
Beyond BERT: Deepening Natural Language
Understanding with Multi-Task Learning and Advanced

Embedding Techniques
Stanford CS224N Default Project

Mentor: Hans Hanley. No external collaborators. Not sharing project

Varun Kutirakulam
Department of Computer Science

Stanford University
vkutira@stanford.edu

Mohammed Majid
Department of Computer Science

Stanford University
mmajid98@stanford.edu

Matt Peng
Department of Computer Science

Stanford University
mapeng3@stanford.edu

Abstract

In this paper, we 1) implemented a minimal version of BERT (minBert) and evaluated its
performance on the sentiment analysis task and 2) fine-tuned minBert to simultaneously
perform better on sentiment analysis, paraphrase detection and semantic textual similarity
tasks. We combined the techniques of language model pre-training and multi-task
learning with strong influence from the Multi-Task Deep Neural Network (MT-DNN)
architecture Liu et al. (2019), and incorporated novel changes to task-specific training
processes. This included modifying the task-specific classification layers, using cosine
similarity to better perform paraphrase detection, and enhancing output embeddings of
minBert to improve the performance of the semantic textual similarity task. Our empirical
results indicate significant improvements beyond the baselines that we compared against,
proving that our approach holds potential key analysis for future works.

1 Introduction

Learning robust word embeddings is a critical part of building natural language processing (NLP) systems
that perform well on multiple NLP tasks. Two popular approaches to do this include language model
pre-training and multi-task learning.

Language model pre-training has been extremely effective in improving model performance on many NLP
tasks like natural language inference Bowman et al. (2015) and paraphrasing Dolan and Brockett (2005).
By pretraining on a large corpus of text data, models learn general-purpose representations of linguistic
features and patterns such as syntax, semantics, and pragmatics Raffel et al. (2020). One of the most
influential pre-trained language models is BERT Devlin et al. (2019).

Multi-Task (MT) learning, on the other hand, focuses on the idea that models trained for specific NLP
tasks may learn shared representations Crawshaw (2020). Hence, in applying MT learning to language
models, a model can be trained on all NLP tasks simultaneously rather than the traditional approach of
fine-tuning the model on each NLP task individually. This allows us to efficiently utilize the available data
while leveraging the regularization effect to alleviate over-fitting to a specific task, thereby learning shared
representations that are universal across multiple NLP tasks.

In this work, we implemented a baseline minimal BERT (minBert) model and modified it to adopt a Multi-
Task learning architecture and training procedure called Multi-Task Deep Neural Networks (MT-DNN)
Liu et al. (2019). This improved its performance on the three target tasks: sentiment analysis, paraphrase
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detection, and semantic textual similarity. Note that we consider the modified minBert as our second
baseline (MT-DNN (Base)). Additionally, we investigated novel changes that can enhance the model,
such as adding Pre-Layer Normalization (pre-norm) to self-attention, enhancing contextual embeddings
to extract task-specific representations, adding task-specific feedforward layers, and integrating cosine
similarity to improve paraphrase detection Reimers and Gurevych (2019a). Multiple optimizers were
also explored to improve the training procedure. Our empirical results as shown in Table 1 indicate
that among all approaches we tried, combining MT learning with additional task-specific feedforward
layers significantly improved the performance for all tasks. Also, enhancing contextual embeddings of
sentence pairs by concatenating the difference and Hadamard product of the output embeddings before
passing through the task-specific layers significantly improved our model performance on the semantic
textual similarity task. Finally, using the cosine similarity loss as the objective for paraphrase detection
significantly improved the model’s performance.

Tasks

Model Sentiment Analysis
(Accuracy)

Paraphrase Detection
(Accuracy)

Semantic Textual Analysis
(Pearson)

minBert 0.375 0.266 0.599
MT-DNN (Base) 0.408 0.751 0.308

Final model 0.503 0.835 0.846

Table 1: Performance scores for the minBERT, MT-DNN (Base) implementation, and our improved Final
model on the three tasks with dev datasets. Our Final model performs uniformly better than the two
baselines.

Figure 1: Overview of the MT-DNN (Base) model

2 Related Work

Multi-Task Learning:

Multi-task learning typically concerns training a single model to perform well on a variety of tasks. While
single-task training of BERT involves fine-tuning the model on a per-task basis, a common technique in
multi-task learning is to add the losses for each of the unique tasks in the current batch of training data Bi
et al. (2022). For example, calculating the loss for gradient updates, assuming n total tasks, could look like:

Ltotal = Ltask 1 + Ltask 2 + ...+ Ltask n (1)

2



An important thing to note is that, depending on the multi-task learning process, gradient directions could
be vastly different and affect the overall training process. Thus it is important to consider methods to avoid
conflicts of gradients among the training tasks to ensure a smoother learning process.

Multi-Task Deep Neural Network (MT-DNN):

MT-DNN Liu et al. (2019) shown in Figure 1 has the strongest influence on our work as our training
process was built on top of the MT-DNN training algorithm. The MT-DNN algorithm from the original
paper combines the training of four NLP tasks: Single-Sentence Classification, Text Similarity, Pairwise
Text Classification, and Relevance Ranking. The architecture of the MT-DNN is composed of two parts.
The lower layers are shared and learn generic text encodings that are fine-tuned to support all NLP tasks.
Task-specific layers are added on top that generates task-specific representations, followed by the operations
necessary for classification, similarity scoring, or relevance ranking. During training, the task-specific
datasets are shuffled, and the model is updated according to the task-specific objective. This approximately
optimizes the sum of all multi-task objectives. One limitation of the work was that it did not provide
significant attention to improving the embeddings to amplify task-specific features that were returned from
the shared layers of the MT-DNN model before passing them through the classification layers. While we
followed the training process of MT-DNN, we improved upon the model architecture and integrated other
novel NLP strategies to address the limitation noted and build a more performant extension of this work.

3 Approach

We modified the minBert that follows the MT-DNN model and further updated its architecture by adding
novel changes to improve its performance for the three NLP tasks. As shown in Figure 2, our model
consists of four key components. Starting from the bottom, our model contains 1) our baseline MT-DNN
implementation built on minBert with post-layer normalization, 2) the enhancement layer that updates
contextual embeddings to extract task-specific semantic knowledge, 3) the feedforward network layer
that learns task-specific representations to fine-tune the performance of the associated task, and 4) the
task-specific classification layers that predict the scores for given task inputs. In addition to the model
architecture, we identified optimizers and task-specific objective functions that efficiently train the model
to best perform the three NLP tasks.

Figure 2: Overview of our fully improved model. The components highlighted in red indicate the novel
differences between our model and MT-DNN.
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3.1 Baseline MT-DNN Model

For our baseline MT-DNN model, we followed the model architecture presented in Liu et al. (2019) and
used our minBert implementation to capture the shared representations. In addition, we implemented
individual classification layers to predict task-specific scores for given inputs. A key distinction between
our implementation and the original model is that the original model is based on BERT while ours is based
on our minBert implementation.

3.1.1 Pre-Layer Versus Post-Layer Normalization

Our first design decision for our model was whether to use pre or post-layer normalization for our minBERT
model. This choice determines where the layer normalization is applied with respect to the multi-head
attention and feedforward layers. Many works have noted stronger performance with pre-norm, finding
that it is more effective in capturing long-range dependencies and modeling complex linguistic structures
(Xiong et al. (2020), Gururangan et al. (2020)), which is why we explored the approach by implementing a
pre-norm transformer layer in our minBert implementation.

3.2 Embedding Enhancement

The shared layer (minBert) outputs contextual embeddings corresponding to the input sentence. Rather
than the traditional approach of using just the CLS token embeddings to perform tasks, we decided to take
the mean of all token embeddings to capture additional semantic knowledge of the input. In addition, for
sentence pairs, we create concatenated embeddings containing the original embeddings, the differences,
and the Hadamard product of the embeddings to feed into the task-specific feedforward layers. Consider
sentence embeddings u and v. We take the element-wise absolute difference |u − v|, the element-wise
product u ∗ v, and the original embeddings to create an embedding that contains u, v, |u− v|, and u ∗ v.

Figure 3: Process of creating our concatenated embeddings.

The difference embedding, |u− v|, can be useful in capturing dissimilarities in word order or negation. On
the other hand, element-wise product embedding, u ∗ v, can capture the similarity in meaning between the
two sentences. The combination of all the above embedding enhancements has previously been shown to
improve its ability to detect paraphrases and measure semantic similarity (Cer et al. (2018), Reimers and
Gurevych (2019a), Lan and Xu (2018)).

3.3 Task-Specific Feedforward Network

The original MT-DNN architecture uses a single linear transformation layer as a classifier for each NLP
task. We introduced a task-specific feedforward network with non-linear activation between the layers.
By doing this, our model is able to capture task-specific information, while still benefiting from the
shared representations learned by the embeddings. Empirically, we noticed a huge improvement in our
performance with this change and also note that prior works have also seen this result with this change
(Liu et al. (2017), Long and Wang (2015)).

3.4 Cosine-Similarity Loss

A technique we used to specifically improve the performance of the paraphrase detection task was to
implement and employ cosine-similarity loss Reimers and Gurevych (2019b). As opposed to concatenating
the output embeddings, we push the original embeddings for the sentence pairs u, and v through the
feedforward task-specific layers. Next, the cosine similarity score of the outputs is calculated, which acts
as the objective score that is maximized if the inputs are paraphrases and minimizes the score otherwise.
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3.5 Optimizer

In addition to the model architecture, we also investigated optimizer options such as AdamW, Yogi, and
Stochastic Gradient Descent (SGD) Loshchilov and Hutter (2019). The AdamW optimizer Kingma and Ba
(2017) is a strong candidate as it is an extension of SGD that uses adaptive learning rates for each parameter
and momentum to accelerate convergence. Additionally, it also supports an additional weight decay term
to help prevent overfitting. However, one of its drawbacks, when compared to SGD, is that AdamW can
be more sensitive to outliers and not generalize the model as well as SGD. We also experimented with
Yogi optimizer Zaheer et al. (2018) as it was shown to accelerate convergence. It does so by being an
additive adaptive method, as opposed to multiplicative, that uses momentum correction to help handle
noisy gradients. Yogi is able to change the learning rate in a more controlled fashion compared to AdamW
due to the fact that the velocity term is largely based on the square of the gradient as described in the
original paper Zaheer et al. (2018).

3.6 Training Procedure

With our model fully defined, we now discuss the training procedure for our model architecture. We first
load pre-trained BERT weights into the minBert model. Next, we follow the MT-DNN training procedure
and pack task-specific datasets into mini-batches. These batches are then grouped and shuffled. In each
epoch, a mini-batch bt of data is randomly selected and the model is updated by the task-specific objective
function. This approximately optimizes the sum of all the multi-task objectives following the common MT
learning framework. Pseudo-code for our training process can be found in Algorithm 1.

Algorithm 1 MT-DNN Training Process
1: Initialize model parameters θ randomly.
2: Load pre-training weights for the shared layers (i.e., the token embedding and minBERT layer).
3: Set the max number of epoch: maxepoch

4: Prepare the data for T tasks.
5: for t in 1, 2, ..., T do Pack the dataset t into mini-batch: Dt

6: Merge all the datasets: D = D1 ∪D2... ∪DT

7: Shuffle the mini-batches in D
8: for bt in D do
9: Compute loss: L(θ)

10: L(θ) = Eq. 2 //for sentiment analysis
11: L(θ) = Eq. 3 //for paraphrase detection and semantic textual similarity
12: Compute Gradient: ∇θ
13: Update model: θ = θ −∇θ

14: Finish

3.6.1 Task Specific Loss Functions

We selected our task-specific loss functions by choosing objectives that correspond directly with the NLP
task at hand. For sentiment analysis, we used cross-entropy loss,

LCE = −
∑
c

I(X, c) log(Pr(c|X)) (2)

where I(X, c) is the binary indicator if class label c is the correct classification for X and Pr(.) is the
output received from the classification layer.

For both paraphrase detection and semantic textual analysis, we used mean squared loss (MSE),

LMSE = (y − Sim(X1, X2))
2 (3)

where y is the annotated real-valued score for each sentence pair (X1, X2) and Sim(.) is the output
similarity score from the classification layer.
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4 Experiments

4.1 Data

We used the Stanford Sentiment Treebank (SST) Socher et al. (2013) and the CFIMDB dataset for the
sentiment analysis task. For the SST dataset, we trained on 8,544 phrases and evaluated 1,101 phrases from
the dev dataset. Each phrase has a label of negative, somewhat negative, neutral, somewhat positive, or
positive. From the CFIMDB dataset, we trained on 1,701 examples and evaluated 245 examples from the
dev dataset. We used the Quora dataset1 for the paraphrase detection task and trained on 141,506 examples
and evaluated 20,215 examples from the dev dataset. Each paraphrase pair is either classified as "Yes" or
"No". Lastly, we use SemEval STS dataset2 for the semantic textual analysis task and trained on 6,041
examples and evaluated 864 examples from the dev dataset. Each paraphrase pair has a degree of similarity
score on a scale from 5 (same meaning) to 0 (not at all related).

4.2 Evaluation Method

The evaluation method used for paraphrase detection and sentiment analysis was the accuracy score, while
the Pearson correlation coefficient was used to evaluate semantic textual similarity.

4.3 Experimental Details

The minBert model was first implemented and trained to perform three target tasks: sentiment analysis,
paraphrase detection, and semantic textual similarity. The model performance was evaluated using the
task-specific dev datasets mentioned above, and the results have been shared in Table 1. The minBert
model was modified to replicate the MT-DNN model, which acted as our second baseline. Performance of
our MT-DNN model was also evaluated for the three tasks using the same dev datasets, and results have
been shared in Table 1 as well.

Next, we ran ablation studies and experimented by adding the different components mentioned in our
Approach section on top of the MT-DNN baseline one at a time to determine the magnitude of improvement
in performance for each one of our components. We ran the experiments in Table 2 in sequential order
starting from the top. The experiments were designed such that the lower shared layers were first
experimented upon to finalize the backbone, followed by the task-specific layers that were modified to
improve task performance. Each row in Table 2 specifies an ablation exercise that was performed, where
the first model within each row is used as a baseline (Base). Following are the ablation exercises that were
carried out, with their results shared in Table 2.

• MT-DNN w/ Post-Layer Normalization (Base) vs w/ Pre-Layer Normalization
• Task-Specific Single-Layer feedforward Network (Base) vs 2-Layer feedforward Network
• Perform tasks based on CLS token embeddings (Base) vs Mean of all contextual embeddings
• No embedding Enhancements (Base) vs

Concatenated Embeddings (Concat) for both sentence pair tasks vs
Cosine Similarity + MSE Loss (Cosine) for both sentence pair tasks vs
Concat for Sem. Text Similarity task & Cosine for Paraphrase Detection task

• AdamW (Base) vs Yogi vs SGD optimizers

Once the model was finalized, it was trained on the training datasets mentioned above and evaluated to
determine its performance against the two baselines (minBert and MT-DNN (Base)). The results of the
experiment are shared in Table 1.

The hyper-parameters were the same across all experiments to maintain the consistency of the results. For
each experiment, the models were pre-trained for 10 epochs with a learning rate of 1e−3 and a dropout
probability of 0.3. The fine-tuning procedure was run for 10 epochs with a dropout probability of 0.3 as
well, but with a learning rate of 1e−5. The Final model was trained on an additional 10 epochs to achieve
the results shared in Table 1 and Table 3. The random seed was set to 11711 for all experiments.

1https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
2https://aclanthology.org/S131004.pdf
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4.4 Results

The results of our ablation experiments are provided in Table 2, which confirmed that following the
MT-DNN architecture significantly improved model performance when compared to minBert. In addition,
task-specific embedding enhancements and classification layers predictably provided the best performance
gains on top of the MT-DNN baseline. However, it was surprising that contrary to the literature review,
pre-layer normalization performed significantly worse than the baseline. Lastly, we observed that both
AdamW and Yogi optimizer Zaheer et al. (2018) had very similar performance.

Tasks
Model Sent. Analysis Para. Detect. Sem. Text Analysis % Improv

minBERT (Base) 0.375 0.266 0.599 0
MT-DNN + Post-norm 0.408 0.751 0.308 32.2

MT-DNN + Post-norm (Base) 0.408 0.751 0.308 0
MT-DNN + Pre-norm 0.352 0.744 0.204 -22.6

1-Layer FeedForward (Base) 0.408 0.751 0.308 0
2-Layer FeedForward 0.414 0.743 0.329 2.7

CLS-Token Embed (Base) 0.414 0.743 0.329 0
Mean Embed 0.452 0.774 0.369 8.5

No Enhancement (Base) 0.452 0.774 0.369 0
Concat (Para + Sem) 0.445 0.445 0.835 16.9
Cosine (Para + Sem) 0.408 0.809 0.642 22.6

Cosine (Para) + Concat (Sem) 0.466 0.798 0.812 42.1
AdamW (Base) 0.466 0.798 0.812 0

Yogi 0.425 0.809 0.827 -1.9
SGD 0.441 0.738 0.829 -3.6

Table 2: Results for ablation experiments. Each experiment quantitatively validates the model architecture
for optimal performance.

The Final model was evaluated on dev datasets along with minBert and MT-DNN (Base). The performance
scores have been reported in the Introduction section in Table 1. The performance of the Final model on
the test datasets for the three target tasks can be found in Table 3 below.

Tasks

Model Sentiment Analysis
(Accuracy)

Paraphrase Detection
(Accuracy)

Semantic Textual Analysis
(Pearson)

Final model 0.532 0.818 0.841
Table 3: Performance scores for the Final model on test datasets

5 Analysis

In this section, we offer further analysis of embedding enhancements and share an ablation analysis of the
different optimizers we used for our model.

5.1 Enhanced Embeddings: A Case Study

During ablation experiments, we noticed that the semantic textual similarity task gained peak performance
when the output contextual embeddings of the sentence pairs were enhanced by concatenating the difference
and element-wise product of the embeddings to form a new embedding that was passed through the
feedforward network prior to classification. Concatenating the difference of the embeddings allows the
feedforward network to capture and maximize the dissimilarities between the sentence pairs, while the
element-wise product captures the similarities between the sentence pairs. These new features can be
amplified by the feedforward network during training to learn their representations. Following is a sentence
pair that was a part of our dataset used to evaluate the semantic textual similarity task.
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Sentence 1: A man dives off of a cliff.

Sentence 2: A man is riding a motorcycle.

True Similarity score: 0.66

MT-DNN (Base) - Predicted Similarity Score: 2.61

Final Model - Predicted Similarity Score: 0.67

We can see that the baseline MT-DNN model incorrectly predicted the sentence pair to be somewhat similar,
most likely because the subject of the sentences ("man") and their semantic structures are very similar. The
sentence length is small and equal as well, which is another primitive feature that is most likely captured
by the MT-DNN base model. However, since our model enhances the embedding pairs to amplify critical
differences, it pays more attention to the action verb of the sentence pairs, which are dissimilar and affect
different objects in the sentences. Hence, our model can correctly predict that the sentence pair are actually
dissimilar. Quantitative analysis validates our understanding as well since the ablation studies revealed
that the Pearson score of semantic textual similarity task increased by 50% during evaluation when the
embeddings were enhanced, as shown in Table 2.

5.2 Ablation: Optimizer Choice

We noticed a difference in the convergence of our experimental results when changing the optimizer to
train our model. Different optimizers have their strengths and weaknesses, which can significantly impact
the performance of the model. Additionally, since the datasets for each of our three tasks were unbalanced,
we noticed fluctuations in performance when using different optimizers. Figure 4 shows how different
optimizers performed over 10 epochs during training. We were especially interested to study the difference
in performance between the Yogi Zaheer et al. (2018) optimizer and the AdamW optimizer since Yogi
has been proposed to improve convergence speed and stability over AdamW. While the graph displays the
consistency in Yogi’s results, both achieved similar performance during training. This led us to side with
the AdamW optimizer since a large corpus of previous works validate its success. It is possible that Yogi
would’ve performed better with additional hyper parameter tuning and a more balanced data distribution.
SGD took significantly longer to converge and was not able to match the performance of the other two
optimizers, so we chose not to pursue it any further.

Figure 4: Results of our optimizer ablation experiment.

6 Conclusion

We have built a multi-task learning model that extends the MT-DNN architecture and performs well
on sentiment analysis, paraphrase detection, and semantic textual similarity NLP tasks. Additional
components of our model beyond the MT-DNN include an embedding enhancement layer that modifies
output embeddings to amplify task-specific features, task-specific feedforward networks that can learn
additional representation, and updated classification layers that better predict sentence pair similarities. Our
experiments show that the model uniformly beats our original minBERT model and our baseline MT-DNN
model. We noticed that the performance of our model on certain tasks was also influenced by the amount
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of data that our model was trained upon. Future works could investigate the link between disproportional
task-specific dataset size and its effects on multi-tasking NLP systems. We also believe that our model
encourages further research and investigation into techniques that enhance contextual output embeddings
to amplify task-specific features and improve the performance of other NLP tasks.
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