
Extension-BERT: Multitask Learning with BERT
Stanford CS224N Default Project

Jingwen Wu
Department of Computer Science

Stanford University
jingwenw@stanford.edu

Abstract

In this project, we extend the BERT Transformer model by performing multitask
learning on three NLP tasks: sentiment classification, paraphrase accuracy, and
semantic textual similarity. To improve model performance on these three tasks, we
investigate four main methods: cosine similarity finetuning, additional Masked Lan-
guage Modeling pretraining, additional dataset finetuning, and multitask learning
optimization through gradient surgery. We find that gradient surgery optimization
achieves the best results, with a Pearson correlation of 0.8517 on semantic tex-
tual similarity, 51.40% accuracy on sentiment classification, 85.17% accuracy on
paraphrase identification, and an average score of 0.7392 on the Test leaderboard.

1 Key Information to include
• Mentor: Manasi Sharma
• External Collaborators (if you have any): N/A
• Sharing project: N/A

2 Introduction

In Multitask Learning (MTL), an NLP model is simultaneously trained on multiple tasks using shared
embedding representations. MTL is similar to human learning, where knowledge in one domain can
be transferred to improve performance in related domains (Liu et al., 2019a). This paradigm has
gained research attention due to its potential to increase data efficiency and model learning speeds,
but is challenging because an improvement in the performance of one task could downgrade the
performance of another task (Crawshaw, 2020).

The baseline model for this project is BERT, a bidirectional Transformer model with language
representations pretrained on two tasks: Next Sentence Prediction (NSP) and Masked Language
Modeling (MLM) (Devlin et al., 2018). The goal of this project is to extend the pretrained BERT
model by simultaneously finetuning on three NLP tasks: 1) Sentiment Classification of five sentiment
labels on the Stanford Sentiment Treebank (SST) dataset (Socher et al., 2013), 2) Semantic Textual
Similarity, a measure of the similarity in meaning of two sentences, on the SemEval STS dataset
(Agirre et al., 2013), and 3) Paraphrase Identification on the Quora Question Pairs (QQP) dataset (Iyer
et al., 2017). Sentiment classification has practical applications to areas such as customer product
research, while semantic textual similarity can be applied to information retrieval and paraphrase
identification can be useful for plagiarism detection. To finetune BERT on these three tasks, we
adapt the following extensions: 1) cosine similarity finetuning (Reimers and Gurevych, 2019), 2)
additional pretraining on the MLM task (Devlin et al., 2018), 3) additional finetuning on the SNLI
dataset (Bowman et al., 2015), 4) gradient surgery for multitask learning (Yu et al., 2020).

We find that although the traditional multitask learning method already improves upon the baseline
score by over 0.2 points, adding the PCGrad method yields the highest average model score. Since
the PCGrad model performs best overall but not in any task-specific subcategory, we hypothesize

Stanford CS224N Natural Language Processing with Deep Learning

that the PCGrad procedure allows the model to step in the optimal direction for all three tasks while
leading to tradeoffs in individual task performance, providing an improvement in average task scores.

3 Related Work

The Transformer architecture outlined by Vaswani et al. (2017) originally applied the self-attention
mechanism and fully-connected feed-forward networks to machine translation. Devlin et al. (2018)’s
BERT model, based on this Transformer architecture, advanced the state-of-the-art on 11 individual
NLP tasks, including QQP, SST-2 (binary sentiment classification), and STS-B, but literature on
multitask learning for our three datasets is limited. Liu et al. (2019b)’s RoBERTa model modified
BERT through additional training methods, removal of the Next Sentence Prediction task, and
adjustment of the masking strategy, thus advancing the state-of-the-art on STS-B and three other
General Language Understanding Evaluation (GLUE) (Wang et al., 2018) tasks. Lan et al. (2019)’s
ALBERT model significantly reduced the number of parameters in BERT, establishing a new state-of-
the-art on the GLUE benchmark. Jiang et al. (2019)’s smoothness-inducing adversarial regularization
and proximal point optimization methods, aimed at reducing the overfitting caused by aggressive
finetuning, further advanced the state-of-the-art on SST-2, QQP, and STS-B.

Multitask learning using BERT through a formulation of the loss function as a sum of individual
loss functions has been previously applied to domains such as News Recommendation (Bi et al.,
2022). The MT-DNN model presented by Liu et al. (2019a) applies multitask learning to deep
neural networks by incorporating BERT into its shared layers. An optimization method for multitask
learning is the gradient surgery procedure, in which individual task gradients are deconflicted through
projection of one gradient onto the normal plane of another (Yu et al., 2020). We build off of these
methods to extend BERT for multitask learning on SST, STS, and QQP.

4 Approach

Figure 1: Overview of extensions added to the BERT model.

4.1 BERT Architecture

For this project, we use the pretrained sentence embeddings of BERT, whose full architecture is
explained in-depth in Devlin et al. (2018).

4.2 Baseline

We create a baseline model which uses the pretrained BERT weights, adding dropout and one linear
layer for each of the three tasks to predict outputs. We train the SST and QQP heads using Cross
Entropy Loss, and the STS head using simple regression and Mean Squared Error Loss.

4.3 Multitask Learning

We build upon the baseline by adapting the approach outlined in Bi et al. (2022) of multitask learning
by optimizing the following multitask loss function:

L = LSTS + LSST + LQQP (1)
We use Cross Entropy Loss for QQP and SST, and Mean Squared Error Loss for STS:

LSTS =
1

N

N∑
i=1

(yi − ŷi)
2 (2)

2

LQQP = −
mQ∑
i=1

yi log(ŷi) (3)

LSST = −
mS∑
i=1

yi log(ŷi) (4)

where y is the true label, ŷ is the predicted label, N is the number of data points, mQ is the number
of classes for QQP, and mS is the number of classes for SST. We set mQ = 2 and mS = 5 for our
model. For each task, we use dropout and then a linear prediction layer.

4.4 Gradient Surgery

Yu et al. (2020) hypothesized that one issue with multitask learning optimization is that gradients
from different tasks often conflict with one another in ways that harm overall model performance. As
depicted in Figure 2, conflicting task gradients, large differences in gradient magnitudes, and high
multitask curvature can contribute to optimization difficulty (Yu et al., 2020).

Figure 2: Visualization of PCGrad method. Source: (Yu et al., 2020)

The PCGrad gradient surgery method, as shown in Yu et al. (2020), alters pairs of conflicting task
gradients by projecting each gradient onto the normal plane of the other. Their procedure decreases
the destructive interference of task gradients with other batch gradients. Denoting the gradient of task
Ti as gi and the gradient of task Tj as gj , if gi · gj < 0, they compute the following projection:

gi ← gi −
gi · gj

||gj ||2
gj (5)

We implement the PCGrad algorithm for multitask learning with the AdamW optimizer following the
pseudocode outlined in Yu et al. (2020), with minimal reference to the code implementation presented
by Tseng (2020) for debugging. We perform the PCGrad procedure after training on one batch for
each task, and then perform a single optimization step on the shared task gradient parameters.

4.5 Cosine Similarity Finetuning

Figure 3: The cosine similarity SBERT architecture for training on the STS task. Adapted from the
original visualization in Reimers and Gurevych (2019).

The SBERT model, explained in Reimers and Gurevych (2019), finetunes BERT on the STS task
using the regression objective function and a Siamese network structure, as pictured in Figure 3. For a
given sentence pair, SBERT passes each individual sentence embedding through the network, obtains
each pooler output, and computes the cosine similarity between the two outputs as a prediction.
SBERT uses the MEAN pooling strategy, which computes the mean of all BERT output vectors.

We implement the above Siamese network structure with cosine similarity for finetuning on the STS
task by following the description of SBERT in Reimers and Gurevych (2019).

3

4.6 Additional MLM Pretraining

Devlin et al. (2018)’s BERT model is pretrained on the Masked Language Modeling (MLM) task,
which contributes to the bidirectionality of BERT embedding representations. In their MLM task,
a set percentage (15%) of input tokens are selected for prediction. However, replacing all of these
selected tokens with the [MASK] token creates issues during finetuning when the [MASK] token
is not present. To mitigate this issue, Devlin et al. (2018) replace 80% of the tokens selected for
prediction with a [MASK] token, replace 10% with a random token, and keep 10% as the unchanged
token. Each selected token is predicted using its final hidden vector and Cross Entropy Loss.

Gururangan et al. (2020) showed that both in-domain pretraining and additional pretraining on the
task’s unlabeled data can improve model performance. Krishna et al. (2022) further demonstrated
that pretraining directly on the downstream corpora, known as self-pretraining, can improve results.

Accordingly, we implement additional MLM pretraining on the SST, STS, and QQP train datasets,
following the procedure outlined in Devlin et al. (2018). We train and optimize each dataset separately
within each epoch. We apply dropout after obtaining the pooler outputs for each token, and then use
a linear prediction layer.

4.7 Finetuning on SNLI dataset

Bowman et al. (2015)’s Stanford Natural Language Inference (SNLI) dataset contains 570,000
sentence pairs labeled contradiction, neutral, or entailment. Reimers and Gurevych (2019) train
SBERT on SNLI using Cross Entropy Loss and a three-way softmax-classifier objective function:

o = softmax(Wt(u, v, |u− v|)) (6)

where Wt ∈ R3n×k is a trainable weight for k output labels, u and v are the sentence embeddings in
a given sentence pair, and |u− v| refers to the element-wise difference between u and v.

Before finetuning BERT on the downstream tasks, we implement the above procedure to first train on
a subset of SNLI using the softmax objective function and Cross Entropy Loss. We perform dropout
on the concatenated embeddings and then use a linear layer with 3 output logits for prediction.

5 Experiments

5.1 Data

We use the following datasets:

• CFIMDB Dataset, consisting of 2,434 highly polar movie reviews with binary labels indicat-
ing whether the sentiment is positive (Teaching Team, 2023). This dataset is only used in
Part 1 of the project to test BERT performance on sentiment analysis.

• Stanford Sentiment Treebank (SST) Dataset, consisting of 11,855 sentences from movie
reviews with 5 possible sentiment labels: negative, somewhat negative, neutral, somewhat
positive, and positive (Socher et al., 2013). Sentiment classification is one of the three tasks
that the multitask BERT model is expected to perform.

• Quora Question Pairs (QQP) Dataset, consisting of 400,000 question pairs with binary labels
indicating whether the sentences are paraphrases of each other (Iyer et al., 2017). This
paraphrase task is one of three that the multitask BERT model is expected to perform.

• SemEval STS Dataset, consisting of 8,628 sentence pairs with continuous labels of similarity
from 0 (least similar) to 5 (most similar) (Agirre et al., 2013). This similarity evaluation
task is one of three that the multitask BERT model is expected to perform.

• Stanford Natural Language Inference (SNLI) Dataset, consisting of 570,000 sentence pairs
labeled contradiction, neutral, and entailment (Bowman et al., 2015). This dataset is used to
finetune BERT before downstream multitask training.

4

5.2 Evaluation method

Paraphrase detection on QQP and sentiment classification on SST are both evaluated on accuracy,
defined as # of correct predictions

of total predictions . Given the continuity of STS labels, semantic textual similarity is
evaluated on Pearson Correlation, a value between -1 and 1 which measures the linear correlation
between predicted and true labels. To evaluate multitask performance, we average these three scores.

Denoting TP as true positive, FP as false positive, and FN as false negative, secondary metrics that
we use to evaluate QQP are precision = TP

TP+FP , recall = TP
TP+FN , and F1 score = 2 · Precision×Recall

Precision+Recall .

5.3 Experimental details

For all models, to balance the downstream datasets due to large differences in size, we finetune on
the same fixed number of samples n for each train dataset during each epoch and automatically reset
a dataset to the first sample when all samples have been trained on. We use the output of the [CLS]
token. Unless otherwise specified, these are the default model configurations and hyperparameters:

• Multitask Finetuning: 5 epochs, batch size = 8, dropout = 0.3, learning rate (LR) = 1e-5,
and n = 50000.

• MLM Pretraining: 20 epochs, batch size = 8, dropout = 0.3, LR = 1e-5, and n = 4000.
• SNLI Finetuning: 3 epochs, batch size = 8, dropout = 0.3, LR = 1e-5, and n = 40000.
• Default GPU: NVIDIA A10G.

Baseline We run the baseline using the pretrained BERT embeddings with a learning rate of 1e-3
and all other default hyperparameters. We freeze all model weights except those in the last prediction
layer for each task. The baseline trained for 1 hour 4 minutes on a Tesla P100 GPU.

Multitask Learning We finetune weights using the default configuration for 1 hour 22 minutes.

PCGrad The final PCGrad model was finetuned using default hyperparameters. We experiment
with different dropout, learning rates, pooling strategies, and sizes of n (Appendix A.2-A.4), but find
that the default hyperparameters perform best. This model trained for 2 hours 41 minutes.

MLM We first train the BERT embeddings on the MLM task using the train sets of QQP, SST, and
STS with default MLM hyperparameters. Using these trained embeddings, we then run the MTL
procedure as above with the default hyperparameters. The runtime of MLM training is 1 hour 3
minutes and the finetuning runtime is 1 hour 21 minutes.

SNLI We first finetune embeddings on the SNLI dataset for 5 epochs and all other SNLI hyper-
parameters. Then, we perform the MTL procedure as above with the default hyperparameters. The
runtime of SNLI training is 36 minutes and the runtime of MTL training is 1 hour 22 minutes.

Cos Sim + PCGrad We finetune weights for 10 epochs and use all other default hyperparameters,
but pass embeddings separately through a Siamese network setup for STS and obtain similarity
predictions by computing the cosine similarity between the two sentence outputs. We use the
MEAN pooling strategy outlined in Reimers and Gurevych (2019). We use the PCGrad procedure in
conjunction. This model ran for 4 hours 40 minutes.

SNLI + PCGrad We train on SNLI, then perform 10 epochs of finetuning with PCGrad and use all
other default hyperparameters. The total runtime is 5 hours 32 minutes.

MLM + PCGrad We use MLM, then finetune with PCGrad for 10 epochs with all other default
hyperparameters. The runtime is 1 hour 34 minutes for MLM and 5 hours 7 minutes for finetuning.

MLM + SNLI + PCGrad We use all three methods with default hyperparameters. The runtime is
1 hour 4 minutes for MLM, 23 minutes for SNLI, and 2 hours 54 minutes for finetuning.

5.4 Results

The results are presented in Tables 1 and 2. The vanilla MTL model without extensions significantly
outperforms the Baseline model, suggesting that multitask finetuning of BERT weights is effective.
All models perform relatively similar to each other, although the Cos Sim + PCGrad model attains an
average score at least 0.01 points lower than other extension models.

5

Model STS Corr. SST Acc. QQP Acc. Dev Avg.
Baseline 0.4809 0.4005 0.6811 0.5208

MTL 0.8435 0.5114 0.8564 0.7371
PCGrad 0.852 0.515 0.8538 0.7403
MLM 0.8483 0.5114 0.8545 0.7381
SNLI 0.8447 0.4977 0.8582 0.7335

Cos Sim + PCGrad 0.8078 0.5141 0.8502 0.724
SNLI + PCGrad 0.8466 0.5041 0.8588 0.7365
MLM + PCGrad 0.8572 0.5204 0.838 0.7385

MLM + SNLI + PCGrad 0.8493 0.5159 0.855 0.7401

Table 1: Results of models on dev sets.

Model STS Corr. SST Acc. QQP Acc. Test Avg.
PCGrad 0.8517 0.5140 0.8517 0.7392

Table 2: Results of best model on test set.

The PCGrad model attains the highest average score although not on any individual task, followed
closely by the MLM + SNLI + PCGrad model. This result is expected since the PCGrad procedure de-
conflicts task gradients through projection, allowing the model to step in the optimal direction for all
three tasks with tradeoffs in individual task performance. In contrast, the Cos Sim + PCGrad model’s
comparatively lower performance could be because we do not use a linear layer between the BERT
embeddings and the cosine similarity computation, making it difficult to finetune the embeddings to
produce accurate cosine similarity values while maintaining high multitask performance.

Surprisingly, the MLM task does not significantly improve overall model performance. As seen in
Appendix A.1, we were only able to attain accuracies between 23% to 41% on the MLM tasks for
the three datasets. Furthermore, increasing the number of epochs for MLM training did not increase
the model’s average performance, despite MLM accuracies increasing. There are three potential
explanations: 1) MLM training on target-domain data does not produce significant performance
improvements unless the model achieves significantly higher accuracies on the MLM task. 2) Since
the MLM + PCGrad model attains the highest performance on the STS and SST tasks but performs
poorly on QQP, MLM may not be as helpful for paraphrase identification. 3) As hypothesized by Zhu
et al. (2021), the shallow domain knowledge encoded by additional pretraining only has an effect
when not enough data for finetuning is available. That is, the model can better learn task-specific
knowledge through direct finetuning instead of additional pretraining.

Finetuning on SNLI also does not improve model performance, despite our model attaining 71.75%
accuracy on the SNLI dev dataset. We hypothesize that this is due to a similar reason as with MLM, in
that additional finetuning on other datasets is not as useful as encoding knowledge through finetuning
on the downstream datasets themselves.

6 Analysis

Sentiment Prediction (SST) We compare PCGrad to the MLM + PCGrad model, which performed
best on SST. From Figure 4 and Table 3, we observe that both models have the most trouble with
and err away from definitively classifying a sentence as positive, negative, or neutral. One potential
reason, when observing the third sentence in Table 3, is that while the model focuses its attention
on both positive sentiment words such as "sweet" and "satisfying", this sentiment is negated by
words such as "wickedly", leading to a somewhat positive prediction. Contrastingly, the MLM +
PCGrad model correctly predicts this sentence as positive, which may be attributed to the bidirectional
contextualization that the MLM task provides. One potential improvement is to further perform the
MLM task on additional sentiment datasets to give the model even more context.

Paraphrase Prediction (QQP) From Table 4, we observe that the PCGrad model has a significantly
higher recall score than precision score, suggesting that it errs on the side of predicting two sentences
as paraphrases. The examples in Table 5 demonstrate that the model tends to classify sentences that
contain similar tokens with subject-specific meanings as paraphrases (e.g. "LLB", "BA" in sentence
pair 1 or "variable" in sentence pair 2), while classifying sentence pairs with minimal rephrasing as
non-paraphrases (e.g. "earlobe" vs "ear" in sentence pair four). The model struggles to understand

6

Figure 4: Normalized confusion matrix of PCGrad predictions on the SST Dev set.

Sentence Predicted Sentiment Ground Truth
Ruzowitzky has taken this mothball-y stuff and made a
rather sturdy, old-fashioned entertainment out of it.

Somewhat positive Neutral

Stultifyingly, dumbfoundingly, mind-numbingly bad. Somewhat negative Negative
Manages to be sweet and wickedly satisfying at the
same time.

Somewhat positive Positive

Table 3: Erroneous predictions of PCGrad model on SST Dev set.

the meaning of domain-specific phrases such as "variable stars" and "BA LLB". Given the extensive
pretraining of BERT on massive corpuses, we hypothesize that a lack of domain knowledge is not
so much an issue as the forgetting of pretrained knowledge due to aggressive finetuning, and that
Jiang et al. (2019)’s smoothness-inducing adversarial regularization and Bregman proximal point
optimization methods may combat this overfitting.

Model Dev QQP Metrics
TP TN FP FN Precision Recall F1 Score

PCGrad 6532 10726 1901 1053 0.7746 0.8612 0.8156
SNLI + PCGrad 6262 11096 1531 1323 0.8035 0.8255 0.8144

Table 4: Dev QQP confusion matrix and other evaluation metrics.

Semantic Textual Similarity (STS)

Although we compute the cosine similarity between the two sentence outputs as in SBERT, the Cos
Sim + PCGrad model attains lower correlation values than both SBERT and PCGrad. As seen in
Figure 5, the Cos Sim + PCGrad model seems to predict negative labels more frequently than PCGrad.
This could be attributed to negative cosine similarity being associated with negative correlation
between two sentences, and could be remedied by adding a ReLU layer after the cosine similarity
computation. Additionally, because we do not add a linear layer between the BERT pooler outputs
and the cosine similarity computation, there are no trainable STS prediction weights for the model to
finetune outside of the BERT embeddings; in contrast, we use a linear projection layer in the PCGrad
model and other extension models. Adding this additional layer to the Cos Sim + PCGrad model
could improve STS performance.

In Table 6, we examine the three most erroneous predictions made by the PCGrad model compared
to true STS labels, noting the difference in scale. We measure prediction error as the residual, or the
vertical distance between the line of best fit and the true y-value. From these examples, we find that
the model has trouble with sentence pairs marked as very similar or very dissimilar. Sentence pairs 2
and 3 both feature more complex rephrasings: while "point to lower start" and "signal early losses"
have similar meanings in the context of the stock market, the model has difficulty recognizing this
contextual meaning. In contrast, the MLM + PCGrad model assigns example 3 a score of 0.4950

7

Sentence 1 Sentence 2 Prediction Ground Truth
Can one do an MA in international
relations after BA LLB?

Can I do LLB after completing BA? Paraphrase Not
paraphrase

What is the difference between an
engagement ring and a wedding
ring?

What is the difference between
getting an engagement ring and a
wedding ring?

Not
paraphrase

Paraphrase

What are variable stars? What is variable in C? Paraphrase Not
paraphrase

How do I get rid of a zit on my
ear?

How can I get rid of zits on my
earlobe?

Not
paraphrase

Paraphrase

Table 5: Erroneous predictions of PCGrad model on Dev QQP set.

Sentence 1 Sentence 2 Prediction Ground Truth
You should do it. You should prime it first. 0.5551 0.0
It’s also a matter of taste. It’s definitely just a matter of

preference.
0.3725 5.0

Stock index futures point to lower
start

Stock index futures signal early
losses

0.2381 4.4

Table 6: Erroneous predictions of PCGrad model on Dev STS set.

with a residual of 1.82, which is lower than PCGrad’s residual of 2.75. This may be attributed to the
additional contextualization that the MLM model provides on the STS dataset.

Figure 5: Left - PCGrad STS dev predictions; Right - Cos Sim + PCGrad STS dev predictions.

7 Conclusion

In this project, we finetune a BERT model by using multitask learning on sentiment classification
(SST), paraphrase accuracy (QQP), and semantic textual similarity (STS). Although a simple multi-
task learning approach already improves the baseline score by over 0.2 points, the gradient surgery
optimization procedure yields the most improvement and performs best overall. Masked LM pre-
training improves SST and STS scores, but comparatively decreases QQP accuracy. SNLI finetuning
does not significantly improve model performance. Given the difficulty of attaining high accuracies
on the MLM task with our current approach, further avenues of exploration include performing
PCGrad optimization on the MLM task, only performing MLM on the SST and STS datasets, and
exploring additional methods to remedy aggressive multitask finetuning. Furthermore, since our
MTL finetuning method of balancing datasets leads to long runtimes per epoch, exploration of more
efficient sampling methods could improve model efficiency.

References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. *SEM 2013

shared task: Semantic textual similarity. In Second Joint Conference on Lexical and Computational

8

https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004

Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic
Textual Similarity, pages 32–43, Atlanta, Georgia, USA. Association for Computational Linguistics.

Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. 2022. Mtrec: Multi-task
learning over bert for news recommendation. In Findings of the Association for Computational
Linguistics: ACL 2022, pages 2663–2669.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large
annotated corpus for learning natural language inference. CoRR, abs/1508.05326.

Michael Crawshaw. 2020. Multi-task learning with deep neural networks: A survey. CoRR,
abs/2009.09796.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

Suchin Gururangan, Ana Marasovic, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining: Adapt language models to domains and tasks.
CoRR, abs/2004.10964.

Shankar Iyer, Nikhil Dandekar, and Kornél Csernai. 2017. First quora dataset release: Question pairs.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2019.
SMART: robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. CoRR, abs/1911.03437.

Kundan Krishna, Saurabh Garg, Jeffrey P. Bigham, and Zachary C. Lipton. 2022. Downstream
datasets make surprisingly good pretraining corpora.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. 2019. ALBERT: A lite BERT for self-supervised learning of language representations.
CoRR, abs/1909.11942.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019a. Multi-task deep neural
networks for natural language understanding. CoRR, abs/1901.11504.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019b. Roberta: A robustly optimized BERT
pretraining approach. CoRR, abs/1907.11692.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. CoRR, abs/1908.10084.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

CS 224N Teaching Team. 2023. Default final project bert handout.

Wei-Cheng Tseng. 2020. Weichengtseng/pytorch-pcgrad.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. CoRR, abs/1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. 2018.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. CoRR,
abs/1804.07461.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning. CoRR, abs/2001.06782.

Qi Zhu, Yuxian Gu, Lingxiao Luo, Bing Li, Cheng Li, Wei Peng, Minlie Huang, and Xiaoyan
Zhu. 2021. When does further pre-training MLM help? an empirical study on task-oriented
dialog pre-training. In Proceedings of the Second Workshop on Insights from Negative Results in
NLP, pages 54–61, Online and Punta Cana, Dominican Republic. Association for Computational
Linguistics.

9

http://arxiv.org/abs/1508.05326
http://arxiv.org/abs/1508.05326
http://arxiv.org/abs/2009.09796
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2004.10964
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
http://arxiv.org/abs/1911.03437
http://arxiv.org/abs/1911.03437
http://arxiv.org/abs/2209.14389
http://arxiv.org/abs/2209.14389
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1901.11504
http://arxiv.org/abs/1901.11504
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://github.com/WeiChengTseng/Pytorch-PCGrad.git
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/2001.06782
https://doi.org/10.18653/v1/2021.insights-1.9
https://doi.org/10.18653/v1/2021.insights-1.9

A Appendix

A.1 MLM Task

For the MLM task, we loop over each dataset separately and optimize each dataset separately within
each epoch using Cross Entropy Loss.

Model STS MLM
Acc.

SST MLM
Acc.

QQP MLM
Acc.

Avg Dev
MTL Acc.

MLM, 20 epochs + MTL, 5 epochs 0.2364 0.3074 0.3091 0.7381
MLM, 40 epochs + MTL, 10 epochs 0.3272 0.4062 0.3863 0.7374

A.2 Hyperparameter Search for PCGrad Model

The default hyperparameters are: LR = 1e-5, epochs = 5, dropout = 0.3, and batch size = 8. We change one
hyperparameter at a time.

Model STS Corr. SST Acc. QQP Acc. Avg Dev
Acc.

PCGrad (default) 0.852 0.515 0.8538 0.7403
PCGrad, LR=2e-5 0.8557 0.4959 0.8596 0.7371
PCGrad, LR=3e-5 0.8504 0.4977 0.8549 0.7343

PCGrad, dropout=0.2 0.8499 0.5032 0.8561 0.7364
PCGrad, dropout=0.5 0.8505 0.5032 0.859 0.7376

A.3 Pooling Strategy

Model STS Corr. SST Acc. QQP Acc. Avg Dev
Acc.

PCGrad, CLS (default) 0.852 0.515 0.8538 0.7403
PCGrad, MEAN 0.8485 0.5295 0.8423 0.7401

A.4 Number of Samples per Epoch

n denotes the number of samples that we train on for each dataset in multitask learning. To balance datasets, we
reset a dataset back to its first sample if all samples have been trained on. We repeat this process until n samples
in the dataset have been trained.

Model STS Corr. SST Acc. QQP Acc. Avg Dev
Acc.

PCGrad, n=30000 0.8441 0.5141 0.8501 0.7361
PCGrad, n=40000 0.8508 0.5123 0.8492 0.7374

PCGrad, n=50000 (default) 0.852 0.515 0.8538 0.7403

A.5 STS Spearman Correlation

For completeness, we use Spearman Correlation, another measure of correlation mainly used when the data
being compared has a non-linear relationship, to evaluate STS, as this metric was used to evaluate SBERT
(Reimers and Gurevych, 2019).

Model Dev STS Spearman Correlation
PCGrad 83.37

Cos Sim, PCGrad 78.45
SBERT* 84.67

10

	Key Information to include
	Introduction
	Related Work
	Approach
	BERT Architecture
	Baseline
	Multitask Learning
	Gradient Surgery
	Cosine Similarity Finetuning
	Additional MLM Pretraining
	Finetuning on SNLI dataset

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Appendix
	MLM Task
	Hyperparameter Search for PCGrad Model
	Pooling Strategy
	Number of Samples per Epoch
	STS Spearman Correlation

