.6
Lattice + Additional Positional Info ✓ ✓ 47.8 56.1 39.7

Table 3: Ablation Study on ToTTo Dev Set using BLEU Score

necessary to use Structural Attention. This not surprising because the Additional Positional Info
captures whether the query and key tokens are not in the same row or column. So the model can learn
a large negative bias for such situation which is equivalent to the Structural Attention.

5.4.3 Robustness to Content-Invariant Transformations

Similar to Wang et al. (2022), we also investigated whether the models are robust to content invariant
transformations of the tabular input data (e.g. permuting the rows or columns). We found that, similar
to the baseline Lattice model, our model was also robust to these content-invariant transformations
(see Table 4).

Model Overall Overlap Non-Overlap
O T ∆ O T ∆ O T ∆

Lattice (Baseline) 47.5 47.5 0 55.5 55.5 0 39.5 39.5 0
Additional Positional Info 47.8 47.8 0 56.1 56.1 0 39.7 39.7 0
Additional Positional Info w/o
Structural Attn

47.8 47.8 0 55.9 55.9 0 40.0 40.0 0

Table 4: Robustness evaluation on ToTTo dev set. We use the BLEU score. O is the original dev set.
T is the dev set after content-invariant transformation (e.g. randomly permuting rows and columns).
∆ is the difference between O and T.

6 Analysis

6.1 Analysis of Per-Instance Differences

We first consider the histogram of per-instance differences in BLEU score and PARENT score for the
"Additional Positional Info w/o Structural Attn" versus the baseline Lattice model (Figure 3). We see
that most instances had zero or minimal difference in scores. This suggests that two model’s outputs
are similar. Furthermore, we see that the differences are greater on the non-overlap subset compared
to the overlap subset. This suggests that both models memorized certain patterns from the tables in
the training set which resulted in more similar output on the Overlap subset.

We then randomly sampled 20 examples from the ToTTo dev set (10 from overlap and 10 from
non-overlap) and manually rated them from 0-3 (0: mostly incorrect; 1: somewhat correct; 2: mostly
correct). See Table 5. We observed that:
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Figure 3: Histogram of Non-Zero Per Instance Score BLEU Score Differences on ToTTo Dev Set.
Top: BLEU; Bottom: PARENT (F1). Left: Overall; Middle: Overlap; Right: Non-overlap.

• Both models performed well on both the Overlap and Non-Overlap set. Majority of our
human ratings are 2 (mostly correct) and the rest are 1 (somewhat correct). There were no 0
(mostly incorrect) predictions.

• Despite the large difference in BLEU and PARENT score, the quality of the output of both
models looked similar for most instances. Compared to the Lattice baseline, the "Additional
Info w/o Structural Attn" had one significant win in the Non-Overlap samples and 1 marginal
win and 2 marginal losses in the Overlap-subset.

• The quality of the output on the Overlap and Non-Overlap set appear similar despite the
large difference in BLEU and PARENT score. This suggests that both models generalize
reasonably well to unseen tables. The large difference in quantitative evaluation metrics
appears to be mostly due to challenges in automatic evaluation.

Model Overlap Non-Overlap
H B P H B P

Lattice (Baseline) 1.7 59.2 69.1 1.6 30.2 43.7
Additional Positional Info w/o Structural Attn 1.7 65.8 73.0 1.7 38.5 53.6

Table 5: Human evaluation of a sample of model outputs (H: human rating, B: BLEU, P: PARENT).
We sampled 10 examples in the Overlap set and 10 examples in the Non-overlap set. The human
ratings are 0-3 (0: mostly incorrect, 1: somewhat correct, 2: mostly correct). Note all of the actual
human rating values are 1 or 2.

6.2 Analysis of Wins and Losses Patterns

We observed a few win and loss patterns for the Additional Positional Info w/o Structural Attention
model versus the baseline Lattice model.

1. [Win Pattern] Given an input table with multiple highlighted columns, the Additional
Positional Info w/o Structural Attention model seem to capture information from more
columns than the baseline Lattice model. See Figure 4 for an example.

2. [Loss Pattern] Given an input table with multiple highlighted rows, the Additional Positional
Info w/o Structural Attention model seems to miss the information on some rows that is
captured by the baseline Lattice model. See Figure 5 for an example.
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Both the wins and losses may be caused by the Additional Positional Info w/o Structural Attention
model’s relative position encoding mapping query and key tokens being in the same row versus same
column to different buckets (N-3 and N-2 respectively) while the baseline Lattice model map both
situations to the same bucket (N-1).

Figure 4: Win Example: Multiple Highlighted Columns

Figure 5: Loss Example: Multiple Highlighted Rows

6.3 Analysis of Automatic Evaluation Issues

We observed a few issues with the automatic evaluation metrics:

1. Reference Phrasing: The reference outputs often do not cover the different ways to express
the information in the table. As a result the BLEU score may penalize a candidate that is
valid but phrased differently than the reference sentences. The PARENT score is generally
better but still affected by reference sentence phrasing. See Figure 6 for example.

2. Outside Info: The reference sentences sometimes use information outside of the table
metadata and highlighted cells. This can significantly penalize valid candidates in both
BLEU score and PARENT score. See Figure 7 for example.

Figure 6: Automatic Evaluation Issues Example for Reference Phrasing

8



Figure 7: Automatic Evaluation Issues Example for Outside Info

7 Conclusion

Our main findings are:

1. Encoding additional positional information results in similar or slightly better table-to-text
generation quality than the baseline Lattice model.

2. Using the original Full Relative Position Encoding results in significantly worse table-to-
text generation quality than the baseline Lattice model. This may be due to adding new
embedding vectors to the model that is not pre-trained.

3. With additional position information, Structural Attention is no longer needed to achieve the
Lattice model’s SoTA results.

The main limitations and areas for future work are:

1. Explore different initialization strategies that might improve Full Relative Position Encoding.
2. Qualitatively analyze a larger sample to identify common win and loss patterns. Develop

and implement strategies for addressing the loss patterns.
3. Evaluate the models on additional benchmarks.
4. Hyperparamter tuning.
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A Appendix - Model Training Hyperparameters

We use the same model training hyperparameters as Wang et al. (2022) for all of the models studied
in this project:

• Model architecture and pre-trained weights: T5-small
• Learning rate: 2e-4
• Max number of steps: 150,000 (8 examples per batch)
• Max input sequence length: 512
• Max target sequence length: 128
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