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Abstract

In this project, we aim to fine-tune the minBERT model to simultaneously per-
form well on sentiment analysis, paraphrase detection, and semantic textual sim-
ilarity (STS) prediction tasks. First, we use pre-trained weights loaded into our
minBERT implementation and train only for the sentiment task to obtain base-
line performance metrics for all three downstream tasks. Second, we train for all
three tasks at once, using multi-task finetuning and gradient surgery to finetune
our embeddings. We take an approach inspired by Sentence-BERT (SBERT) to
generate embeddings that can be compared via cosine similarity for the STS task,
addressing the overhead of computing pairwise similarities with BERT. Overall,
our finetuned embeddings outperform our baseline on two out of the three tasks.
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2 Introduction

In this project, we are interested in exploring how to finetune sentence embeddings from BERT to
simultaneously perform well across three downstream tasks: sentiment classification, paraphrase de-
tection, and evaluating semantic textual similarity. For STS, the traditional BERT’s state-of-the-art
performance entails a massive computational burden, since it requires that both sentences are fed
into the network. For instance, if we have a collection of n = 10, 000 sentences, then inferring each
of the 49, 995, 000 pairwise similarities to identify the most semantically-similar pair takes over 65
hours on a modern GPU. Thus, traditional BERT remains ill-suited to large-scale semantic search
tasks, such as finding the most similar existing query to a new query on Quora, as well as unsu-
pervised clustering. Reimers and Gurevych introduced Sentence-BERT, an approach to generating
sentence embeddings using siamese BERT-networks that reduces the compute time for identifying
the most similar sentence pair from over 65 hours to just 5 seconds with SBERT, while maintaining
BERT’s accuracy (Reimers and Gurevych, 2019). For our project, we aimed to implement a similar
siamese network to generate SBERT embeddings that can be compared via cosine similarity and
achieve better performance on the STS prediction task. In addition, we explored whether multi-task
finetuning and gradient surgery could help bolster our model’s performance on sentiment classifica-
tion, paraphrase detection, and STS all at once. After implementing our baseline minBERT model
and finetuning the embeddings for all three tasks, we found that multi-task finetuning with or with-
out gradient surgery, coupled with the SBERT siamese network approach for evaluating STS via
cosine similarity, yielded embeddings that perform fairly well across all three downstream tasks.
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3 Related Work

Reimers and Gurevych introduced a siamese network structure to learn Sentence-BERT embeddings
that can be optimally and efficiently compared via cosine similarity for the STS task (Reimers and
Gurevych, 2019). This structure feeds in two sentences into two identically-configured BERT sub-
networks, whose parameters are tied such that any updates are reflected in both subnetworks. Thus,
the model can learn embeddings that place semantically-similar sentences closer together.

In addition to Sentence-BERT, several sentence embedding approaches have been proposed in re-
cent years, including InferSent, Universal Sentence Encoder (USE), Quick-Thoughts, USE-QA and
Whiteningbert. InferSent (Conneau et al., 2017) uses a bi-directional LSTM to encode sentences
into fixed-length vectors, while USE (Cer et al., 2018) employs a deep averaging network (DAN)
for encoding. Quick-Thoughts (Logeswaran and Lee, 2018) is based on the skip-thoughts model
and uses a uni-directional LSTM to encode sentences into fixed-length vectors. Finally, USE-QA
(Guo et al., 2021) is a question-answering model that uses the Universal Sentence Encoder to en-
code questions and answers into fixed-length vectors and has been shown to achieve state-of-the-art
results on several benchmark datasets. Whiteningbert (Huang et al., 2021) is a preprocessing tech-
nique for BERT-based models that aims to enhance the model’s performance while reducing its
computational complexity. The technique is based on a mathematical operation called whitening,
which transforms the data in a way that makes it easier for the model to learn.

Choi et al. (2021) highlights the potential of using modified versions of BERT, such as Sentence-
ALBERT (SALBERT) and SBERT, in improving sentence representation for various NLP tasks. In a
more recent work, Seo et al. (2022) introduced Token Attention Sentence-BERT, which incorporates
token-level attention mechanisms, which allow the model to assign different weights to each token
in a sentence based on its importance.

Out of all these methodologies, our work chooses to replicate the SBERT architecture since it is
most relevant for the STS prediction task. Our work thus serves as a useful next step in evaluating
how SBERT, in combination with other multi-task prediction model architectures, might perform on
STS as well as other downstream tasks, namely sentiment classification and paraphrase detection.

4 Approach

Figure 1: Diagram of model
architecture for the sentiment
classification subtask head

After implementing our minBERT model and AdamW optimizer
(refer to project handout for details), we used this as a baseline
model to perform sentiment classification. For this task, we ob-
tained the pooled representation of the final BERT embedding out-
put, namely the CLS token hidden state. Then, we projected that em-
bedding using a linear layer to generate logits for each of the five
possible sentiment labels (Figure 1). We also developed baseline
versions of the paraphrase detection and semantic textual similarity
classifier heads. In particular, for both heads, we applied dropout
to the pooled BERT embeddings for both input sentences, applied
a linear layer to project both of them to a single dimension, and
computed the cosine similarity, producing a logit in range [−1, 1].

For our extensions to the baseline minBERT model, we experi-
mented with two different architectures for the paraphrase detection
subtask (Figure 2). First, we applied dropout to the pooled BERT
embeddings of both sentences and concatenated the results. We
then applied a linear layer to down-project the combined embed-
ding to a single dimension, generating a single logit. This architec-
ture was paired with a binary cross-entropy (BCE) loss function, where for input probability xn and
target label yn, ℓn = (yn · log xn + (1− yn) · log(1− xn)) . To be compatible with BCE loss, we
normalized the logit to the range [0, 1] via the sigmoid function. As a second approach, we applied
dropout to the pooled BERT embeddings, and then a linear layer that preserved the embedding
dimensions. This layer was included primarily to provide the model with additional learnable param-
eters. Finally, we computed the cosine similarity between the resulting pair of embeddings, again
normalizing the logit to [0, 1] for using the BCE loss function.
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Figure 2: Two alternative architectures for the paraphrase detection subtask head

Figure 3: Two alternative architectures for the STS prediction subtask head

We similarly experimented with two model architectures for the STS prediction head (Figure 3).
In the first variant, we took inspiration from the SBERT siamese network approach: we applied
a linear layer to both sentences’ pooled embeddings, preserving their dimensions, and then com-
puted cosine similarity, generating a logit in the range [−1, 1]. Our second architecture was identical,
except that we applied dropout prior to the linear layer on both embeddings. By comparing these
two alternatives, we wanted to gauge whether dropout would help the embeddings better generalize
to unseen examples for the STS prediction subtask. For both architectures, we used a mean squared
error (MSE) loss function, which measures the element-wise MSE for an input-target pair (xn, yn):
ℓn = (xn − yn)

2. To be consistent with this loss, we rescaled the targets to be in the [−1, 1] range.

In the training process, we experimented with multi-task finetuning, where the total loss is computed
as the sum of the subtask losses (Bi et al., 2022): Ltotal = Lsent + Lpara + Lsts. In addition,
we applied gradient surgery, which detects if gradient directions of different subtasks conflict, and
projects the gradient of the i-th task gi onto the normal plane of a conflicting task’s gradient gj:

gi = gi −
gi · gj

||gj||2
· gj

We incorporated this technique so that the learned embeddings would not be biased towards minimiz-
ing loss on one task at the expense of the other two subtasks, due to diverging gradients. We applied
the PyTorch pcgrad implementation to our AdamW optimizer (Yu et al., 2020; Tseng, 2020).

5 Experiments

5.1 Data

For the sentiment analysis classification task, we used the SST dataset1, containing 11, 855 sen-
tences from movie reviews, annotated with one of five sentiment labels: 0 (negative), 1 (somewhat
negative), 2 (neutral), 3 (somewhat positive), or 4 (positive). We also used the CFIMDB dataset
of 2434 highly-polar movie reviews, labeled as negative or positive. For the paraphrase detection

1https://nlp.stanford.edu/sentiment/treebank.html
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task, we used the Quora dataset2, containing 400, 000 question pairs labeled by 0 or 1, indicating
whether they are paraphrases of each other. For the STS prediction task, we used the SemEval STS
Benchmark dataset3, containing 8628 sentence pairs labeled by degree of similarity from 0 to 5.

5.2 Evaluation method

For the sentiment classification and paraphrase detection tasks, we evaluated the accuracy of our
predicted labels against the gold labels on each of the train/dev/test datasets. For STS performance,
we measured the Pearson correlation coefficient between the predicted cosine similarity values and
the actual similarity labels (rescaled from [0, 5] to [−1, 1] to align with predicted cosine similarities).

5.3 Experimental details

We first used our minBERT model’s pooled embeddings to perform sentiment classification. We
ran the classifier in pretrain mode (LR = 1e-3) and finetune mode (LR = 1e-5) each for 10 epochs.
In pretrain mode, the classifier loads in the pre-trained BERT weights and only updates parameters
in these last two additional layers. In finetune mode, the classifier updates BERT’s parameters in
addition to these added layers. We also ran the multi-task classifier for 10 epochs in pretrain and
finetune mode, including just SST data in the training loop with a batch size of 64. We evaluated all
three tasks using the baseline paraphrase and STS heads, obtaining baseline accuracies for all tasks.

We then conducted several experiments to evaluate the impact of various extensions on the model’s
performance on all three downstream tasks. In Experiment 1, we performed the multi-task finetuning
with gradient surgery, BCE loss for the paraphrase detection task, MSE loss for the STS task. In
Experiment 2, we followed the same routine, but without gradient surgery. In Experiment 3, we used
the same routine as Experiment 1, but tried the alternative architecture for the paraphrase detection
head, which performs cosine similarity instead of concatenating the sentence embeddings. Finally,
for Experiment 4, we used the same routine as Experiment 1, but with the alternative architecture
for the STS prediction head, which includes an additional dropout layer before the linear layer.

For our training loop, we utilized a round-robin approach: on every epoch, we trained on consecutive
batches of the SST, Quora, and SemEval datsets. Since the Quora datset is significantly larger than
the other two datasets, we first tried iterating through each of the datasets just once over. With this
method, we performed gradient surgery with the available subtasks (whose datasets hadn’t yet run
out) at that given iteration: either all three, just sentiment and paraphrase, or just paraphrase. We
also explored repeatedly iterating through the SST and SemEval datasets until we completed one
full pass over the Quora dataset. In this case, we always applied gradient surgery to all three tasks.

For all experiments, we trained for 15 epochs in finetune mode (LR = 1e-5), with a batch size of 32
across all three datasets. Therefore, we did not need to re-weight any of the multi-task loss terms.

5.4 Results

5.4.1 Baseline minBERT Implementation Results

Dataset Pretrain Finetune
SST 0.390 0.523
CFIMDB 0.780 0.976

Table 1: Sentiment classification dev accuracies

For the SST and CFIMDB datasets, the sentiment classifier performed better in finetune mode com-
pared to pretrain mode. This result was expected, as finetune mode allows for gradient updates to be
pushed back to BERT’s parameters themselves. When trained only on SST data and evaluated using
the baseline paraphrase and SST heads, the multitask classifier achieved high dev performance on
the sentiment task, but lower performance for the other two tasks. These results were to be expected,

2https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
3http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark
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Task Pretrain Finetune
Sentiment Classification 0.401 0.534
Paraphrase Detection 0.376 0.392
STS Evaluation 0.019 0.312

Table 2: Baseline multi-task dev performance

since we didn’t yet train for these downstream tasks. Once again, we observed that finetune mode
yielded better performing embeddings. Thus, for our extensions, we only trained in finetune mode.

5.4.2 Model Extension Experiment Results

Task Exp 1 Exp 2 Exp 3 Exp 4
Sentiment Classification 1.000 1.000 0.998 1.000
Paraphrase Detection 0.990 0.991 0.969 0.988
STS Evaluation 0.991 0.988 0.990 0.976

Table 3: Multi-task finetuning train performance

Task Exp 1 Exp 2 Exp 3 Exp 4
Sentiment Classification 0.490 0.492 0.489 0.490
Paraphrase Detection 0.777 0.772 0.443 0.770
STS Evaluation 0.592 0.584 0.590 0.460

Table 4: Multi-task finetuning dev performance

Task Exp 1
Sentiment Classification 0.508
Paraphrase Detection 0.785
STS Evaluation 0.569

Table 5: Multi-task finetuning test performance (best model only)

These results were obtained from repeatedly iterating through the SST and SemEval datasets until we
completed one full pass over the Quora dataset on each epoch. We didn’t observe any performance
changes when we used the other training approach, where we completed just one full pass of each
dataset. The repeated iteration approach allowed for faster convergence, but the training time per
epoch was considerably longer (on Colab GPU, 40+ minutes vs. 15 minutes with only one full pass).

After training the four model configurations outlined in Section 5.3 in finetune mode, we found that
the model in Experiment 1 (multi-task finetuning with gradient surgery) performed the best overall.
This model exceeded the baseline performance for both paraphrase detection (0.777 accuracy) and
STS prediction (0.592 correlation) on the respective dev datasets. The accuracy for sentiment clas-
sification (0.490) was slightly lower than our baseline dev accuracy (0.534). However, this minor
decline is reasonable, as the baseline results were obtained after just training on the SST dataset.
After training on all three datasets, the learned sentence embeddings might have been adjusted so
as to perform slightly worse on the sentiment task, but to minimize the multi-task loss holistically.
Overall, these accuracies were generally aligned with our expectations for multi-task finetuning.

We observed a very minimal difference between the performance in Experiment 1 and Experiment
2, where we omitted gradient surgery. This was surprising, as we anticipated that gradient surgery
would resolve any conflicting gradients during each update, thus providing a nontrivial improvement
over standard multi-task finetuning. One potential reason for this is that gradient surgery was not able
to resolve three conflicting gradients at once. Interestingly though, we did not observe a difference
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in results when we applied it to just 2 out of 3 tasks. This suggests that regardless of the number of
tasks involved, gradient surgery might not have been able to meaningfully resolve these conflicts.

For Experiment 3, where we used the alternative paraphrase head architecture (with cosine similarity
instead of concatenation), we observed a significant decline in the paraphrase detection accuracy
(0.443 dev) compared to the best performance from Experiment 1 (0.777 dev). This suggests that
applying linear layers to both embeddings independently (like in our STS prediction head) is
less suitable for the paraphrase task than applying a single linear down-projection layer to the
concatenated embeddings. This might be because the paraphrase detection task is much simpler
than STS prediction: it’s a binary classification task, whereas the STS categories are more graded.

For Experiment 4, where we inserted a dropout layer before the linear layer for both embeddings
in our STS prediction head, we observed a slight decline in STS correlation (0.460 dev) compared
to the best result from Experiment 1 (0.592 dev). The final train correlation was also slightly lower
(0.976) compared to Experiment 1 (0.991). This result was unexpected, as we thought that Dropout
would help our embeddings generalize and achieve higher dev set performance. However, this might
have been because 15 epochs wasn’t enough time for the network to truly converge with Dropout.
Dropout usually leads to poorer performance in early training, but better loss after convergence.

Since it had the best average performance for all three tasks, we submitted our Experiment 1 model
to the test leaderboard and achieved comparable performance to the dev scores. The sentiment and
paraphrase test scores were slightly higher, and the STS test score was slightly lower than the dev.

6 Analysis

Figure 4: raw and normalized confusion matrix for sentiment classification (SST dev; Exp 1 model)

Figure 5: raw and normalized confusion matrix for paraphrase detection (Quora dev; Exp 1 model)

In Figure 4, we see common error patterns of our model on the sentiment classification task. In
particular, our current model frequently misclassifies nearby labels. For instance, it has trouble dis-
tinguishing “negative” (label 0) from “somewhat negative” (label 1) examples in the dev dataset.
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Over 30% of true “negative” examples are predicted as “somewhat negative”, and over 20% of true
“somewhat negative” examples are predicted as “negative”. There is a similar pattern for “positive”
(label 4) vs. “somewhat positive” (label 3) examples. For true “positive” examples, the model pre-
dicts a label of “somewhat positive” over 40% of the time. Additionally, for true “neutral” examples
(label 2), the model frequently misclassifies them as “somewhat positive” or “somewhat negative”.
These errors show that the SST dataset and current training routine might have been insufficient to
learn all the fine-grained distinctions among these classes and generalize beyond the training set.

In Figure 5, we see common error patterns for the paraphrase detection task. Overall, the false
positive rate (20%) and false negative rate (27%) are comparable. The larger false negative rate
might be due to an imbalance of examples in the Quora dev dataset: as seen in the raw confusion
matrix, there are many more true negatives (non-paraphrases) than there are positives (paraphrases).

7 Conclusion

In this project, we have explored several techniques to enable our minBERT embeddings to si-
multaneously perform well on three downstream sentence classification or regression tasks: sen-
timent classification, paraphrase detection, and STS evaluation. With multi-task finetuning, gradi-
ent surgery, and the SBERT siamese network and cosine similarity methodology, we were able to
achieve higher performance than our baselines on the paraphrase detection and STS tasks. Our senti-
ment accuracy, while slightly lower, remained comparable to our baseline model’s, which was only
trained for the sentiment task. We found that the inclusion of gradient surgery didn’t impact perfor-
mance, and adding additional complexity to the subtask prediction head architectures didn’t always
yield performance improvements, especially if the subtask was quite simple. Overall, our learned
embeddings are able to perform fairly well across all three tasks when evaluated on the dev and test
datasets. The primary limitation of our current model is the STS correlation. For future steps to
augment the performance on this subtask, we might consider additional pretraining with STS data
and a Masked Language Model learning objective. Additionally, we might explore whether a triplet
loss function or multiple-negatives ranking loss function yields better results than just MSE loss.
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