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Abstract

Cross-modal retrieval is an important area of research. In particular, the current
project focuses on audio clip retrieval using text inquiry. The solution investigated
here is based on cross modal metric learning, where two separate encoders for audio
and text are learned concurrently by presenting positive and negative examples.
The project is focused on investigation of the resulting audio and text embedding
spaces. Results indicate that dimension of the embedding spaces may have a
significant effect on performance and that higher dimension is not necessarily
better. Investigation of uniformity of the text and the audio embeddings clearly
shows that the distributions are not uniform. A method to incorporate a non-
uniformity penalty into the training pipeline has been proposed, but no benefit has
been observed to the performance in the cross-modal retrieval task.

1 Key Information to include

External collaborators - none, External mentor - none, Sharing project - N/A.

2 Introduction

Cross-modal retrieval tasks gained extensive attention in recent years and have made great progress
with the advancement of deep learning technologies [1, 2]. Audio-text retrieval is the task of retrieving
a desired audio clip or caption from a database of candidates given a query in the other modality. This
task can be useful in applications such as clip search, audio book production and movies. Audio-text
retrieval is a challenging task as it requires to learn a robust feature representations for both the
acoustic and textual modalities. Additionally, the task requires to capture the fine-grained interaction
between the learned acoustic and textual features and aligning them in a shared embedding space.

Early works for audio-text retrieval focused on tag-based audio retrieval, where the queries were
words as opposed to full sentences [3, 4]. More recent work [5, 6] started exploring free-form
language-based audio retrieval, which is also the focus of the current project. See Section 3 for a
more detailed discussion.

Audio-text retrieval can be implemented using two independent networks, one for audio encoder
and the second for the text encoder. The goal of these two networks is to encode the audio and text
into a shared embedding space, where positive pair of audio-text will be closer than negative pairs.
The training objective of such model is consistent with that of metric learning, which has been a
popular choice for the optimization of the cross-modal retrieval models [7]. Recently, Mei et al.[6]
studied different ways to learn the audio and text cross-modal embedding space by comparing various
training loss functions. The comparison was carried out by directly evaluating the performance on
the downstream audio clip retrieval task. However, little attempt is made to gain a deeper insight
into the learned cross-modal spaces and their properties. Having such a deeper understanding can
lead to an additional perspective on the limitations of the current methods and potentially suggest
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a better approach. In this project we aimed to address this gap by analyze the learned cross-modal
representation. In particular, we investigated the two following aspects:

1. Dimension of the embedding spaces and its relation to the performance in the downstream
task of cross-modal retrieval.

2. Uniformity of the resulting text and audio embedding distributions. Uniformity may shed
light into the extent to which all of the available space is being utilized and how independent
the specific features being learned. It is hypothesized that enforcing uniformity during
training may be beneficial for various aspects of the final solution including performance in
the downstream or convergence during training.

The current report first outlines in more detail the approach to the cross-modal retrieval task including
the pre-trained models, data, and metrics. Then, we dive deeper into the two experiments carried
out as part of this project. In the first experiment we familiarize ourselves with the training pipeline
proposed in [6] and learn how to modify it by investigating the effect of the embedding space
dimension on its performance. In the second experiment, we carry out an analysis of uniformity of
the resulting text and audio embedding spaces and propose a modification of the training pipeline
to incorporate a non-uniformity penalty. Both experimental sections include details relevant to the
specific experiment, results, and a discussion. A brief conclusion and future work completes the
report.

3 Related Work

The problem of cross-modal audio-text retrieval was first tackled at scale by Chechik et al. [3]. In
this paper a combined scoring function has been exploited for the retrieval of an audio clip from
its associated text label. The main limitation of this work is that the query must be exactly as it
appears in the index. A more flexible approach was proposed by Slaney [8], where new sounds
could be associated with existing labels. However, a hierarchical language model was used, which,
according to the authors, limits the scalability of the model. A more recent work [4] suggested to find
a lexico-acoustic spaces in a data-driven way, which is more robust and scalable. All of the work
mentioned so far is based on words as queries instead of a free-form language, which is more natural
for the downstream audio-text retrieval task. Lately, Koepke et al. [5] established the first benchmark
for free-form language-based audio retrieval. In this paper, pre-trained models and common ideas
from video retrieval have been adopted to address the scarcity of the audio-text data. Finally, Mei
et al.[6] presented a full free-form language-based audio-text retrieval model and studied various
learning metrics for the training of the model. It has been concluded that the learning metric have a
significant effect on the downstream task performance, where the NT-Xent loss [9] (detailed below)
outperformed the triplet-based losses [10] and showed stable performances with respect to various
training settings and datasets.

4 Approach

The audio and the text encoders proposed in [6] were used. The text encoder comprises the BERT
model [11] and an additional multilayer perceptron (MLP). The MLP consists of two linear layers
with a ReLU activation in between. A “<CLS>” token is appended at the start of each sentence. For
the audio encoder, a PANNs (Pre-trained audio neural networks) model has been employed [12]
(based on the ResNet-38), which is a pre-trained model on audio tagging task that showed to provide
a robust audio representation and high performance on various audio related tasks. A max pooling
layer and an MLP similar to the text encoder was added to the network. Log mel-spectrograms are
used as the audio features, which are extracted using a 1024-points Hanning window with 320-points
hop size and 64 mel bins. Figure 1 shows the system diagram.

The output of the audio and text encoders are compared using a cosine similarity metric:

sij =
f(ai) · g(tj)

||f(ai)||2||g(tj)||2
, (1)

where ai and ti are the audio and text pair, such that (ai, ti) is a positive pair while (ai, tj,j ̸=i) is
a negative pair. f and g are the audio and text encoders, respectively. Then, a loss can be defined
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Figure 1: Diagram of the training system, where the goal is to find the optimal shared embedding
space

such that the similarity score of positive pairs will be higher than that of negative pairs. The NT-Xent
loss [9] has been chosen, as it perform the best in [6]. This is a contrastive loss based on softmax:

L = − 1

B

( B∑
i=1

log
exp(sii/τ)∑B
j=1 exp(sij/τ)

+

B∑
i=1

log
exp(sii/τ)∑B
j=1 exp(sji/τ)

)
, (2)

where B is the batch size and τ is a temperature hyper-parameter.

4.1 Data

We used the AudioCaps dataset [13]. The dataset contains 50k audio clips of 10 sec length with
paired human-annotated text captions. All audio clips are trimmed to the same length of 10 seconds.
The dataset was splitted to 49,274 audio clips for training, 494 for validation and 957 for test.

4.2 Evaluation

Recall at rank k (R@k) is used as the evaluation metric, which is the popular cross-modal retrieval
evaluation protocol. R@k measures the percentage of targets retrieved within the top k ranked results,
thus the higher the score, the better the performance. We report R@1, R@5, and R@10.

5 Experiment #1 - embedding space dimension

The goal of this experiment was to evaluate the effect of the shared embedding space dimension on the
performance of the audio-text retrieval task. Two complementary sub-experiments were conducted in
this experiment:

5.1 Experiment 1.a

All the models were trained for 50 epochs using Adam optimizer. The learning rate is set to 10−4

and is decayed to 1/10 of itself every 20 epochs. The batch size is set to 64. The temperature
hyper-parameter τ is set to 0.07. The best model is selected based on the sum of recalls on the
validation set. All experiments are carried out on an AWS server. Figure 2 shows an example of
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Figure 2: Example of the loss convergence as a function of epoch.

the loss convergence as a function of epoch. It can be seen that the model is able to converge in 50
epochs. A significant increase in convergence rate after 20 epoch is probably due to the learning rate
update by a factor of 1/10. The same update at epoch 40 does not seem to further benefit the training.

Exp. 1.a aimed to evaluate the effect of the embedding space dimension. To save computation time,
freezed pre-trained encoding models were used (fine-tune the models takes 30min per epoch, i.e.
24hr for training, while for freezed models third of time is needed). The size of the shared embedding
space has been varied between 128, 256, 512, 1024 and 2048, while the original paper reported only
1024. The learned acoustic semantic embeddings were normalized.

5.2 Experiment 1.b

The aim of this sub-experiment was to complement Exp. 1.a by investigating performance with
fine-tuning. This was carried out only for a single condition to save computation time, while allowing
for comparison to the current state-of-the-art results published in [6]. Similar parameters to Exp 1.a
were used, with the exception of the batch size of 32 to match the best results in the original paper.

5.3 Results and discussion

The results of Exp. 1.a are presented in Tab. 1. The table shows the R@k for the various embeddings
sizes, for both text-to-audio and audio-to-text retrieval tasks. It can be seen that using embedding
vector of 512 is consistently better (beside R@10 for Audio-to-Text). This result is surprising since
the original paper used the 1024 size.

For a better comparison with the original paper, Tab. 2 shows the results of Exp. 1.b in comparison to
the original paper results with embedding size 1024. It can be seen that our suggested model (with
size of 512) perform better for all R@k.

These results clearly indicate two important findings: a) that embedding dimension is an important
hyper parameter to be chose carefully and b) larger embedding dimension is not necessarily better.

Table 1: Cross-modal retrieval performance as a function of embedding space dimension using
pre-trained and frozen encoders.

Embeddings Size Text-to-Audio Audio-to-Text
R@1 R@5 R@10 R@1 R@5 R@10

128 16.1 45.9 63.2 17.0 49.4 64.5
256 16.7 46.5 62.9 17.0 48.9 64.8
512 17.2 47.9 64.2 20.9 50.5 67.2

1024 16.6 46.5 62.6 17.9 49.6 68.3
2048 16.8 46.5 63.7 19.8 49.9 67.2
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Table 2: Cross-modal retrieval performance comparing as a function of embedding space dimension
using pre-trained and fine-tuned encoders.

Embeddings Size Text-to-Audio Audio-to-Text
R@1 R@5 R@10 R@1 R@5 R@10

512 34.4 69.8 82.9 41.9 74.0 84.2
1024 (From [6]) 33.9 69.7 82.6 39.4 72.0 83.9

6 Experiment #2 - embedding space uniformity

6.1 Uniformity analysis

In order to analyze the uniformity of the resulting text and audio embedding spaces, two alternative
metric have been suggested: point to point uniformity and voxel-based uniformity. In particular, point
to point uniformity has been adopted from [14]. Given a set of N points X = {xi}Ni , point-to-point
uniformity, σ, can be computed in two steps. First, for each point in the set obtain the distance to its
closest neighbour:

λi = min
j ̸=i

∥xi − xj∥. (3)

Second, compute the uniformity as the standard deviation of the distances normalized by their mean:

σ =
1

λ̄

(
1

N

∑
i

(λi − λ̄)2

)0.5

, (4)

where λ̄ = 1
N

∑
i

λi. The lower the value of this metric, the more uniform the set X is believed to be.

In the extreme case where all λi are equal, the metric attains its lowest value σ = 1.

The second metric, voxel-based uniformity, has been proposed as part of this project. It is defined by
first dividing the volume of interest, V , into a number of equal sub-volumes, {Vi}Ii=1 called voxels,
such that ∪iVi = V . Then, a histogram {hi}Ii=1 is computed by counting the number of points in X
that belong to each voxel. Finally, the voxel-based uniformity h is computed as the entropy of the
normalized histogram:

h = entropy (softmax({hi}i)) (5)

Note that, as opposed to the point to point uniformity, the voxel-based uniformity is expected to be
larger for more uniform set attaining its maximum value of log I in the extreme case where all hi are
equal.

In this project, the uniformity was computed using normalized embeddings. Note that applying the
voxel-based uniformity to a high-dimensional space can be computationally demanding. To limit
the amount of computations needed to calculate h, we have divided the space into only two parts,
positive and negative, along each dimension, and randomly chose only 8 dimensions at a time. This
resulted in only 256 voxels. The calculation was repeated for a 100 times and averaged.

Uniformity of the text and audio embedding distributions has been analyzed using the above two
metrics. The analysis was carried out as a function of the embedding space dimension. We have
also measured the uniformity of a uniformly distributed set and of a clustered set to obtain a better
intuition of the two metric values. Example plots of the different distributions are presented in Fig. 3.
The corresponding uniformity values are summarised in Table 3.

From the example distributions in Fig. 3 and from the numbers in Table 3, it is evident the the
resulting embedding distributions are not quite uniform. Instead, they fall somewhere in between
the uniformly distributed set and the mixture of Gaussains set. Degree of non-uniformity seems to
vary depending on the specific metric. Another important observations is that the uniformity does not
seem to depend on the embedding space dimension.

6.2 Modified training pipeline

Inspired by this result above, it was proposed to incorporate uniformity into the loss function during
training to explore potential benefits of of doing so on various aspects of the solution.
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Figure 3: Example plots of the four different distributions. To produce these plots, the actual set
has been analyzed using PCA and only the first two principal components are plotted here. The
distributions are (a) text (caption) embeddings, (b) audio embeddings, (c) set drawn from a uniform
distribution, (d) set drawn from a mixture of 10 Gaussians with equal variance of 1/10 and uniformly
distributed random centroids.

Table 3: Uniformity analysis of the resulting text and audio embeddings along with a uniformly
distributed and a Gaussian mixture set as a function of the embedding space dimension. See text for a
definition of the uniformity metrics σ and h.

embd point to point uniformity σ voxel-based uniformity h
dimension text audio uniform Gaussians text audio uniform Gaussians

128 0.27 0.29 0.19 0.35 3.96 3.98 4.13 2.79
256 0.28 0.29 0.19 0.35 3.94 3.99 4.12 2.75
512 0.28 0.28 0.19 0.34 3.96 4.01 4.12 2.82

1024 0.28 0.27 0.19 0.35 3.98 4.00 4.13 2.83
2048 0.27 0.28 0.19 0.34 3.97 4.00 4.13 2.81

In order to be included into the training loss, the uniformity calculation has to be differentiable. To
that end we chose to work with voxel-based uniformity and used a pretrained fully connected network
to predict the voxel to which each embedding belons. Then, summing across the batch dimension
results in an estimated histogram, {hi}Ii=1, which is used to compute the batch uniformity. The
network architecture is shown in Fig. 4. In order to train the network, 100k examples of 8-dimensional
vectors were drawn from uniform distribution and assigned into one of the 256 voxels (see code
for additional details). The dataset has been split 90k|10k for training and validation, respectively.
The network was trained using Adam optimizer for 100 epochs and a small weight decay of 4e− 4,
which was shown to effectively prevent over-fitting. The resulting network has been tested using an
additional 10k dataset that has been held back resulting in 97.0% accuracy.

This voxel predicting network has been incorporated into the modified training pipeline shown in
Fig. 5. The pipeline allow to incorporate a non-uniformity penalty by subtracting the uniformity
value obtained for each batch. Uniformity of both, text and audio encoders contribute symmetrically
to the combined loss. The level to which the the uniformity affect the loss is controlled through
the significance parameter α, which is also symmetrically applied to the two modalities. In each
batch, 8 of the embeddings features are selected at random using uniform distribution, hence only
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Figure 4: Architecture of the fully-connected NN designed to predict to which out of the 256 voxels
each embedding belongs.

Figure 5: Modified training pipeline used to include uniformity into the loss function during training.
A non-uniformity penalty is added to the combined loss by subtracting uniformity of both text and
audio embedding batches symmetrically.

8 dimensions are updated with the uniformity gradients. It is believed that the randomization will
eventually lead to updating all of the embedding dimensions.

6.3 Results and discussion

The effect of the uniformity loss component on the downstream task performance has been in-
vestigated. The uniformity of the resulting embedding distributions and the cross-modal retrieval
performance, R@k, are summarized in Tab. 4. It can be seen that the cross-modal retrieval does not
seem to benefit from the non-uniformity penalty; on the contrary, a consistent trend of reduced R@k
values is obtained when increasing the uniformity significance parameter α. Additional investigation
with varying hyper parameters and potentially different ways of incorporating the non-uniformity
penalty might be needed to fully uncover the potential benefits.
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Table 4: Cross-modal retrieval performance and the embedding space uniformity as a function of the
significance parameter α.

α
Text-to-Audio Audio-to-Text Uniformity

R@1 R@5 R@10 R@1 R@5 R@10 Audio Text
0 34.4 69.8 82.9 41.9 74.0 84.2 4.02 3.98

0.10 32.3 68.3 82.1 37.8 72.1 83.6 3.99 3.97
0.33 31.6 66.4 80.0 37.8 70.4 82.1 3.97 3.95
1.00 26.6 63.3 78.4 30.6 62.5 80.6 4.00 3.95

7 Conclusion

This project presents a comprehensive analysis of the shared embedding space of the cross-modal
audio-text retrieval model. Investigation of both the dimensionality and uniformity of the embedding
space has been performed. It has been shown that the dimensionality of the shared embedding space
is an important parameter of the model, which should be carefully selected. In our experiments the
optimal embedding space size that outperforms state-of-the-art was 512 for both frozen and fine-tuned
pre-trained models. Voxel-based uniformity metric was proposed and incorporated into the training
pipeline. Initial investigation of its effect on the system performance are inconclusive. No benefit
has been observed so far to performance in the downstream task of cross-modal retrieval. Future
work may include additional experimentation with different ways to incorporate the non-uniformity
penalty and further hyper parameter tuning.
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